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Maximal E�ective Bandwidth under \Leaky Bucket" Constraints

Cormac Walsh

Abstract

We investigate the worst possible behaviour of a stationary source if the traÆc emanating from it is
constrained to have a peak rate no greater than � and to obey a \leaky bucket" constraint with bucket
size � and leak rate �. The quantity to be maximised is the e�ective bandwidth function which governs
the asymptotic loss rate when a large number of such sources pass through a single server queue. We
conjecture the form of the worst case traÆc in general and prove the conjecture for the special case when
T , the timescale parameter of the e�ective bandwidth, is less than both �=(���) and �=�, the times taken
respectively to �ll and empty the leaky bucket.

1 Motivation

Consider a multiplexor at which traÆc arrives from several independent stationary sources. To guarantee
suÆcient quality of service, for example bounds on the cell delay or loss, the multiplexor must have a reasonable
description of the characteristics of the o�ered traÆc. This may be given at connection setup when a traÆc
contract is agreed. The user contracts that his traÆc will conform to certain parameters, perhaps de�ning a
policing algorithm that bounds properties of the traÆc. In return the network contracts to carry this traÆc
with a particular quality of service. The traÆc contract gives the network information that will bound the
amount of network resources required to carry the call.

The network may have no additional information about user traÆc and must therefore infer its characteristics
from the descriptors speci�ed in the contract. In any decisions the network makes concerning resource allocation
or call acceptance, it would be prudent of the network to assume the worst case, that is that the user is
adversarial to the maximum extent permitted by the policer.

These considerations motivate an optimisation problem over the space of traÆc processes. We must choose
a functional on this space to represent the performance of the network, and a constraint to represent the action
of the policer.

A constraint common in the literature is the \leaky bucket" mechanism described �rst in [1]. This consists
of a counter for each connection that is incremented whenever a cell from that connection arrives and is
decremented periodically. If the counter exceeds a �xed threshold, the cell responsible is declared a non-
conforming cell. These cells are discarded, delayed, or tagged as a low priority cells. The user speci�es both
the rate � at which the counter is incremented and the threshold �. We say that a traÆc stream conforms to
the leaky bucket constraint (�; �) if none of its cells are non-conforming.

To simplify analysis, we will work with a 
uid model. There is an obvious continuous version of the leaky
bucket regulator. Here continuous 
uid 
ows into a bu�er at a rate equal to that of the arriving traÆc stream
and is drained at a constant rate. Again, a stream is conforming if the 
uid never exceeds a level �.

The leaky bucket is the standard policing mechanism de�ned by the ATM Forum [2] under the name Generic
Cell Rate Algorithm. With a single constraint of the form (�; 0), the worst case source is trivial: it is the source
that transmits at a constant rate �. Our concern will be the next simplest case, that of two constraints: a peak
rate constraint (�; 0) and a mean rate constraint (�; �).

There are many functionals that could represent the degree of congestion in a network. Mitra and Morri-
son [3] investigate the worst case loss rate in a bu�erless server with constant service rate. They show that the
loss rate is maximised by a periodic traÆc source with uniformly distributed phase whose transmission rate is
� during a fraction m=� of the time and 0 during the remainder.

Doshi [4] considers the worst case loss ratio for a �nite number of independent sources. In addition to
considering the situation where there are N identical sources (the homogeneous case) he also tackles the
inhomogeneous case, that is where N � 1 of the sources remain �xed and the maximum is taken with respect
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to the behaviour of the remaining source. He shows that when the bu�er size is zero, the worst case source is
always on-o�, that is, alternates between transmitting at the peak rate and rate zero. He also demonstrates
with a counterexample that the loss rate for two identical and independent sources is not maximised when they
are on-o�.

Oechslin [5] also considers the loss rate of a �nite number of independent identically distributed sources. He
specialises to the case where the service rate per source is equal to the leak rate � and the bu�er size per source
is close (within �) to �. He �nds an upper bound on the expected loss rate experienced by on-o� sources and
a lower bound on that experienced by symmetric sources. By making � small enough, he can make the lower
bound exceed the upper bound and thus prove that there are cases where on-o� traÆc is not the worst case.

Lee [6] �nds the worst case average queueing delay for a single source.
The functional we will consider in this paper is related to the asymptotic loss rate as the number of sources

becomes large. Using the techniques of Large Deviation theory, this can been seen to depend on a functional
called the e�ective bandwidth of the source, which will be de�ned in the next section.

2 The Problem

Let D be the set of right continuous, non-decreasing functions R+ ! R
+ . We interpret the elements of this set

as possible realisations of a traÆc source. That is, b(t) is the amount of traÆc arriving in the interval [0; t]. We
denote by C those elements b of D for which

b(t2)� b(t1) � (t2 � t1)� (1)

and b(t2)� b(t1) � (t2 � t1)� + �; (2)

for all t2 � t1 � 0. These are the realisations which obey the peak rate and leaky bucket constraints. Observe
that the �rst condition implies that all members of C are Lipschitz with constant �.

We identify traÆc sources with probability measures on D . Realisations are shifted forward in time with the
operator �h : C ! C de�ned, for each h � 0, by (�hb)(t) := b(t+ h). When we talk of stationary sources we
mean stationary with respect to this operator. In other words, a measure � on D is stationary if �[��1h B] = �[B]
for all Borel sets B and shifts h � 0. We are interested in the set of stationary sources that meet the constraints
almost surely. These are represented by the set C of stationary probability measures � on D for which �(C) = 1.

We de�ne the e�ective bandwidth of any source � to be

E#;T (�) :=
1

#T
log E�e

#XT ;

where XT : D ! R
+ : b 7! b(T ) is the coordinate evaluation at T . Here # 2 R and T 2 [0;1) are two

parameters called the space scale and the time scale respectively. See [7] for discussion of their interpretation.
The e�ective bandwidth is exactly what we need to calculate the behaviour of the loss rate as the number of
sources becomes in�nite. Denote by L(S;B;N) the loss rate when a single server queue with service rate S and
bu�er size B is fed by N independent sources, each distributed with the same law �. As was shown in [8], L
obeys the large deviations asymptotics

lim
N!1

1

N
logL(sN; bN;N) = � inf

t>0
(f

(�)
t )�(b+ sT ):

where f
(�)
t (#) := #tE#;T (�) and the Legendre-Fenchel transform of f is de�ned to be f�(y) := supx2R[xy�f(x)].

These asymptotics are also obeyed by the probability that the queue length exceeds a level Nb in an in�nite
bu�er and by the proportion of time bu�er is full [9]. For an overview of the many applications of the e�ective
bandwidth function see the paper of Kelly [7].

The asymptotics above motivate the optimisation program

maximise E#;T (�); subject to � 2 C: (3)

For each 
 in the range [0; T ], let w
 be the source that transmits a periodic traÆc pattern with uniformly
distributed phase and whose sample paths are composed of following four sections:
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Figure 1: Graph of z(t) := b(t+T )�b(t)��T in the region [0; t0+t�+2
]

� a peak rate burst of duration t� := �=(�� �),

� an interval in which the source transmits at rate �, of duration 
,

� a silent interval of duration t0 := �=�,

� another interval at rate �, again of duration 
.

Note that t� and t0 are, respectively, just long enough to �ll the leaky bucket from empty and to empty it from
full. A source of this type is illustrated in Figure 2. We make the following conjecture.

Conjecture 1 For each # and T , the stationary traÆc source that maximises the e�ective bandwidth E#;T ,
under leaky bucket constraints (�; �) and (�; 0), is one of the sources fw
g0�
�T .

Note that this conjecture allows di�erent sources to be worst case for di�erent values of # and T , If this
conjecture is true, the problem of �nding the worst case e�ective bandwidth for any given # and T reduces to
a one parameter optimisation over 
, which we now describe.

Consider the source w
 . Let b be one of its realisations and let z(t) := b(t+ T )� b(t)� �T . Then

E#;T (w
) =
1

#T
log

1

p

Z p

0

e#z(x) dx+ �;

where p := 2
 + t0 + t� is the period of the source. In this paper we consider the case when T � min[t0; t�].
For T in this range, z will be of the form shown in Figure 1. Using the identityZ s2

s1

e#(c+mx) =
1

m#

h
e#(c+ms2) � e#(c+ms1)

i
;

we may write down an explicit expression for the e�ective bandwidth of w
 :

E#;T (w
) =
1

#T
log

1

p

3X
n=0

�ie
#Ai ;

where

�0 = (t0 � T )�
2

#�
; �1 =

2

#�
�

2

#�
;

�2 =
2

#�
�

2

#(�� �)
; �3 =

2

#(�� �)
+ (t� � T );

and
A0 = 0; A1 = 
�;
A2 = 
� + �(T � 
); A3 = �T:

The one parameter optimisation involved in maximising this expression over 
 is easy to perform numerically.
Our main result is the following theorem.
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Figure 2: The \wedding cake" pattern, conjectured to have the worst case e�ective bandwidth.

Theorem 1 In the case when T � min[�=(���); �=�], the supremum of E#;T over all sources in C is attained

by a source w
 for some 
 in the range 0 � 
 � T .

The proof of this theorem will form the remainder of the paper.

3 A Useful Bound

For any b 2 D , let

Ub(t) := sup
s2[0;t]

�
�s� b(s)

�
:

This may be interpreted as the amount of 
uid that could have leaked from the leaky bucket up to time t in
excess of that which actually did. Intuitively, if b 2 C and we add Ub(t) to b, the combined realisation will still
meet the leaky bucket constraints.

Lemma 1 Let b 2 C and de�ne d := b+ Ub. Then

� d 2 C,

� for all t � s � 0, we have that d(t) � d(s) � (t� s)� � � and that d(s) � s�,

� Ud = 0.

Proof. Clearly, d(t) � t� for all t � 0. Condition (2) implies that d(t) � � + �t for all t � 0. Condition (1)
implies d(t) � (t� s)�+ �s for all t � s � 0. Subtracting, we deduce the �rst two statements.

To prove the third, we note that Ud(t) := supfs� � d(s) : s 2 [0; t]g � 0 for all t � 0. Since Ud is clearly
non-negative it must be identically zero. 2

De�ne
C 0 := fb 2 C : Ub is identically zerog:

Note that by the lemma above, C 0 is exactly the set of realisations of the form b+Ub, where b 2 C. We will see
that, since each b 2 C is less than some member of C 0, we will be able to restrict our attention to this smaller
set.

Given the nature of the e�ective bandwidth function, it will prove useful to represent the traÆc realisations
in the following form. For any b 2 C 0 we may de�ne the function z(t) := b(t+ T )� b(t)� �T , which speci�es
the amount of traÆc in excess of the leaky bucket rate in each block of length T . Let Z be the set of functions
obtained in this way from elements of C 0, that is

Z := fz 2 C[0;1) : z(t) = b(t+T )� b(t)� �T for some b 2 C 0g:

Our second lemma will translate the constraints on the realisations in C 0 into a constraint on each z 2 Z. This
will take the form of a bound on the area under z in certain intervals which depends only on the values taken
by z at the end points of the interval.
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Lemma 2 Suppose z 2 Z. If z(s1) � 0 and z(s2) � 0, thenZ s2

s1

z(t) dt � �T �
[z(s1)]

2 + [z(s2)]
2

2(�� �)
:

If z(s1) � 0 and z(s2) � 0, then Z s2

s1

z(t) dt � ��T +
[z(s1)]

2 + [z(s2)]
2

2�
:

Proof. We will only prove the �rst statement since the proof of the second is similar. Let b be such that
b+ �t 2 C 0 and z(t) = b(t+T )� b(t). De�ne

m := sup
n
b(s1+T )� b(t) : t 2 [s1; s1+T ]

o
;

n := b(s2)� b(s1+T );

p := sup
n
b(t)� b(s2) : t 2 [s2; s2+T ]

o
:

Since b is absolutely continuous,

I :=

Z s2

s1

z(t) dt =

Z s2

s1

 Z t+T

t

b0(x) dx

!
dt:

We may rewrite this double integral as follows (see Figure 3):

I =

Z s1+T

s1

Z s1+T

t

b0(x) dx dt +

Z s2

s1+T

Z x

x�T

b0(x) dt dx +

Z s2

s2�T

Z t+T

s2

b0(x) dx dt: (4)

De�ne V (t) := min
�
m; (���)(s1+T�t)

�
. We have that

R s1+T
t b0(x) dx � V (t) for all t � s1 + T , and so the

�rst term on the right hand side of (4) is less thanZ s1+T

s1

V (t) dt = mT �
m2

2(�� �)
:

Similarly the third term is less than nT � n2=2(�� �). The middle term is equal to pT . Thus

I � Tm�
m2

2(�� �)
+ Tp+ Tn�

n2

2(�� �)
:

But m+ n+ p � � and m � z(s1) and n � z(s2), and so I � �T � (z(s1)
2 + z(s2)

2)=2(�� �). 2

Motivated by this lemma, we introduce the notation

f(x; y) := �T �
x2 + y2

2(�� �)

and f(x; y) := �T �
x2 + y2

2�
:

4 A Comparison Lemma

In what follows, the symbol I denotes the indicator function, in other words IA(x) is 1 if x 2 A and 0 otherwise.

Lemma 3 Suppose that D1; D2 � R are Borel sets and that z1 : D1 ! R
+ and z2 : D2 ! R

+ are non-negative

measurable functions such that Z
D1

z1(t) Iz1(t)�l dt �

Z
D2

z2(t) Iz2(t)�l dt
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Figure 3: The range of integration of the double integral in the proof of Lemma 2.

for all l � 0, and
R
D1

z1(t) dt =
R
D2

z2(t) dt. Suppose also that Lebft 2 D2 : z2(t) = 0g = 0 and that � � 1.
Then Z

D1

�
e#z1(t) � �

�
dt �

Z
D2

�
e#z2(t) � �

�
dt:

Proof. Since
R
D1
(e#z1(t) � �) Iz1(t)=0 dt = (1 � �) Lebft 2 R : z1(t) = 0g � 0, we may assume without loss of

generality that Lebft 2 R : z1(t) = 0g = 0. For each l > 0, let

Gi(l) :=

Z
Di

zi Izi(t)�l dt;

where i can be either 0 or 1. Then Gi is a distribution function on (0;1) with an associated measure �i.
By hypothesis, G1 � G2. Equivalently, �1 � �2 in the usual stochastic ordering (although �1 and �2 will not
necessarily be probability measures, we have that �1(0;1) = �2(0;1) and so there is no diÆculty in comparing
them). The function

k : R+�f0g ! R : x 7!
e#x � �

x

is non-decreasing and therefore
R
k d�1 �

R
k d�2 since both integrals exist. But, for any function f : R ! R,

we have that
R
f d�i =

R
zi(t):(f Æ zi)(t) dt. The conclusion follows after applying this to k. 2

The proof of Theorem 1 will involve comparing each section of z 2 Z that lies either entirely above or
entirely below the x-axis with one of a set of functions which are in some sense optimal. We now introduce
these functions.

5 An Important Family of Realisations

On the interval [0; T + t�], de�ne the function

m(x) := (���)min
�
x; T; T+t��x

�
:

Note that if z(t) := b(t+ T )� b(t)� �T , where b is a realisation of the source wT , then m is identical in shape
to that part of z that lying above the x-axis. Also, the area under m is �T .

We wish to de�ne a two-parameter family of functions fzu0;u1 : u0; u1 2 [0; �T ]; u0 � u1g such that the
following hold:

� zu0;u1 agrees with m on some interval [x0; x1],

� zu0;u1 has slope � to the left of x0 and slope �� to the right of x1,

6



time

�
�
�
�
�
�
�
� @

@
@
@
@
@
@
@�

�
�
�
�
�
�
� B

B
B
B
B
B
B
Bs

s

x0

s

s

x1

s

0

s

(���)T

Area=u1

m(t)
zu0;u1 (t)

Figure 4: Graph of zu0;u1 when x0 � x1.

�
�
�
�
�
�B
B
B
B
B
B

s

0

s

(���)T

Area=u1

Figure 5: Graph of zu0;u1 when x0 > x1.

� the area of the region to the left of x0 bounded by m, the x-axis, and zu0;u1 , is �T � u0,

� the area of the region to the right of x1 bounded by m, the x-axis, and zu0;u1 , is u1.

More precisely, de�ne g(x) := m[0; x]�m2(x)=2�. Note that g is increasing, continuous, and that g(0) = 0
and g(T + t�) = �T . For all u 2 [0; �T ], de�ne

x0(u) := g�1(�T � u)

and x1(u) := T + t� � g�1(u):

Let u0; u1 2 [0; �T ] be such that u0 � u1. If x0(u0) � x1(u1), de�ne the interval

D(u0; u1) := [x0(u0)�m(x0(u0))=�; x1(u1)�m(x1(u1))=�]

and the function

zu0;u1 : D(u0; u1)! R
+ : x 7! min

h
m(x); m(x0(u0))+(x�x0(u0))�; m(x1(u1))�(x�x1(u1))�

i
:

A function of this type is shown in Figure 4.
If x0(u0) > x1(u1), then it will be impossible to de�ne a function meeting all the requirements above. In

this case we de�ne the interval
D(u0; u1) := [0; 2

p
(u1�u0)=(�� �)]

and the function

zu0;u1 : D(u0; u1)! R
+ : x 7! min

h
x�; (2

p
(u1�u0)=(�� �)� x)�

i
:

A function of this type is shown in Figure 5.
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We also wish to de�ne zu0;u1 which will be a non-positive function. In fact this function will be the negative
of zu0;u1 de�ned above but using ��� as the leaky bucket rate. If a superscript denotes the leaky bucket rate
to be used in the previous construction, then

m(x) := �m(���)(x)

x0(u0) := x0
(���)(u0)

D(u0; u1) := D
(���)

(u0; u1)

zu0;u1 := z(���)u0;u1 :

For every lemma concerning zu0;u1 we will have a dual lemma concerning zu0;u1 .
The purpose of the functions de�ned above will become apparent when we state our next lemma. For now

observe that if z(t) = b(t+T )� b(t)��T where b is a realisation of w
 , then the area under the positive section
of z over a single period is a = �T � (T � 
)2(� � �)�=�. Moreover, this section is identical to zua;va with
ua := (�T + a)=2 and va := (�T � a)=2. Similarly, the negative section of z is identical to zva;ua

This motivates the following de�nitions. For a 2 [0; �T ], de�ne

p(a) := LebD(ua; va) + LebD(va; ua) (5)

and r(a) :=

Z
D(u0;u1)

e#zua;va (t) dt+

Z
D(u0;u1)

e#zva;ua (t) dt; (6)

where ua and va depend on a in the manner described above.

For the case above, p(a) = t� + t0 + 2
 is the period of z, and r(a) =
R p(a)
0 e#z(t) dt.

We set

� := sup
a2[0;�T ]

r(a)

p(a)
:

As a! 0, r(a)=p(a)! 1 and so � � 1. Let a� be where the maximum is attained. Let

h := m(x0((�T � a�)=2))

and h := m(x0((�T � a�)=2))

be the height of the kinks in zua;va and zva;ua respectively. The following relation between h, h, and � will be
useful. Di�erentiating r(a)=p(a) and setting the derivative equal to zero, we �nd that p(a�)r0(a�) = r(a�)p0(a�).
But r0(a�) = exp(#h)=h+ exp(�#h)=h and p(a�) = 1=h+ 1=h. Thus

� =
r(a�)

p(a�)
=

he#h + he�#h

h+ h
: (7)

The following properties of zu0;u1 are important. Suppose that l > 0 and de�ne

y0 := inffx : zu0;u1(x) � lg

and y1 := supfx : zu0;u1(x) � lg:

If x0(u0) � x1(u1), let h0 := m(x0(u0)) and h1 := m(x1(u1)). Alternatively, if x0(u0) > x1(u1), then let
h0 := h1 :=

p
(�� �)(u0 � u1) = max zu0;u1 . In both cases h0 is the value taken by zu0;u1 when its slope

changes from �� � and h1 is the value it takes when its slope changes to �(�� �).
We have that, for each u0; u1 2 [0; �T ],

� the area under zu0;u1 over its domain D(u0; u1) is u0 � u1,

� zu0;u1 is unimodal,

� if l � h0 then the area under zu0;u1 to the left of y0 is l2=2�. If h0 < l < (� � �)T then the area under
zu0;u1 to the right of y0 is f(l; 0)� u1,

� similarly, if l � h1 then the area under zu0;u1 to the right of y1 is l2=2�. If h1 < l < (� � �)T then the
area under zu0;u1 to the left of y1 is f(0; l)� �T + u0,
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� if x0(u0) < x1(u1) and l � max(h0; h1), then the area under zu0;u1 over the interval [y0; y1] is f(l; l).

We use these properties to prove the following lemma. For any real valued function z, de�ne z+ to be the
function z+(t) := max[z(t); 0] and z� to be the function z�(t) := min[z(t); 0]. We will also use the following
notation: if z is a real valued function on [0;1), then z[s1; s2] :=

R s2
s1

z.

Lemma 4 Suppose z 2 Z is such that z(s1) = z(s2) = 0 and z[s1; s2] � 0. Then, letting a := z[s1; s2] and
u1 := inft�s2

�
f(z(t); 0)� z[t; s2]

�
, we have that

Z s2

s1

z+(t) Iz+(t)�l dt �

Z
D(u1+a;u1)

zu1+a;u1(t) Iz(t)�l dt;

for any l > 0.

Proof. We �rst establish two inequalities which the constraints and the hypothesis impose on z. Firstly, let
� > 0. Then there exists t � s2 such that f(z(t); 0)� z[t; s2] � u1 + �. Thus, for each s 2 [s1; s2], we have that

z[s1; s] = z[t; s] + z[s1; s2]� z[t; s2]

� f(z(t); z(s)) + a+ u1 + �� f(z(t); 0):

Using the identity f(z(t); 0)� f(z(t); z(s)) = �T � f(z(s); 0), we conclude that z[s1; s] � f(z(s); 0)��T +u1+
a+ �. Since � is arbitrary, we have that

z[s1; s] � f(z(s); 0)� �T + u1 + a

for all s 2 [s1; s2].
Secondly, we have the inequality z[t; s2] � f(z(t); 0)� u1 for all t 2 [s1; s2].
We need only prove the result for 0 < l � maxx2D z(x). If z never rises above the level l in the interval

[s1; s2] then we are done since all the area lies below l. If z does rise above l then de�ne

r := inffx 2 [s1; s2] : z(x) � lg

and s := supfx 2 [s1; s2] : z(x) � lg:

We also de�ne y0 and y1 as before and write the interval D(u1+a; u1) over which zu1+a;u1 is de�ned as [d0; d1].
Suppose l < h0. Then z[d0; y0] = l2=2� � z[s1; r] � z+[s1; r], where the �rst inequality uses the Lipschitz
condition. On the other hand, if l � h0, then z+[r; s2] + z�[s1; s2] � z[r; s2] � f(l; 0) � u1 = z[y0; d1]. But
z[s1; s2] = z[d0; d1] = a. We thus have, again, that z[d0; y0] � z+[s1; r].

In a similar manner we can show that z[y1; d1] � z+[s; s2].
Now Z s2

s1

z+(t) Iz+(t)�l dt � z+[s1; r] + z+[s; s2];

and

Z d1

d0

z(t) Iz(t)�l dt = z[d0; y0] + z[y1; d1]:

The conclusion follows. 2

For z 2 Z we de�ne

Q(z) := lim sup
t!1

Z t

0

(e#z(x) � �) dx:

For a function z de�ned only over some �nite interval D, for example zu0;u1 or zu0;u1 , we de�ne Q(z) :=R
D
(exp(#z(x)) � �) dx.

Corollary 1 Let z 2 Z. Suppose that z(s1) = z(s2) = 0 and that z is non-negative on (s1; s2). With a and u1
de�ned as above, we have that

R s2
s1

�
e#z(t) � �

�
dt � Q(zu1+a;u1).

9



Proof. This is a simple application of Lemma 3. 2

The following lemma and corollary are dual to those above and are proved in an identical manner.

Lemma 5 Suppose z 2 Z is such that z(s1) = z(s2) = 0 and z[s1; s2] � 0. Then, letting a := z[s1; s2] and
u1 := inft�s2

�
f(z(t); 0)� z[t; s2]

�
, we have that

Z s2

s1

z+(t) Iz+�l dt �

Z d1

d0

zu1+a;u1(t) Iz�l dt;

for any l > 0.

Corollary 2 Let z 2 Z. Suppose that z(s1) = z(s2) = 0 and that z is non-positive on (s1; s2). With a and u1
de�ned as above, we have that

R s2
s1

�
e#z(t) � �

�
dt � Q(zu1+a;u1).

To use Corollaries 1 and 2, we will break up z 2 Z into pieces lying either entirely above the x-axis or
entirely below.

6 Markov Decision Procedures

Recall that a deterministic Markov Decision Procedure (MDP) is a set of states along with a reward function
on the transitions between states. If x and y are states then we often write the transition (x; y) as x! y. We
de�ne the following MDP:

� state space S := f(u; d) � [0; �T ]2 : u+ d � �Tg;

� if x := (u0; d0) and y := (u1; d1) are two states then the reward for the transition x! y is

W (x! y) :=

8><
>:
Q(zu1+d1�d0;u1) if u0 + d0 � u1 + d1 and d0 � d1,
Q(zd1+u1�u0;d1) if u0 + d0 � u1 + d1 and u0 � u1,
�1; if u0 + d0 < u1 + d1,
0; if u0 > u1 and d0 > d1.

We denote this MDP by M := (S;W ). It is customary to call a sequence (�nite or in�nite) of states in an
MDP a path. For any path x through M, the long term average reward is de�ned to be

W(x) := lim sup
n!1

1

n

n�1X
i=0

W (xi; xi+1):

The motivation for introducing the MDP above comes from the following lemma. We de�ne the constant
D :=

�
exp[#T (���)]� �

�
t�.

Lemma 6 For each z 2 Z, there exists a path x through M such that Q(z) � W(x) +D.

Proof. Our �rst step will be to decompose the positive time axis into intervals f[tn; tn+1]gn2N in such a way
that, for each n 2 N, both z(tn) = 0 and one of the following hold:

(A) z is non-negative on [tn; tn+1],

(B) z is non-positive on [tn; tn+1],

(C) h � z � h on [tn; tn+1], and moreover z+[tn; tn+1] � �T and z�[tn; tn+1] � ��T .

We do this in the following way. De�ne

t1 := supft � 0 : h < z(x) < h for all x 2 [0; t], z(t) = 0, z+[0; t] � �T , z�[0; t] � ��T g:

and
t2 := infft � t1 : z(t) = 0g:

10



Clearly the interval [0; t1] is of type (C) while [t1; t2] is of type either (A) or (B). Also, either z(x) lies outside
[h; h] for some x 2 [t1; t2] or else z

+[0; t2] > �T or z�[0; t2] > �T . Thus t2 > min
�
2h=�;�2h=�; �T=h;��T=h;

�
.

So, although either of the intervals may have zero length, the sum of their lengths is bounded below by this
constant. Thus it is clear that we may perform the required decomposition using induction and that there will
be a �nite number of intervals in any �nite time.

Let

un := inf
t�tn

�
f
�
z(t); 0

�
� z[t; tn]

�
and dn := inf

t�tn

�
f
�
z(t); 0

�
� z[t; tn]

�
^ z[0; tn];

where ^ denotes the minimum of two numbers.
Suppose z obeys condition (A) in the interval [tn�1; tn]. Then a := z[tn�1; tn] is non-negative and un �

un�1 � a and dn = dn�1 + a. Applying Corollary 1, we have thatZ tn

tn�1

(e#z(x) � �) dx � Q(zun+a;un)

= W [(un�1; dn�1)! (un; dn)]:

A similar argument shows that the same result is true if z obeys condition (B) in the interval.
Now let [tn�1; tn] be one of the intervals for which Condition (C) holds. We consider �rst the case when

a := z[tn�1; tn] � 0. De�ne D1 := ft 2 [tn�1; tn] : curv(t) < 0g. Let

� := inf
n
l > 0 :

Z tn

tn�1

z+(t) Iz+�l dt � a
o
:

Let m :=
R tn
tn�1

z+(t) Iz+�� dt. Then the subset of [tn�1; tn] on which z takes the value � has measure greater

than a�m. Choose a subset of this set of measure a�m and take its union with ft 2 [tn�1; tn] : 0 < z(t) < �g
to form a set D2. Let D3 := [tn�1; tn]�D2 �D1.

We thus arrive at a decomposition of [tn�1; tn] into sets D1, D2, and D3 in which z takes values in the
ranges [�h; 0), [0; �], and [�; h] respectively. Furthermore z[D2] = a. Let c := �z[D1] = z[D3].

We compare z on D3 with the function ~z : [0; c=h]! fhg. The conditions of Lemma 3 are satis�ed and we
deduce that Z

D3

(e#z(t) � �) dt �

Z c=h

0

(e#~z(t) � �) dt = (e#h � �)c=h:

Similarly, Z
D1

(e#z(t) � �) dt � (e#h � �)c=h:

Therefore the sum of these terms is non-positive, using the expression for � given in (7).

For l � �, we have
R
D2

z(t) Iz�l dt = a �
R d1
d0

zun+a;un(t) Iz�l dt. For l 2 (0; �), we apply Lemma 4 and

obtain
R
D2

z(t) Iz(t)�l dt �
R
D
z(t) Izun+a;un (t)�l dt. Since z(t) � 0 for all t 2 D2, all the conditions of Lemma 3

are satis�ed and we deduce that Z
D2

�
e#z(t) � �

�
dt � Q(zun+a;un)

Since [tn; tn+1] is a disjoint union of D1, D2, and D3, we have thatZ tn+1

tn

�
e#z(t) � �

�
dt � Q(zun+a;un)

= W [(un�1; dn�1)! (un; dn�1 + a)]

= W [(un�1; dn�1)! (un; dn�1 + a)] +W [(un; dn�1 + a)! (un; dn)] :

The last equality holds since dn � dn�1� a and so W [(un; dn�1� a)! (un; dn)] = 0. The case when (C) holds
for [tn; tn+1] and a := z[tn�1; tn] < 0 is handled similarly.
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We construct the required path x inductively by appending, for each n 2 N, either the transition (un�1; dn�1)!
(un; dn) if the interval [tn; tn+1] obeys Conditions (A) or (B), or the transitions (un�1; dn�1)! (un; dn�1+a)!
(un; dn) if it obeys Conditions (C). >From the considerations above, we have that, for all n 2 N,

Z tn

0

(e#z(x) � �) dx �

n+c(n)X
i=0

W (xi; xi+1);

where c(n) is the number of intervals of type (C) before [tn�1; tn]. Let t 2 [tn; tn+1]. By comparing z+ on
the interval [tn; t] with the function that takes value T (� � �) on the interval [0; t�], and using Lemma 3, we
conclude that Z t

tn

(e#z(x) � �) dx �
�
e#T (���) � �

�
t�:

The conclusion follows. 2

If we can calculate supW(x) over all paths x through M then, using the lemma above, we will have an
upper bound on supQ(z) over all z 2 Z. The following results from the theory of Markov Decision Procedures
are well known [10]. Suppose the state space S of a MDP is compact and the reward function R is jointly
continuous in the starting and �nal states and nowhere takes the value �1. Let P be the set of all paths and
K be the set of cyclic paths. Let

R(x) := lim sup
n!1

1

n

nX
i=1

R(xi�1; xi):

Then
sup
x2P

R(x) = sup
x2K

R(x) =: �:

Moreover, there exists a continuous function F on the state space such that

sup
y2S

�
R(x; y) + F (y)

�
= F (x) + �:

Such a function is called an (additive) eigenfunction of the MDP. In general, these functions are not unique.
The value � is known as either the eigenvalue or the maximal cycle mean of the MDP.

Unfortunately, the reward function W does not satisfy these assumptions, in particular it can take the
value �1 for some transitions. However, the following MDPs do satisfy the assumptions. For each � 2 [0; �T ]
we de�ne the Markov Decision ProcedureM� to be

� State Space. S� := [0; �],

� Reward. The transition u! v has reward

W�(u! v) :=

�
Q(zu;v); if u � v,
Q(z��u;��v); if u < v.

Note that u! v in M� has the same reward as�
u

�� u

�
!

�
v

�� v

�

in M. For each � 2 [0; �T ], S� is compact and W� is continuous and so the results above hold for M�. The
following lemma bounds the maximal cycle mean of these MDPs.

Lemma 7 The maximal cycle mean of M� is non-positive for � = �T . It is strictly negative for � < �T .

Proof. Our �rst objective is to show that the mean reward along any any path will be dominated by that over
a cycle of length two.

For v < u, we have that

gu(v) :=
@W�(u; v)

@v
=

eh1(u;v) � �

h1(u; v)
;

12



where

h1(u; v) :=

�
m(x0(u)); if x0(u) � x1(v),p
(u� v)(� � �); otherwise.

Since h1(u; v) is nondecreasing in u for �xed v, so too is gu(v).
Suppose that x;w; y; z are states such that z < y � w < x. Then

W�(x; z) =W�(x; y) +

Z z

y

gx(t) dt

and

W�(w; z) =W�(w; y) +

Z z

y

gw(t) dt

Subtracting the second equation from the �rst and using the isotonicity of gu(v) in u, we have that W�(x; z) +
W�(w; y) �W�(x; y) +W�(w; z).

Now let c be a cycle in M�. Without loss of generality, we may assume that transitions are alternately
positive and negative and that the �rst jump is negative. This means we may write c = u1; v1; u2; v2; : : : ; vn,
with ui > vi and vi > ui+1 for all 1 � i � n. Here we are using the convention that un+1 := u1. Consider
the set J0 := fui ! vi : 1 � i � ng of negative transitions. We perform the following operation on J0. If J0
contains two transitions x! y and w ! z such that x > w � y > z, then we replace them with the transitions
x! z and w ! y. If there are no such pairs then we do nothing. Call the new set of transitions J1. We iterate
this procedure to form sets J2; J3; : : : and so on. For any set of transitions K � S� � S�, de�ne

G(K) :=
X

(x!y)2K

W�(x; y):

>From the considerations above, we have that G(Jn) � G(Jn+1). Since at each stage of the procedure the
quantity X

(u!v)2Jn

(v � u)2

can only increase, the procedure must terminate after a �nite number of stages. Call the �nal set of transitions
J . This set will not contain any pair of transitions x! y and w ! z such that x > w � y > z. But there is a
unique pairing of the starting states fuig1�i�n and the destination states fvig1�i�n that has this property. This
shows that the end result of the algorithm described above does not depend on the order in which transitions
are replaced.

If we now consider the set of downward transitions I0 := f(vi; ui) : 1 � i � ng we may employ a similar
procedure to arrive at a set I for which G(I0) � G(I). But again this set is independent of the order of
substitution and in fact I = fv ! u : u! v 2 Jg. In other words I is the same as J but with the direction of
the transitions reversed. So,

1

2n

�
G(J) + G(I)

�
=

1

2n

X
(u!v)2J

�
W (u! v) +W (v ! u)

�

�
1

2
max

(u!v)2J

�
W (u! v) +W (v ! u)

�
:

This shows that every cycle has a lower mean reward than some cycle of length two.
Consider now the case when � = �T . Then

W�T (u; v) =

�
Q(zu;v) if v � u,
Q(z�T�u;�T�v) if v > u.

For u > v, the partial derivatives are

@W�T (u; v)

@u
= �

e#h0(u;v) � �

h0(u; v)
; and

@W�T (u; v)

@v
=

e#h1(u;v) � �

h1(u; v)
;
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where

h0(u; v) :=

�
m(x1(v)); if x0(u) � x1(v),p
(u� v)(� � �); otherwise.

So if we maximise W keeping u � v constant, the maximum will only occur when h0 = h1. This will happen
when v = �T � u. A similar argument holds for u < v and we conclude that the optimum two-cycles are
symmetric about �T=2. So consider the function

f(a) :=
1

2
W�T

�
�T � a

2
!

�T + a

2

�
+

1

2
W�T

�
�T + a

2
!

�T � a

2

�

de�ned on the interval [0; �T ]. Its derivative is

f 0(a) :=
e#q(a) � �

2q(a)
+
e�#q(a) � �

2q(a)

where

q(a) :=

(p
(�� �)a; if a < (�� �)T 2=�,

m(x0(a)); otherwise

and

q(a) :=

(p
(�� �)a; if a < �T 2=�,

m(x0(a)); otherwise.

This function is unimodal: it is non-decreasing in the interval [0; �], where � := �T � T 2(� � �)�=�, and
strictly decreasing in the interval [�; �T ]. Since f 0(a) ! �1 both as a ! 0 and as a ! �T , f will attain its
maximum value at a point a� somewhere in the interval (�; �T ). Since f 0 is strictly decreasing in this interval,
this maximum will be unique.

Let p and r be de�ned as in (5) and (6). Since � := supfr(a)=d(a) : 0 � a � �Tg and f(a) = r(a) � �p(a)
we have that f(a) � 0 for all a. This implies that the maximal cycle mean of M is non-positive. Also, from
the discussion above, f(a) < 0 for a 6= a�.

To prove the result for � < �T we will need to use the fact that W�(u! v) is independent of � for v � u,
and that W�(u! v) =W�0(�

0��+u! �0��+v). for v � u. Thus

W�(u! v) +W�(v ! u) = W�T (u! v) +W�T (�T � �+ v ! �T � �+ u)

� W�T

�
�T � v + u

2
!

�T + v � u

2

�
+W�T

�
�T + v � u

2
!

�T � v + u

2

�
� 0

Thus the maximal cycle mean of M� is also non-positive for � 2 [0; �T ). To prove strict inequality, note that
the second inequality above is strict if u � v 6= a�. Suppose therefore that u � v = a�. To have equality we
must have that u = (�T + a�)=2 and that �T � �+ v = (�T � a�)=2. We conclude that � = �T and thus the
only MDP with maximal cycle mean zero is M. 2

We use the sup norm on R
2 , so that jj(u; d)jj := max(u; d) for all (u; d) 2 S.

Lemma 8 For any path x through the Markov Decision Procedure M, we have that W(x) <1.

Proof. If x contains a transition with reward �1 then we are done. Otherwise the sequence of states xi =:
(ui; di) must be such that ui+di is non-decreasing. Thus ui+di must converge to a limit � in the range [0; �T ].

Let � > 0. We have that W is �nite on the set of transitions

T 0 := fx! y : u0 + d0 � u1 + d1, where x =: (u0; d0) and y =: (u1; d1)g:

This set is compact. Moreover, on this set, W (x; y) is jointly continuous in x and y, and hence uniformly
continuous. Thus there exists Æ > 0 such that jW (x ! y) �W (x0 ! y0)j � � whenever both jjx � x0jj and
jjy � y0jj are less than Æ and x! y and x0 ! y0 are both in T 0.
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Consider the mapping

� : S ! S : (u; d) 7!
�

u+ d
(u; d):

Clearly we can �nd � such that if � � u+ d � �+ � then jj�(u; d)� (u; d)jj < Æ. But we have seen that un+ dn
converges to � from above, and so there is some N 2 N such that � � un + dn � � + � for all n > N . Let
gn :=W (xn�1 ! xn) and g0n :=W (�(xn�1)! �(xn)). We conclude that jgn � g0nj � � when n > N . Thus we
have that

lim sup
n!1

1

n

nX
i=1

gn = lim sup
n!1

1

n

N+nX
i=N+1

gn

� lim sup
n!1

1

n

N+nX
i=N+1

(g0n + �)

� G� + �:

Since � is arbitrary, we conclude that lim supn!1 n�1
Pn

i=1 gn � G�.
Suppose that � < �T . Then according to Lemma 7, G� < 0. Hence we can �nd N 0 such that

Pn
i=1 gn < 0

for n > N 0.
On the other hand, if � = �T , then x is also path through the Markov decision procedureM�T . Its eigen-

function F is continuous and therefore bounded. So
Pn

i=1 gn � F (u0; d0) � F (un; dn) and again is bounded.
2

7 The Main Result

We now have the tools necessary to prove the main result.
Proof of Theorem 1. Our �rst observation is that the ergodic theorem implies that, for any stationary source
�, the limit

f(b) := lim
t!1

1

t

Z t

0

e#(b(x+T )�b(x
�)) dx

exists �-almost surely, and that f has the same expectation as f(b) := exp[#(b(T ))]. In other words, (#T )�1 log E�f =
E#;T (�) for all stationary sources �.

Denote by L the set of realisations at which the function f is de�ned and let b 2 C \ L. De�ne z(t) :=
b(t+ T )� b(t)� �T . As before,

Q(z) := lim sup
t!1

Z t

0

(e#z(x) � �) dx:

Since z 2 Z, we can apply Lemma 6 and deduce that there exists a path x in the Markov Decision Procedure
M such that Q(z) � W(x) +D. But Lemma 8 says that B := W(x) < 1. Thus, for any � > 0, there exists

� > 0 such that
R t
0
e#z(x) dx � �t+D +B + � for all t > � . We conclude that

lim sup
t!1

1

t

Z t

0

e#z(x) dx � �:

Hence,

f(b) = lim
t!1

1

t

Z t

0

e#(z(x)+�T ) dx � e#�T�:

Since this is true for any b 2 C \ L and we have that �(C \ L) = 1, we conclude that E�f � �e#�T . Hence
E#;T (�) � � + (#T )�1 log� = E#;T (w
�), which proves the theorem. 2
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