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Worst Case TraÆc from Policed TraÆc Sources

Cormac Walsh

Abstract

We address the problem of maximising the e�ective bandwidth of a traÆc source over the space of all

stationary traÆc sources which have realisations meeting certain constraints. Speci�cally, we ask that the

peak rate of the source does not exceed � and that realisations obey a \leaky bucket" constraint with bucket

size � and leak rate �.

We present two results as a step towards a solution. Firstly, we reduce the optimisation over all stationary

processes to an optimisation over periodic processes, that is sources which emit traÆc in a periodic manner

with uniformly distributed phase. Secondly, we show that the realisations of a worst case source must obey

the following conditions: at each time, the transmission rate must be one of 0, �, or �; the transmission rate

may only be � when the leaky bucket is either empty or full; each burst of activity must either start with

the leaky bucket empty or end with it full.

1 Introduction

Let D+ be the set of non-negative, �-�nite measures on [0;1). We interpret the elements of this set as possible
realisations of a traÆc source. In other words, if a 2 D

+ , then we take a(B) to be the amount of traÆc arriving
in the Borel set of instants B. Suppose � > � > 0 and � > 0 are given. We denote by C those elements a of
D
+ for which

a(t1; t2) � (t2 � t1)� (1)

and a(t1; t2) � (t2 � t1)� + �; (2)

for all t2 � t1 � 0. Condition (1) is referred to as the peak rate constraint and Condition (2) is referred to as
the leaky bucket constraint. These constraints may be reformulated as follows. For a 2 D

+ , q > 0, s > 0, and
t � 0, we de�ne

Qs(q; a; t) := max
�
q + a[0; t]� ts; sup

t12[0;t]

�
a[t1; t]� (t� t1)s

��
:

This is the queue length at time t in a bu�er if a is the arrivals, s is the service rate, and q is the initial
queue length. It is easy to see that (1) is equivalent to Q�(0; a; t) = 0 for all t � 0 and (2) is equivalent to
Q�(0; a; t) � � for all t � 0. The fact that these constraints may be expressed in this form is the reason for
the term \leaky bucket". Such constraints are very popular in the engineering literature and are part of the
standard for Asynchronous Transfer Mode technology [1].

We identify traÆc sources with probability measures on D
+ . Realisations are shifted forward in time with

the operator �h : D
+ ! D

+ de�ned, for each h � 0, by (�ha)[B] := a[B+h] for all Borel sets B � [0;1). When
we talk of stationary sources we mean stationary with respect to this operator. In other words, a measure �
on D

+ is stationary if �[��1h B] = �[B] for all measurable subsets B of D+ and shifts h � 0. We are interested
in the set of stationary sources that meet the constraints almost surely. These are represented by the set C of
stationary probability measures � on D

+ for which �(C) = 1.
The e�ective bandwidth of a source � is de�ned to be

E#;T (�) :=
1

#T
log E�e

#XT ;

where XT : D+ ! R
+ : a 7! a[0; T ] evaluates the amount of traÆc up to time T . The two parameters # 2 R and

T 2 [0;1) are called the space scale and the time scale respectively. See [2] for discussion of their interpretation.
The e�ective bandwidth is exactly what is needed to calculate the asymptotics of the loss rate as the number
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of sources becomes in�nite. Denote by L(S;B;N) the loss rate when a single server queue with service rate S
and bu�er size B is fed by N independent sources, each distributed with the same law �. As was shown in [3],
L obeys the large deviations asymptotics

lim
N!1

1

N
logL(sN; bN;N) = � inf

T>0
(f

(�)
T )�(b+ sT ):

where f
(�)
T (#) := #TE#;T (�) and the Legendre-Fenchel transform of any convex function f is de�ned to be

f�(y) := supx2R[xy � f(x)].
These asymptotics are also obeyed by the proportion of time the bu�er is full and by the probability that

the queue length exceeds a level Nb in an in�nite bu�er [4]. For an overview of the many applications of the
e�ective bandwidth function see the paper of Kelly [2].

The asymptotics above motivate the optimisation program:

for �xed # and T , maximise E#;T (�), subject to � 2 C.

For each  in the range [0; T ], let w be the source that transmits a periodic traÆc pattern with uniformly
distributed phase and whose sample paths are composed of following four sections (see Figure 1):

� a peak rate burst of duration t� := �=(�� �),

� an interval in which the source transmits at rate �, of duration ,

� a silent interval of duration t0 := �=�,

� another interval at rate �, again of duration .

Note that t� and t0 are, respectively, just long enough to �ll the leaky bucket from empty and to empty it from
full. We make the following conjecture.

Conjecture 1 For each # and T , the stationary traÆc source that maximises the e�ective bandwidth E#;T ,
under the peak rate and leaky bucket constraints is one of the sources fwg0��T .

Note that this conjecture allows di�erent sources to be worst case for di�erent values of # and T . If the
conjecture is true, the problem of �nding the worst case e�ective bandwidth for any given # and T reduces to
a one parameter optimisation over .

This conjecture was proved in [5] for the case when T is less than both t0 and t�. In that paper the
methods used were speci�c to the e�ective bandwidth functional. However, there are other functionals on the
set of sources which it may be of interest to maximise. Examples include the loss rate when a �xed number
of independent copies of the source pass trough a bu�er, or the average queue length when the source passes
alone through a bu�er which is being served according to an independent stationary stochastic service process.
These functionals share many of the properties of the e�ective bandwidth functional that are exploited in the
present paper and so there is much more scope for extending these methods than those of [5].

Many of these functionals, including the e�ective bandwidth, have been considered previously [6, 7, 2].
Results have been obtained for the simplest functionals such as the unbu�ered loss rate [8, 9] and the average
queue length of a single source [10]. A common approach with more diÆcult functionals is to �nd a tractable
upper bound on the quantity of interest and to minimise this [11, 12].

The rest of the paper is organised as follows. In Section 2, we reduce the optimisation problem to an
optimisation over processes with periodic realisations. In Section 3, we de�ne a linear structure on the set of
periodic realisations with �xed period and show that the worst case source must have realisations which are
extreme points of C. In Section 4, we characterise these points. In Section 5, we de�ne an alternative linear
structure on the same set and show that the realisations of a worst case source must be extreme points in this
linear structure also. Finally, in Section 6, we characterise these points.
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Figure 1: The wedding cake pattern, conjectured to have the worst case e�ective bandwidth.

2 Periodicity

In this section we will reformulate the optimisation problem as a deterministic Markov Decision Procedure
(MDP). Continuous time MDPs generally have a state space which is a di�erentiable manifold. The paths take
the form of absolutely continuous trajectories through this space and the instantaneous reward is given by a
function L, called the Lagrangian, on the tangent bundle. Thus the reward of a path x over a time interval
[0; h] is Z h

0

L[x(t); _x(t)] dt:

In our MDP the Lagrangian will be purely a function of the state: it will not depend on its second parameter.
This will allow us to dispense with an investigation of the di�erential structure of our space. Also we do not
require that paths be absolutely continuous, merely that they be measurable.

We de�ne D
+
p to be the set of non-negative, �nite measures on [0; p]. We wish to consider sections of

realisations which meet the constraints. However, the content of the leaky bucket at the start of the section
plays an important role in determining whether the constraints are met. With this in mind we de�ne

Cp := f(q; a) 2 [0; �]� D
+
p : Q�(q; a; t) � � and Q�(0; a; t) = 0; for all t 2 [0; p]g:

The MDP we wish to consider has state space S := CT . Consider the following construction. Let (q; a) 2
Ch+T for some h > 0. De�ne the path x(t) := (qt; xt), where qt := Q(q; a; t) � � for t 2 [0; h] and xt is the
measure de�ned on [0; T ] by xt[B] := a[B + t] for all t 2 [0; h] and Borel subsets B of [0; T ]. It is not hard to
verify that x is indeed a path through S. We call the paths formed in this way valid paths of length h and
denote them Vh. Note that the correspondence between Vh and Ch+T is a bijection. It is important to note
also that periodic paths correspond to periodic realisations with the same period.

We take the Lagrangian of our MDP to be L : S ! R
+ : (q; a) 7! exp(a[0; T ]) and de�ne the reward of a

path x : [0; h]! S to be

Rh(x) :=

8<
:
Z h

0

L[x(t)] dt; x 2 Vh

�1; otherwise.

Note that if x is constructed from initial data q and a as above then

Rh(x) =

Z h

0

ea[t;t+T ] dt:

We denote the space of continuous real-valued functions on S by C(S). For each h � 0, we de�ne an
operator Rh : C(S)! C(S) as follows:

(Rhf)(u) := sup
x2Vh

n
Rh(x) + f(x(h)) : x(0) = u

o
:
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This operator has kernel

rh(u; v) = sup
x2Vh

n
Rh(x) : x(0) = u; x(h) = v

o
: (3)

By this we mean that, for h � 0,
(Rhf)(u) = sup

v2S

�
rh(u; v) + f(v)

�
:

Any operator that can be represented in this form is called a Bellman operator. Observe that the operator R0

is the identity operator on C(S) and has kernel

r0(u; v) =

�
0; u = v
�1; u 6= v.

The operators fRhgh�0 together form a semigroup, that is for any s; t � 0 we have Rs+t = RsRt = RtRs. The
identity element of this semigroup is R0.

A function f 2 C(S) is said to be a (max;+)-eigenfunction of a Bellman operator B with eigenvalue � 2 R

if Bf = f + �. A Bellman operator on C(S) is said to be compact if S is a compact metric space and the
operator's kernel is jointly continuous in its two entries and does not take the value �1. The justi�cation for
calling these operators compact is that they are compact in the usual sense of the term: they take bounded
subsets of C(S) to precompact ones. A well known result in the theory of Markov Decision Procedures is that
each compact Bellman operator possesses a unique eigenvalue [13]. The eigenfunction is not necessarily unique
however.

The topology we use on D
+
p is the one which in Probability Theory is known as the topology of weak

convergence. This is the weak* topology induced on D
+
p by regarding it as the dual of C[0; p], the space of

continuous functions on [0; p] endowed with the uniform topology. The following facts concerning this topology
will be useful. Firstly, Helly's theorem states that a set of signed measures on a compact set is precompact if
and only if the total variation of the measures is bounded. Secondly a sequence fangn2N in D

+
p converges to

a 2 D
+
p if and only if an[B]! a[B] for each Borel set B for which a[@B] = 0. Thirdly, this topology is metrisable

and complete.
Since Vh can be identi�ed with a subset of [0; �] � D

+
h+T , we choose to take on Vh the topology inherited

from this set.

Lemma 1 The reward Rh is continuous on the set Vh for each h > 0.

Proof. Suppose that fxngn2N is a sequence of paths in Vh that converges to some x 2 Vh. For each n 2 N, let
an 2 Ch+T , be the realisation associated with xn, and let a 2 Ch+T be that associated with x. Consider the
sequence of functions

fn : [0; h] 7! R : t! e#an[t;t+T ]:

Then fn(t) converges to f(t) = exp(#a[t; t + T ]) pointwise. Each fn is bounded above by exp(#an[0; h+T ])
which converges to exp(#a[0; h+T ]). This means that for n large enough the functions fn are uniformly bounded
and we can apply the Bounded Convergence Theorem to conclude thatZ h

0

fn(t) dt �!

Z h

0

f(x) dx as n!1:

Thus Rh(xn)! Rh(x) as n!1. 2

Lemma 2 The functional Qs : R
+ � D

+
h ! R : (q; a) 7! supt2[0;h]Qs(q; a; t) is jointly continuous in q and a

for each s > 0.

Proof. Let an ! a and qn ! q. Write vn := an � sLeb + qnÆ0 and v := a � sLeb + qÆ0. Let G be the set of
intervals which are open in [0; h]. Firstly,

lim inf
n!1

Qs(qn; an) = lim inf
n!1

sup
G2G

vn[G]

� sup
G2G

lim inf
n!1

vn[G]

� sup
G2G

v[G]

= Qs(q; a):

4



Now let HN :=
�
ih=N : i 2 f0; : : : ; Ng

	
. For each t1; t2 2 [0; h], we can �nd t1

0; t2
0 2 HN such that

vn[t1; t2] � vn[t1
0; t2

0] + 2h�=N , for all n 2 N. Then

Qs(qn; an) � sup
t10;t202HN

vn[t1
0; t2

0] + 2h�=N:

Thus
lim sup
n!1

Qs(qn; an) � sup
t10;t202HN

v[t1
0; t2

0] + 2h�=N:

By making N large enough we can make the right hand side of this inequality as close as we want to Qs(q; a).
2

We conclude that Ch is a closed subset of [0; �]� D
+
h . It is also compact since for any (q; a) 2 Ch, the total

variation of a is bounded above by �h. In particular both the state space S and the set of valid paths Vh are
compact.

Unfortunately, for small values of h, our operator Rh is not compact. However, it will suÆce that Rh be
compact for some h > 0.

Lemma 3 The operator Rk is compact for k = T + �=min(�; � � �) + 1.

Proof. Let u = (qu; au) and v = (qv ; av) be two states in S. For any state x := (qx; ax), de�ne

qx := Q�(qx; ax; T ):

This may be interpreted as the amount of uid in the leaky bucket at the end of the time interval represented
by the state.

We �rst show that rk does not take the value �1. Let a 2 D
+
k+T be de�ned as follows. Suppose B is a

Borel subset of [0; k + T ]. Then B can be written as the disjoint union of Borel sets Bu, Bm, and Bv, where
Bu � [0; T ], Bm � (T; k), and Bv � [k; k + T ]. We de�ne

a[B] := au[Bu] +

�
qv � qu
k � T

+ �

�
Leb [Bm] + av[Bv � k];

where Leb is the Lebesgue measure. Repeating the construction of valid paths above, we de�ne qt := Q�(qu; a; t)
and xt(B) := a(B + t) for all Borel subsets B of [0; T ] and t 2 [0; h]. Then the path x(t) := (qt; xt) is a valid
path of length k from u to v, and so rk(u; v) > �1.

Upper semicontinuity. Let l > �1. Suppose that ui and vi are two sequences of states, converging to u
and v respectively, such that rk(ui; vi) � l for all i 2 N. Then, given any � > 0, there exists a sequence of valid
paths xn : [0; k]! S such that xn(0) = un, xn(k) = vn, and Rh(xn) � l � � for all n 2 N. Since the set Vk of
valid paths of length k is compact, some subsequence xnk converges to a path x 2 Vk. From the continuity of
Rh on Vk,

r(u; v) � Rh(x) = lim
k!1

Rh(xnk ) � l � �:

Since � is arbitrary, r(u; v) � l. Therefore, the upper level set is closed for each level l and so r is upper
semicontinuous.

Lower semicontinuity. Let x : [0; k] ! S be a path from u to v such that Rh(x) > rk(u; v) � �. Let
(qu; a) 2 Ck+T be the initial leaky bucket state and realisation associated with this path.

We may assume that a(T; t) + qu � (t� T )� for all t 2 [T; k). For if this is not the case then de�ne b to be
such that b[T; t] := qt � qu + (t � T )� for t 2 [T; k), and such that b agrees with a outside this interval. The
following facts are easily veri�ed. Firstly, b obeys constraints (1) and (2). Secondly, it obeys the inequality
above. Thirdly, the path y corresponding to (qu; b) is the same length as x, between the same two states.
Finally, b � a, which implies that Rh(y) � Rh(x).

We will perform a construction which assigns to any pair of states (u0; v0) near (u; v) a valid path from u0

to v0 near x. Let � := qv0 � qv � qu0 + qu where (qu; au) := u and (qv; av) := v. Condition (1) implies that a is
absolutely continuous, and so it equals the integral of its own derivative, Da.

For Æ in the range [�1; 1], we de�ne the set of maps zÆ : [0; �]! [0; �] by

zÆ(x) :=

�
(1 + Æ)x; Æ < 0
(1� Æ)x + Æ�; Æ � 0.
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Consider the mapping w : [�1; 1]! D
+
k+T de�ned by

�
w(Æ)

�
[B] :=

8>><
>>:

au0 [B]; if B � [0; T ]Z
B

zÆ
�
Da(x)

�
dx; if B � (T; k)

av0 [B � k]; if B � [k; k + T ].

Clearly, for each Æ 2 [�1; 1], w(Æ) obeys the peak rate constraint. Also, w is a continuous function of Æ.
It can not be that Da(t) = � at almost all t 2 [T; k], for if this were the case then qv would equal

qu + (k � T )(� � �) which is strictly greater than �, and a would not obey Constraint (2). Neither can
Da(t) = 0 at almost all t 2 [T; k] for this would contradict the fact that a(T; k) + qu � (k � T )�. Thus the
function

Z : [�1; 1]! R : Æ 7! (w(Æ))[0; k] � a[0; k]

is continuous and strictly increasing in Æ. Hence we can �nd Æ� such that w(Æ�)[0; k] = qv0 . However, w(Æ�)
may not obey the leaky bucket constraint. Let w0 be the measure on [0; k + T ] such that

w0[0; t] := (� + �t� qu0) ^ w(Æ�)[0; t] _ (�t� qu0); for all t 2 [0; k + T ]:

Then (q; w0) 2 Ck+T and Q�(qu0 ; w0; k) = w(Æ�)[0; k] = qv0 . Thus the pair (qu0 ; w0) corresponds to a valid path
x0 from u0 to v0. It is not hard to see that this path is continuous in the initial data u0 and v0, and that if u0 = u
and v0 = v then the construction gives x0 = x. 2

To exploit this result we will have to consider discrete paths (sequences of states). Let D be the set of
discrete paths and K be the subset of these that are periodic. We de�ne the long term average reward of y 2 D
to be

G(y) := lim sup
n!1

1

n

nX
i=1

rk(yi�1; yi):

From the compactness of Rk we get that

sup
y2D

G(y) = sup
y2K

G(y) = �;

where � is the (max;+)-eigenvalue of Rk.
A realisation a 2 D

+ is said to be periodic with period p > 0 if �pa = a and p is the least positive number
for which this is true. Given any periodic realisation a with period p, we may construct a stationary traÆc
source � by taking a uniform distribution over the phase. More precisely,

�[B] :=
1

p
Lebft 2 [0; p) : �ta 2 Bg; for all measurable subsets B of D+ :

We denote by Pp the set of measures formed in this way from elements of C which are periodic with period p.
The following is the main result of this section.

Theorem 1 We have that supfE#;T (�) : � 2 Cg = supfE#;T (�) : � 2 Pp; p > 0g

Proof. Let � 2 C be a stationary traÆc source that meets the constraints. The continuous time Ergodic
Theorem implies that the function

f(a) := lim
t!1

1

t

Z t

0

e#a[x;x+T ] dx

exists �-almost surely and has the same expectation with respect to � as f(a) := exp(#a[0; T ]).
Denote by L the set of realisations at which f is de�ned. Since �[C \ L] = 1, we have that

E�f = E�f � sup
a2C\L

f(a):

Let a 2 C \ L. Then f(a) = limh!1 h�1Rh(x), where x is the corresponding path through the MDP.
Recall that x(t) := (qt; xt), where qt := Q�(0; a; t) and xt[B] := a[B + t] for all t 2 [0;1) and Borel subsets B
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of [0; T ]. Let yi := x(ki) be the discrete path obtained from x by taking samples spaced k apart, where k was
de�ned in Lemma 3. We have that limh!1 h�1Rh(x) � G(y)=k � �=k. Thus E�f � �=k, which provides an
upper bound on the worst case e�ective bandwidth.

To �nish the proof, we will show that we can �nd a periodic source � such that E�f is a close as we like
to �=k. By Lemma 3, Rk is compact, and so it has a unique (max;+)-eigenvalue �. As discussed above, there
are periodic discrete paths with long term average reward per step arbitrarily close to �. Let y 2 K be such a
path and let yi and yi+1 be any two consecutive states. Then, since r

k is given by (3), we can �nd a continuous
time path z 2 Vk of length k such that z(0) = yi, z(k) = yi+1, and Rk(z) is as close as we want to r

k(yi; yi+1).
By pasting together such paths we can construct a continuous time periodic path w whose long term average
reward is as close as we want to G(y)=k.

This path will be in V1, the set of valid paths of in�nite length. Let (q; a) 2 C be the corresponding initial
leaky bucket state and traÆc realisation. Then a is periodic and f(a) = limh!1 h�1Rh(w).

The �nal step is to construct a stationary probability measure � from a in the manner described above.
Clearly, E�f = f(a) can be made as close as we want to �=k. 2

3 Optimisation with Fixed Period

In this section we consider the problem of maximising E#;T (�) over � 2 Pp for �xed p. Recall that Pp is the set
of traÆc sources formed by taking a single periodic realisation of period p and choosing the phase uniformly.
We �rst develop some notation that will be helpful in this setting.

The realisations of any source in Pp are shifted copies of some realisation which is periodic with period
p and meets the constraints. Therefore we need only concern ourselves with the representative time interval
[0; p]. The reader may consider it more natural to identify points 0 and p, in other words to consider the set
of measures on the set [0; p) endowed with the topology of the circle. However the advantages of the current
approach will become clear in Section 5 when we relate the current representation of realisations to the one
there.

It will be convenient to de�ne, for t1; t2 2 [0; p],

[t1; t2]p :=

�
[t1; t2]; if t1 � t2
[t1; p] [ [0; t2]; otherwise.

If either t1 or t2 is outside the range [0; p], then [t1; t2]p is interpreted to mean [t1(mod p); t2(mod p)]p. We
de�ne (t1; t2]p := [t1; t2]p � ft1g. The sets (t1; t2)p and [t1; t2)p are de�ned similarly. Another useful piece of
notation will be t2 	 t1 := Leb[t1; t2]p.

The set of periodic sources of period p may be identi�ed with the set D+
p modulo the equivalence relation

�, where a � b if there exists h 2 R such that a(t1; t2)p = b(t1 + h; t2 + h)p for all t1; t2 2 [0; p]. Motivated by
this identi�cation, we de�ne the queue length at time t 2 [0; p] to be

Ws(a; t) := sup
t12[0;p]

�
a[t1; t]p � (t	 t1)s

�
: (4)

Constraints (1) and (2) translate into the condition that an element of D+
p be in the set

Bp := fa 2 D
+
p :W�(a; t) � � and W�(a; t) = 0; for all t 2 [0; p]g:

If � is the periodic source identi�ed with the equivalence class of a 2 D
+
p , then the e�ective bandwidth of � is

(#T )�1 logE(a), where

E(a) :=
1

p

Z p

0

e#a[t;T+t]p dt: (5)

Note that if a � b then E(a) = E(b). The problem of maximising the e�ective bandwidth over Pp is the same
as maximising E(a) over a 2 Bp.

To discuss convexity, we need a linear space. We take the linear completion D p := D
+
p � D

+
p = fa � b :

a; b 2 D
+
p g. The elements of D p are the �nite signed measures on [0; p]. For each s � 0, the functional
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supt2[0;p]Ws(a; t) is convex on D
+
p since it can be written as the supremum of a family of aÆne functions.

Using arguments similar to those in Lemma 2, it can be shown that these functionals are also continuous on
D
+
p . It follows that the set Bp is closed and convex since it is the intersection of a level set of two of these

functionals. Again, compactness follows from the peak rate constraint.
By the Krein-Milman theorem, Bp is the closed convex hull of �p, the set of its extreme points. Recall that

a point p is said to be an extreme point of a set S if p 2 S and p is not an interior point of any line segment
in S.

As the mean of a family of convex functionals, the functional E is also convex. Its continuity may be
established using means similar to those in the proof of Lemma 1.

Theorem 2 supfE#;T (�) : � 2 Cg = supf(#T )�1 logE(a) : a 2 �p; p > 0g

Proof. Since E is convex on Bp, its supremum over �p the same as its supremum over the convex hull of �p.
Since E is continuous, this second supremum is the same as the supremum of E over the closure of this set.
But we have seen above that the closure of the convex hull of �p is �p itself. The proof is complete when we
apply Theorem 1. 2

4 The Extreme Points of the Constraint Set

Recall the de�nition of W given in (4). We also de�ne U(a; t) := supt12[0;p]
�
a[t; t1] � (t1 	 t)s

�
, for t 2 [0; p],

a 2 Bp, and s > 0.

Theorem 3 A point a 2 Bp is an extreme point if and only if for almost all t 2 [0; p] one of the following hold:

(X1) a is di�erentiable at t and Da(t) = �,

(X2) a is di�erentiable at t and Da(t) = 0,

(X3) W (a; t) = �,

(X4) U(a; t) = �.

Proof. a is extreme ) condition holds. Let a 2 Bp. Suppose that there is a set S � [0; p] such that none of
the four conditions (X1{4) hold at any point in S and that Leb[S] > 0. We shall construct a and a in Bp such
that a = (a+ a)=2.

Since W (a; �) and U(a; �) are continuous on [0; p], the set ft 2 [0; p] : W (a; t) < �;U(a; t) < �g is open (in
[0; p]). We use the fact that every open set of [0; p] can be expressed as a countable disjoint union of open
intervals. The intersection of a least one of these intervals with S must have positive Lebesgue measure, for
otherwise the countable union, which contains S, would have Lebesgue measure zero. Let G be this interval.

In what follows it will be convenient to work on a compact interval. It is obvious that there exists a compact
intervalK � G such that Leb[K\S] > 0. Furthermore, we can �nd two disjoint compact intervalsK1;K2 � K,
such that both Leb(K1 \ S) and Leb(K2 \ S) are positive. We may take K1 to be on the left of K2 in K,
that is if t1 62 K and [t1; t]p contains a point of K2, then K1 � [t1; t]p. Since K is compact and W (a; �) and
U(a; �) are continuous, these two functions attain their supremum over K. Therefore T := supt2KW (a; t) and
B := supt2K U(a; t) are both strictly less than �.

We shall perturb a in the following way. For each Æ 2 (0; 1) de�ne the following two maps from [0; �]! [0; �]:

zÆ(x) :=

�
(1 + Æ)x; if x � �=2
(1� Æ)x+ Æ�; if x > �=2,

zÆ(x) :=

�
(1� Æ)x; if x � �=2
(1 + Æ)x� Æ�; if x > �=2.

Note that zÆ(x) � x and zÆ(x) � x for all x 2 [0; �], and that (zÆ+zÆ)=2 = Id, where Id is the identity function.
Both maps leave 0 and � unchanged. Let

k1(Æ) :=

Z
K1

((zÆ � Id) ÆDa)(x) dx
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and k2(Æ) :=

Z
K2

((zÆ � Id) ÆDa)(x) dx:

Clearly both of these functions are continuous and strictly increasing, and therefore they are both invertible in
neighbourhood of 0. Choose � in this neighbourhood such that 0 < � < min(��T; ��B). Then we can �nd
Æ1; Æ2 2 (0; 1) such that k1(Æ1) = k2(Æ2) = �.

Write K 0 := [0; p]� (K1 [K2) and consider the measures a and a de�ned by

a[B] :=

Z
B

�
Da: IK0 + (zÆ1 ÆDa): IK1

+ (zÆ2 ÆDa): IK2

�
(x) dx (6)

and a[B] :=

Z
B

�
Da: IK0 + (zÆ1 ÆDa): IK1

+ (zÆ2 ÆDa): IK2

�
(x) dx: (7)

Clearly a = (a+ a)=2. Since zÆ(x) > x for all x 2 (0; �) and K1 and K2 each contain a set of positive measure
in which 0 < Da < �, we have that a[K1] > a[K1] and that a[K1] < a[K1]. Thus a, a, and a are distinct. and
a is in the interior of the line segment [a; a]. We will show that both a and a are in Bp.

Since neither zÆ nor zÆ take values outside [0; �], we have that 0 � Da(x) � � for almost all x 2 [0; p]. We
conclude that a is a non-negative measure on [0; p] and satis�es the peak rate constraint: a�[y; z] � (z	 y)� for
all y; z 2 [0; p]. The same holds for a.

Let t1; t2 2 [0; p] and write � := (t2 	 t1)�. If t2 62 K, then a[t1; t2]p � a[t1; t2]p � � + �. Otherwise t2 2 K
and so a[t1; t2]p � T +�. Therefore a[t1; t2]p � a[t1; t2]p+ � � T +�+ � < �+�. Thus a obeys the leaky bucket
constraint.

An identical argument with time reversed shows that a also obeys the leaky bucket constraint.

condition holds ) a is extreme. Suppose that a obeys at least one of (X1{4) at almost every time t 2 [0; p] and
that a = (a+ a)=2 for two traÆc realisations a and a in Bp. Since a, a, and a are non-negative measures, the
derivatives of all three exist almost everywhere. Let t 2 [0; p] be such that a obeys one of the conditions (X1{
4) at t, and a and a are both di�erentiable at t. Depending on which condition a obeys at t, we have the
following four cases.

� If Da(t) = 0 then Da(t) = Da(t) = 0, since Da(t) = [Da(t) +Da(t)]=2 and both Da(t) and Da(t) lie in
the interval [0; �].

� Similarly, if Da(t) = � then Da(t) = Da(t) = �.

� If W (a; t) = � then W (a; t) = W (a; t) = � since W (a; t) � (W (a; t) +W (a; t))=2 and both W (a; t) and
W (a; t) are less than or equal to �.

� Similarly, if U(a; t) = � then U(a; t) = U(a; t) = �.

We have shown that if a obeys any one of the four conditions at t, then a and a also obey the same condition
at t. Since either of the last two conditions imply that the derivative is the leaky bucket service rate �, we
conclude that Da = Da = Da almost everywhere. Applying the Fundamental Theorem of Calculus and using
the absolute continuity of a, a, and a, we �nd that a = a = a. Thus, a is not in the interior of any line segment
contained in Bp and is therefore an extreme point of Bp. 2

Note that if a 2 Bp obeys either (X3) or (X4) at an instant t and a is di�erentiable there, then Da(t) = �.
Thus, at any instant t, any source with realisations obeying the condition of Theorem 3 may only transmit at
one of three rates: 0, the peak rate �, or the leaky bucket service rate �. The source can transmit at rate 0 or
� at any time, but may transmit at rate � only when the leaky bucket bu�er is full, or is empty and will �ll
before any service goes unused. Figure 2 shows a typical extreme point of Bp. The �gures 0 and � above the
diagram indicate the times when the leaky bucket is full and when it is empty.

We see that Bp has many extreme points. In fact we will show that the extreme points form a dense subset
of Bp. Heuristically, any source behaviour can be approximated by the source transmitting at rates 0 and �.
All that is needed is for the source to switch between these two rates suÆciently quickly and to spend the
appropriate proportion of time transmitting at each rate. This result means that we did not need to use the
convexity of the functional E to show that it approaches its supremum on the set �p, all we needed was its
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Figure 2: A typical extreme point of C. The values above the �gure give the content of the leaky bucket at
that time.

continuity. Unfortunately, we have not yet reduced the domain of our optimisation signi�cantly. In the next
section we will see how, in another linear structure on the space of traÆc processes, convexity is crucial and
enables us to make a more meaningful reduction in the domain of our optimisation problem.

Theorem 4 The constraint set Bp is the closure of the set of its extreme points �p.

Proof. If w is a signed measure on [0; p], we write jjwjj := supt1;t22[0;p] jw(t1; t2)pj. Let a 2 Bp. For some
� 2 (0; 1), let

b := (1��)a:

Then jjb � ajj = �a[0; p]. Now choose N 2 N and let c be the unique element of D+
p such that, for each

i 2 0; : : : ; N � 1,

c
� ip
N
; x
�
= min

�
bi;
�
x�

ip

N

�
�
�
; for

ip

N
� x <

(i+ 1)p

N
;

where bi := b[ip=N; (i + 1)p=N). Heuristically, we are breaking the interval [0; p] into N partitions and rear-
ranging the traÆc within each so that each partition contains a single burst at the peak rate. Observe that
jjc � bjj � 2�p=N . Thus c[t1; t2]p � (1��)� + 2�p=N + (t2 	 t1)� for all t1; t2 2 [0; p]. If �� � 2�p=N , then c
will obey the leaky bucket constraint. Thus, by making N large and � small while ensuring that this condition
is met, we can �nd an element of Bp as close as we like to a. 2

5 Another Linear Structure

In this section we consider another way of representing traÆc realisations. Here the time taken for a certain
amount of traÆc to arrive is speci�ed rather than the amount of traÆc that arrives within each interval. This
representation leads to a linear structure on the set of arrival paths which is di�erent from the one considered in
the previous section. It turns out that the functional E considered previously is convex in this linear structure
also. Moreover, the set of extreme points of the constraint set in this linear structure is strictly smaller. This
enables us to derive a stronger result, restricting even further the set over which the optimisation must be
performed.

Let
D
+
p;q := fa 2 D

+
p : a[0; p] = qg:

We de�ne the map / : D+
p;q ! D

+
q;p by

(/ a)(c) := supft 2 [0; p] : a[0; t] � cg:

Note that / is a bijection and is its own inverse. If the distribution function of a, which is given by a[0; � ], is
strictly increasing and continuous, then so is the distribution function of / a and these functions are inverses.
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In this setting we wish to maximise the functional E(d) := E(/ d) subject to / d 2 Bp.
We restrict our attention to sources which average transmission rate �, the maximum allowed. The constraint

set of interest is therefore Fq := fd 2 D
+
q;q=� : / d 2 Bq=�g. Note that now elements of the constraint set may

have atoms. These represent time intervals time intervals during which the source is silent.
It is shown in [14](Lemma A4) that the map / is a homeomorphism between D

+
p;q and D

+
q;p . An immediate

corollary is that the functional E is continuous in D+
q;p . Establishing convexity was trivial in the linear structure

of the previous two sections, but here it is considerably more diÆcult. We will �rst prove the convexity of E in
the space of simple realisations and then extend the result to D+

q;q=� using a continuity argument. By a simple

realisation, we mean one that can be written

a =

nX
i=1

miÆti ;

with n 2 N, ti 2 [0; q], and mi 2 [0; p] with
Pn

i=1mi = q. We denote by Aq;p the set of elements of D+
q;p which

have this property. Note that the if a is in Ap;q then / a is in Aq;p. Also note that Aq;p is a convex subset of
D
+
q;p .
Simple realisations are useful because they may be used to approximate any other realisation.

Lemma 4 For each p; q > 0, the set Aq;p is dense in D
+
q;p .

Proof. Let d 2 D
+
q;p De�ne the sequence of simple realisations

dn[0; c] :=
nX
i=1

d

�
(i� 1)p

n
;
ip

n

�
Æip=i;

for n 2 N. Clearly, dn 2 Aq;p. We have that
��d[0; c]� dn[0; c]

�� � p=n for all c 2 [0; q], and so dn ! d as n!1.
2

Lemma 5 The functional E is convex on Aq;p.

Proof. Write g(x) := exp(#x). The only property of g we will use is its convexity. To show that E#;T is convex
on Aq;p it will suÆce to show that the one-dimensional function f(�) : [0; 1] ! R := E((1��)d1 + �d2) is
convex for any two points d1 and d2 in Aq;p.

Fix d1; d2 2 Aq;p. For � 2 (0; 1), let a� be the realisation in Ap;q such that / a� := (1��)d1 + �d2. This
realisation may be expressed as a� =

Pn
i=1miÆti(�), where the mi are constant and the ti are aÆne in �. We

write vi for the slope of ti.
Denote by J� the set of ordered pairs (c1; c2) such that tc2(�)	 tc1(�) = T and vc1 6= vc2 . Also, denote by

K the set of ordered pairs (c1; c2) such that tc2(�) 	 tc1(�) = T and vc1 = vc2 . The set K needs no subscript
since it does not change with �. There are only a �nite number of values of � for which J� is nonempty. For
any other value of �, let � 2 (0; T ) be such that 2 maxc jvc�j is less than both

min
(c1;c2)62K

h
tc2(�)	 (tc1(�) + T )

i
and min

1�c1;c2�n

h
tc2(�) 	 tc1(�)

i
:

Consider �rst the case when K is empty. Then, for each set [x; x+T ]p, there may be at most one i 2 1; : : : ; n
such that ti() passes across the boundary of the set as  ranges from � to �+ �. We conclude that

f(�+ �)� f(�) =
nX
c=1

vc�
h
g(zc +mc)� g(zc) + g(yc)� g(yc +mc)

i
; (8)

where zi(�) := a(ti; ti + T )p and yc(�) := a(ti � T; ti)p. Here we are suppressing the dependence on � for
clarity.

Now suppose that K is non-empty and contains a pair (c1; c2). In this case zc1(�) = yc2(�) for all � 2 (0; 1)
and vc1 = vc2 . Suppose vc1 is positive (the case when it is negative is similar). Then the contribution made by
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the intervals f[x; x+T ]p; tc1 � x � tc1 + vc1�g to the integral (5) at  = � is vc1� g(zc1 +mc2) and at  = �+ �
is vc1� g(zc1 +mc1). The increase is equal to

vc1�
�
g(zc1 +mc1)� g(zc1)

�
+ vc2�

�
g(yc2 +mc2)� g(yc2)

�
:

So we see that expression (8) holds in case also.
We conclude from the considerations above that f is piecewise aÆne and that changes in its slope occur

at those values of � for which J� is non-empty. Now �x � at such a value. For each pair (c1; c2) 2 J�, let
zc1c2(�) := zc1(�) = yc2(�). Then the change in the derivative of f at � is given by

�f 0(�) =
X

(c1;c2)2J�

vc1 sgn(vc1�vc2)
h
g(zc1c2+mc1+mc2)� g(zc1c2+mc1)� g(zc1c2+mc2) + g(zc1c2)

i

+
X

(c1;c2)2J�

vc2 sgn(vc1�vc2)
h
g(zc1c2+mc1)� g(zc1c2)� g(zc1c2+mc1+mc2) + g(zc1c2+mc2)

i

=
X

(c1;c2)2J�

jvc1�vc2 j
h
g(zc1c2+mc1+mc2)� g(zc1c2+mc1)� g(zc1c2+mc2) + g(zc1c2)

i
;

where sgn(x) is 1, 0, or �1, depending on whether x is positive, zero, or negative. From the convexity of g we
have that

g(zc1c2 +mc1) �
mc1

mc1 +mc2

g(zc1c2+mc1+mc2) +
mc2

mc1 +mc2

g(zc1c2)

and
g(zc1c2 +mc2) �

mc2

mc1 +mc2

g(zc1c2+mc1+mc2) +
mc1

mc1 +mc2

g(zc1c2):

Therefore �f 0(�) � 0, and the convexity of f follows. 2

Lemma 6 Let S be a convex subset of a metrisable topological vector space and let T � S be convex and dense
in S. If f : S ! R is a continuous function and its restriction to T is convex, then f is also convex on S.

Proof. Let p; q 2 S and let � 2 [0; 1]. Then there exist sequences pn and qn in T such that pn ! p and qn ! q.
Consider the sequence rn := (1��)pn+�qn which lies in T since this set is convex. The operations of addition
and multiplication by a scalar are continuous, and so this sequence must approach the limit r := (1��)p+�q.
Now the continuity of f implies that f(pn)! f(p), that f(qn)! f(q), and that f(rn)! f(r). Furthermore, the
convexity of f implies that f(rn) � (1��)f(pn)+�f(qn) for all n 2 N. It follows that f(r) � (1��)f(p)+�f(q)
and therefore f is convex on S. 2

We can now extend the convexity result to the whole of D+
q;p .

Theorem 5 The functional E is convex on D
+
q;p .

Proof. We have shown that E is continuous on D
+
q;p and convex on a dense convex subset Aq;p of D+

q;p . The
conclusion follows from an application of the previous lemma. 2

The following theorem, combined with Theorem 7, is the main result of this paper.

Theorem 6 The worst case e�ective bandwidth supfE#;T (�) : � 2 Cg is equal to

supf(#T )�1 logE(d) : q > 0; d 2 'qg;

where 'q is the set of extreme points of Fq.

Proof. The proof of this result is analogous to that of Theorem 2. 2
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6 Extreme Points in the Alternative Representation

We will need the following de�nitions. For c1; c2 2 [0; q], write z(c1; c2)q := c2� c1��d(c1; c2)q . Clearly, d 2 Fq
if and only if z(c1; c2)q � � for all c1; c2 2 [0; q]. For d 2 D q;p and c 2 [0; q], we de�ne

W �(d; c) := sup
c12[0;q]

z(c1; c)q

and U�(d; c) := sup
c12[0;q]

z(c; c1)q :

Let W and U be de�ned by

W := fy 2 [0; q] : z(x; y)q = � for some x 2 [0; q]g

U := fx 2 [0; q] : z(x; y)q = � for some y 2 [0; q]g:

In contrast to the elements of Cp, the elements of Fq may have a singular part. Recall [15] that every measure
d can be decomposed into the sum of a singular measure ds and an absolutely continuous measure da. Also,
the support of a measure is the intersection of all closed subsets of full measure.

We have the following characterisation of extreme points of Fq .

Theorem 7 d 2 Fq is an extreme point if and only if both the following conditions hold:

(Y) for almost every c 2 [0; q], one of the following hold

(Y1) d is di�erentiable at c and Dd(c) = 1=�,

(Y2) W �(d; c) = �,

(Y3) U�(d; c) = �.

(Z) for each pair of distinct points c1 and c2 in the support of ds, either U \ [c1; c2)q or W \ (c1; c2]q is
non-empty.

We will postpone the proof of this theorem. Instead, we will now show that the set of extreme points of Fq is
strictly smaller than that of Cp.

Theorem 8 If d is an extreme point of Fq then /d is an extreme point of Cp where p := q=�.

Proof. De�ne a := /d and let g : [0; p]! R : t 7! a[0; t] be its distribution function. Since

d[0; c] = supft 2 [0; p] : g(t) � cg

= Leb g�1[0; c];

we have that d[B] = Leb [g�1B] for all Borel subsets B of [0; q].
We de�ne the following subsets of [0; p]:

Z := ft 2 [0; p] : Da(t) exists and equals 0g;

P := ft 2 [0; p] : Da(t) exists and is strictly positiveg:

Since Da exists almost everywhere, LebZ+LebP = p. Note that g is a bijection from P to g(P ). If t 2 P and
c := g(t) then g0(t) = Da(t) = 1=(Dd(c)). We also have that W (a; t) = W �(d; c) and that U(a; t) = U�(d; c).
(Recall that W and U were de�ned in Sections 3 and 4.) It follows that a obeys (X1), (X3), or (X4) at t if
and only if d obeys, respectively, (Y 1), (Y 2), or (Y 3) at c.

It remains to show that Leb [g�1(K)] = 0, where

K := fc 2 g(P ) : none of (Y 1{3) hold for d at c g:

Let da and ds be the absolutely continuous and singular parts respectively of d. Since K has Lebesgue measure
zero, da[K] = 0. It is well known [15] that any singular measure � has in�nite derivative �-almost everywhere.
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Figure 3: A typical extreme point of F in this linear structure. The values above the �gure give the content of
the leaky bucket at that time. Note that each burst must either start when the leaky bucket is empty or end
when it is full.

Thus ds[g(P )] = 0 since Dd is �nite on this set. But K � g(P ) and so we conclude that d[K] = 0. Thus
Leb [g�1K] is indeed zero. 2

Realisations which are extreme in Cq=� but not in Fq are easy to �nd. For example, if � = 2� = 1, q = 5,
and � > 1=4, then such a realisation is given by

a[B] := Leb
h
B \

9[
i=0

[i; i+
1

2
]
i
; for all Borel subsets B of [0; 10].

This realisation switches on at integer times and switches o� at half integer times.
We break the proof of Theorem 7 into the following three lemmas.

Lemma 7 If d is an extreme point of Fq, then condition (Y ) holds.

Proof. The proof of this lemma follows that of Theorem 3 and we will only describe the main di�erences.
Firstly, W �(d; � ) and U�(d; � ) are not continuous, only upper-semicontinuous. This does not signi�cantly alter
the proof however. Another di�erence is that the functions zÆ and zÆ should now map the interval [1=�;1) to
itself. A suitable choice of maps is

zÆ(x) := (1 + Æ)x� Æ=�

and zÆ(x) := (1� Æ)x+ Æ=�:

Finally, analogues of expressions (6) and (7) give only absolutely continuous measures. To �nd d and d such
that d = (d+ d)=2, we must add the singular parts of d. 2

Lemma 8 If d is an extreme point of Fq, then condition (Z) holds.

Proof. Suppose d 2 Fq is such that, for some c1 and c2 in the support of ds, both

sup
c2(c1;c2)q

W �(d; c) and sup
c2(c1;c2)q

U�(d; c)

are strictly less than , where  < �. In the following manner, we will construct d; d 2 Fq such that d, d, and
d are distinct and (d+ d)=2 = d.

If ds has no atom at c1, then both W �(d; �) and U�(d; �) are continuous there and so there is some open
interval I1 containing c1 such that both W �(d; c1) and U�(d; c1) are less than  for all c 2 I1. In this case,
de�ne a positive measure �1 such that �1[B] := ds[I1 \ B] for all Borel subsets B of [0; q].
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If, on the other hand, ds has an atom at c1, then de�ne �1 to be the measure on [0; q] with total mass 1,
concentrated at c1. In this case, I1 := fc1g.

Replacing c1 with c2 in the de�nition above, we similarly de�ne an interval I2 and a positive measure �2.
Note that we may choose I1 and I2 in such a manner that they do not overlap.

Choose Æ1 > 0 and Æ2 > 0 such that Æ1�1[0; q] = Æ2�2[0; q] and such that this number is less than � � .
We now de�ne

d := d� Æ1�1 + Æ2�2

and d := d+ Æ1�1 � Æ2�2:

Let x; y 2 [0; q]. Suppose y is in the interior of I1 [ (c1; c2) [ I2. Then, z(x; y)q � W �(d; y) �  and we have
that z(x; y)q � z(x; y)q +��  � �. Suppose, on the other hand, that y is not in the interior of that set. Then
z(x; y)q � z(x; y)q � �. Either way, we conclude that d is in Fq .

A symmetrical argument (with time reversed) shows that d is also in Fq .
We have shown that if d is an extreme point of Fq , then either supc2(c1;c2)W

�(d; c) or supc2(c1;c2) U
�(d; c)

equals �. Suppose that the former is the case. (The latter case is treated similarly.) Since W �(d; �) is upper
semi-continuous, it attains its maximum over every compact interval [c1; c2]q. Suppose W �(d; c1) = �. Note
that if d obeys (Y 2) or (Y 3) at a point c and d is di�erentiable there, then Dd(c) = 1=�. By the previous
lemma, da, the absolutely continuous part of d, obeys da � ��1Leb . It follows that if W �(d; c2) < �, then
ds(c1; c2)q > 0. Thus ds has a point of support x in the set (c1; c2)q . By the above, supc2(x;c2)W

�(d; c) = �
and this supremum is attained by some point in [x; c2]q , which is a subset of (c1; c2]q . 2

Lemma 9 If d 2 Fq obeys conditions (Y ) and (Z), then d is an extreme point of Fq.

Proof. Assume that d obeys the given conditions and that d = (d + d)=2 for d; d 2 Fq . Let c 2 [0; q] be such
that d obeys one of (Y 1), (Y 2), or (Y 3) at c and d and d are both di�erentiable at c. The argument proceeds
as in the proof of Theorem 3. We show that if d obeys one of the three sub-conditions of (Y ) at c, then both d
and d obey the same condition. Since both (Y 2) and (Y 3) imply that the derivative at c is 1=�, we conclude
that Dd = Dd = Dd almost everywhere. Thus the absolutely continuous parts of d, d, and d are equal.

Note that if x 2 U and y 2 W then z(x; y)q = �. To see this, observe that there exists x0 2 U and y0 2 W
such that z(x; y0)q = z(x0; y)q = �. Then, since z[y0; x0]q � ��,

� � z(x; y)q = z(x; y0)q + z[y0; x0]q + z(x0; y)q � �:

We de�ne z and z analogously to z. Then z = (z + z)=2. Let x 2 U and y 2 W . Since neither z nor z can
exceed � on (x; y)q , we conclude that z(x; y)q = z(x; y)q = �. This implies that d, d, and d agree on (x; y)q .
Since the absolutely continuous parts of these measures are everywhere equal, their singular parts, ds, ds, and
ds, must also be equal on this set.

We denote the support of ds by S and de�ne

� := fS \ (x; y)q : x 2 U ; y 2 Wg:

Let �� be the set of all subsets of [0; q] which can be expressed as the di�erence of two elements of �. Then
ds, ds, and ds agree on all elements of ��.

To show that these three measures agree on every Borel subset of S, it will be suÆcient to show that they
agree on every open subset. Moreover, each open subset of S can be expressed as a countable disjoint union of
sets of the form S \ (a; b)q, with a; b 2 [0; q]. Hence we need only consider sets of this form. Let G be such a
set. We will de�ne an increasing sequence of sets Pi such that Pi \ S is contained in �� and

S
i Pi \ S = G.

Suppose there exists a sequence vi in S which decreases strictly to a. Let ai be the point given by Condition
(Z) applied to the two points vi and vi+1. This will be the left boundary point of Pi. Take Pi to be closed on
the left if ai is in W and open if it is in U .

Suppose, on the other hand, that there is no such sequence vi. Then we can �nd l; r 2 S such that a 2 [l; r)q
and (l; r)q contains no point of S. Let a

0 be the point given by Condition (Z) applied to l and r. We now de�ne
the left boundary point of Pi to be a

0 for all i 2 N. Again, we take Pi to be closed on the left if a0 is in W and
open if this point is in U .
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The right boundary point of Pi is de�ned, for each i 2 N, in an analogous way. It may be easily veri�ed
that each member of the sequence fS \Pi : i 2 Ng is in ��, that this sequence is increasing, and that the union
of all its members is equal to G. 2
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