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Abstract

The increasing need to share resources and information, the decreasing cost of powerful worksta-
tions, the widespread use of networks and the maturity of software technologies have increased
the demand for more efficient resource management. In this paper we present a decentralized
Resource Management System based on the peer-to-peer computing model. Our system coordi-
nates the applications and system resources in an integrated manner; monitors the behavior of
the applications transparently and obtains accurate resource projections, schedules the system
resources dynamically over multiple machines and reconfigures the objects in response to chang-
ing processing and networking conditions. The architecture is based on a multiple feedback loop
structure that uses measurements of elapsed time and measurements of processor loads to refine
the initial estimates and revise the allocation of the objects on the processors.

1 Introduction

The proliferation of powerful workstations and advances in the communication technologies facili-
tate the development of computer applications as real-time distributed systems. Yet, the increase in
complexity, capability and size of real-time distributed systems has increased the difficulty in man-
aging the applications and the system resources. For example, in real-time distributed systems,
activities invoke methods on objects across multiple processors and have end-to-end quality-of-
service (QoS) and real-time requirements. Managing these activities efficiently to guarantee that
the end-to-end QoS requirements are met is a difficult task. The problem is that a single resource
manager component does not suffice to control and manage efficiently the access to the resources
of the distributed system.

In a real-time distributed system, where activities invoke methods on objects across multiple
processors, local scheduling of the applications does not suffice to ensure that real-time deadlines will
be met; rather, a system-wide scheduling strategy must be employed. In practice, it is difficult to
compute the whole schedule in advance as the starting times of the applications is not always known
a priori and the structure or behavior of the applications can change dynamically. Furthermore,
in a distributed system, the global state of the system is changing must faster than it can be
communicated to the processors, therefore; the exact structure of the system cannot be known
by a resource manager. The optimality of the allocation decisions depends on the accuracy of
the information collected, the measured data and the frequency of the measured events. This
information may be inaccurate and incomplete. Furthermore, even an optimal initial distribution
may not suffice because, when many objects are invoked concurrently by many activities, the
processing power and available bandwidth can easily become a bottleneck. The Resource Manager



must dynamically allocate and reallocate the application objects to balance the load on the resources
over changing processing and network conditions.

In this paper we present a decentralized Resource Management System that coordinates the ap-
plications and system resources in an integrated manner; monitors the behavior of the applications
transparently and obtains accurate resource projections, schedules the system resources dynami-
cally over multiple machines and reconfigures the objects in response to changing processing and
networking conditions. Managing the applications efficiently is a key requirement to support a
variety of applications with different needs and to gracefully adapt to unpredictable application
behavior and to changes in the load and in the availability of the resources. The benefits of the dis-
tributed Resource Management System are multi-dimensional. The Resource Management System
enables us:

e To increase the probability of satisfying soft real-time response time requirements for each
activity and to achieve steady flow of operation of the activities

e To balance the load (utilization) of the processor and network resources by allocating the
application objects to the processors and reallocating them as necessary

e To improve the system scalability by distributing the load over multiple Resource Managers
and multiple domains and creating new Resource Managers dynamically to manage a large
volume of application objects efficiently

The system is based on the Common Object Request Broker Architecture (CORBA) [11] which
is a widely accepted standard for developing large-scale distributed applications over heteroge-
neous platforms. Distributed object computing middleware such as OMG’s CORBA, Microsoft’s
Distributed Component Model (DCOM) and Sun’s Java Remote Method Invocation (RMI) are
very attractive because they shield software developers from low-level, tedious, and error-prone
details and provide a consistent set of higher-level abstractions for developing distributed systems.

This paper is organized as follows. In Section 2 we present an overview of the distributed
Resource Management System. Sections 3 and 4 present the system model and metrics. In Section
5 we describe how to manage the resource management domain and in Section 6 we describe our
distributed real-time scheduling algorithm. In Section 7 we explain how we determine the number
of Resource Manager Peers. Section 8 presents the multiple feedback loop structure. Section 9
presents related work and Section 10 concludes the paper.

2 The Resource Management System in a Peer-to-Peer Model

The Resource Management System is structured as a set of Resource Management Domains. A
Resource Management Domain is defined as a set of nodes with the same resource management
policies (e.g., the same scheduling policy). The resource management domain typically contains
several processors, and a processor may belong to several resource management domains. An ap-
plication may consist of a number of application tasks that can span multiple resource management
domains.

Each Resource Management Domain (Figure 1) is structured as a single Resource Manager for
the domain and Profilers and Scheduler for each of the processors in the domain. The Resource
Manager is implemented as a collection of CORBA objects that are allocated to various processors
across the domain and that are possibly distributed and replicated to increase reliability; logically,
however, there is only a single copy of the Resource Manager. The Resource Manager works in
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Figure 1: The Resource Management Domain.

concert with the Profilers and the Schedulers in the domain. Profilers and Schedulers that belong
to more than one domains, work together with each of the Resource Managers in the domains.

The Profiler and the Scheduler on each processor are implemented in a layer between the
CORBA ORB and the operating system. The Profiler on the processor monitors the behavior of
the application objects on the processor and measures the current load on the processor resources.
The Local Scheduler is responsible for specifying a local ordered list (schedule) for the method
invocations on the processor that determines how access to the resources is granted. The Sched-
ulers exploit information collected by the Resource Manager to schedule activities across multiple
processors to meet soft real-time deadlines.

The Resource Managers in the domains communicate with each other in a decentralized, peer-
to-peer computing model. The most important feature of peer-to-peer computing is that there
is symmetric communication between the peers; each peer is both a client and a server and has
the same capabilities and responsibilities. The advantages of a peer-to-peer computing are multi-
dimensional: (1) increases the system scalability, as it distributes the management load among
multiple Resource Managers and at the same time enables the applications to invoke methods on
objects across different domains; (2) increases the system dependability as the failure of one of the
Resource Management domains does not propagate to other domains; (3) builds an autonomous
resource management domain whose management decisions affect only the applications and ob-
jects in the domain; (4) enables interoperability across geographically distributed and potentially
heterogeneous object-oriented architectures.

The number of the Resource Management Domains is determined dynamically and depends on



the number of application tasks and objects in the domain. Typically, a single resource management
domain contains a large number of applications and, therefore, a large number of objects. The
Resource Manager in each domain maintains a repository with the current view of the application
objects in the domain and the current load on the system resources by collecting feedback from
the Profilers. The Resource Manager obtains a global view of the system by receiving feedback
information from its Resource Manager peers.

The behavior of the Resource Managers among the peers is defined through the CORBA In-
terface Definition Language (IDL) interface that describes the type signatures of the operations
that the Resource Manager embodies. The advantage is that it separates the description of the
Resource Manager behavior from its actual implementation, independently of the programming
language, operating system or communication medium. The Resource Managers communicate
through the exchange of messages. The CORBA Object Request Broker (ORB) packages the
method invocations and responses into messages formatted according to the Internet Inter-ORB
Protocol (IIOP) and subsequently passes these messages to TCP/IP for communication to the
other Resource Manager components over the same ORB or over different ORBs.

3 System Model

A complex distributed application can be modeled as several application tasks; each application
task has its own resource and timing requirements and generates a result that can trigger the
execution of a subsequent task.

An application task is modeled as a sequence of method invocations of objects distributed across
multiple processors in multiple domains. The execution of a task is triggered by a client thread
(as the result of a timer signal or the completion of another operation) from a single domain and
completes when the client thread finishes execution. A task is executed by a single thread or
multiple threads executing in sequence or in parallel on one or more processors. Multiple tasks
originating from different client threads can be executed concurrently.

Tasks enable end-to-end scheduling in that they span processor boundaries and carry scheduling
parameters from one processor to another yielding system-wide scheduling strategies that require
only local computations. A task’s scheduling parameters apply to local threads and methods
invoked by the task. The scheduling parameters depend on the scheduling algorithm implemented
and can be updated during the execution of the task. The task’s resource requirements depend on
the resource requirements of the objects invoked by the task, the current state of the objects, and
the sequence of method invocations.

Each task is monitored until the client thread completes. Tasks invoke methods on objects, and
objects are scheduled based on the scheduling parameters carried along with the tasks. Although
tasks are triggered independently, they are not necessarily disjoint. Thus, different tasks can
concurrently invoke methods on the same objects with the same or different scheduling parameters.
As objects are invoked concurrently and asynchronously on the processors, they compete for the
same limited processing and computing resources.

The method invocations for each task are recorded and stored in the Method Invocation Graph
that describes the relationships among the objects and represents the flow of operation for the task.
Figure 2 shows an example of a Method Invocation Graph. Each node in the graph represents a
method, while each edge corresponds to an invocation of the method or a response. The Method
Invocation Graphs for the different tasks have different roots but are not necessarily disjoint.



initiafion completion Deadline
«——— Pojected Latency ——— ————— — _I
Projected
] Loty

Va Nl o Uk
/ \\ %VOCOTion | ‘
\ Response

Object
method

Figure 2: Method Invocation Graph.

4 System Metrics

4.1

Task Metrics

Tasks are aperiodic and their arrival time is not known a priori. These contrast with static systems
where the schedules of the invoked objects are usually determined in advance and remain fixed
while the tasks execute. Each task ¢ is associated with the following parameters:

Task_identity;: each task has its own identity. A task starts when a client thread is invoked
and finishes when the client thread completes execution. Multiple client threads can be
executing concurrently, each of them characterized by a different id.

Task_state;: describes the current state of the task, that is, whether the task is idle, running
or waiting for a resource. Typical task states are: RUNNING, WAITING and INACTIVE.

Deadline;: the time interval, starting at task initiation within which the task ¢ should be
completed, specified by the application designer.

Importance;: a metric that represents the relative importance of the task ¢, specified by the
end user. The importance metric affects the order with which the tasks will be executed on
the processors.

Projected_latency;: the estimated amount of time required for the task to complete. This
time is measured by run-time monitoring functions and includes queueing time. Thus, the
Projected_latency; depends on all the running tasks in the system and the processors where
they execute.

Lazity;: the difference between Deadline; and Projected_latency;, a measure of urgency
of task t. The objects invoked by the task ¢ are scheduled according to Laxity:, which is
dynamically adjusted as the task executes. The remaining laxity when the activity £ completes
is recorded as Residual_lazity;.



4.2 Object Metrics

For each object i, the Resource Manager maintains:
e Methods;: the set of methods of object ¢
e Processor_name;: the processor where the object ¢ is located

o Object_tmportance;: the importance of object ¢ to each task that invokes it. If more than
one task invokes the object, the object can have a different importance value to each of the
tasks.

o Average_response_time;: the average response time for object 1.
e Incoming_invocations;: the number of objects that invoke methods on object 4.
o QOutgoing_invocations;: the number of objects whose methods are invoked by object <.

e CPU _utilization;: the percentage of the processing load required for executing methods of
the object.

o Network_bandwidth;: the bandwidth on the communication links required for object’s ¢
incoming and outgoing invocations.

o Memory_bandwidth;: the memory in use for object 3.
o Fault_monitoring_interval;: the time interval between successive pinging operations of the
object to detect if the object is still alive.
4.3 Method Invocation Metrics
For each method m, the Resource Manager maintains:
e Method_Name,,: the name of the method
e Object,,: the object of which m is a method

e Mean local_time,,: the mean time required, after receipt by a processor of a message invoking
method m, for that processor to complete the invocation. This excludes communication time
but includes queueing time and the time of embedded invocations of other methods

o Mean_execution_time,,: the mean time required, after receipt by a processor of a message in-
voking method m, for the method to execute locally on the processor. The M ean_execution_time,,
includes queueing time but excludes the time of invocations of other methods.

o Mean_remote_timey,,: the mean time required for method m to invoke method n remotely,
including communication and queueing time and also the time of embedded invocations of
other methods.

o Mean_communication_time,,,: the mean time to communicate an invocation from method
m to method n and to communicate the response back. The M ean_communication_time,,,
is computed as the difference between Mean_remote_time,,, and Mean_local _time,,.



e Mean_processing_timep, or (T,p): the mean time required for method m to execute on pro-
cessor p, excluding queueing time and the time required for embedded invocations of other
methods.

o Mean_invocationsyy,: the mean number of invocations that a single invocation of method m
makes on method n.

5 Managing the Domain

The Resource Manager for a domain is responsible for managing the application objects of the
domain and monitoring the processor and network resources of the domain. The Resource Manager
records the location of the application objects on the nodes and the interactions among the objects
as they are invoked by the tasks and reported by the Profilers on the processors.

5.1 Profiling

The Profiler on each procesor measures the current utilization of the processor’s resources (CPU,
memory, disk) and the bandwidth in use on the communication links among the processors. The
Profiler also monitors local and remote method invocations and measures the actual computation
and execution times of the methods of the objects. For each method m of an object 7 invoked
locally on the processor, the Profiler measures the usage on the processor’s resources during the
method execution.

Each method invocation or response, as monitored by the Profilers, is characterized by the
following tuple:

< Action, local _object i,invoking method n,remote_object j,invoked_method m, Invoc_time T >

where Action is determined by the Profilers [7] and is one of the following: LOCAL_START,
LOCAL_COMPLETE, REMOTE_START, REMOTE_COMPLETE. The Profilers distin-
guish between a remote method invoking a local method on a local object (LOCAL_START,
LOCAL_COMPLETE) and a local method invoking a remote method (REMOTE_START, RE-
MOTE_COMPLETE) on a remote object, and also between the corresponding responses. The
Profilers attach a timestamp to each of the method invocations and can therefore measure the
execution and computation times of the local and remote methods as invoked by the tasks.

Maintaining accurate profiling information is important for two reasons. First, it is the means
by which the Resource Manager can detect an external load and act upon it. The Resource Manager
can identify an object that is causing a large queueing delay for a task and, therefore, can detect
significant deviations in performance. Second, it allows the Resource Manager to have a global
view of the system in terms of which are the most appropriate processors to host new objects.
Given the queueuing latency of the objects on the processors, the Resource Manager can identify
an overloaded processor as the processor, on which the allocated objects on average experience a
large delay in the latency to the task completion.

For each object i, the Profiler measures the Mean_computation_time,, of all the methods m of
the object 7 and the M ean_numbery,,, of invocations per method m. The Profiler also measures the
time the object spends on the Scheduler’s local queue and computes the Mean_response_time; of
the object on the processor. When a method m of object 7 makes a remote method invocation to a
method n of an object j, the Profiler records the time of invocation, updates the number of incoming
and outgoing invocations for objects ¢ and j respectively. When the invoked method n completes
and returns its response to the invoking method m, the Profiler calculates an actual time for the



remote invocation, Remote_time,,,, from the time at which method m invoked method n to the time
at which it received the response. The Profiler averages this time into Mean_remote_time,,,. The
Profiler computes the M ean_communication_time,,, to communicate an invocation from method
m to method n and receive a response back as the difference between Mean_remote_time,,, and
Mean_local _time,,, where Mean_local_time,, is the time for method n to complete the execution.
The Profilers use a smoothing function based on exponentially weighted averaging to compute
the mean values of the methods’ computation and communication times and keep a history with the
method execution patterns on the processor to use for subsequent executions. Thus, the Profilers
computes a local mean of the method computation and communication times on the processor
and the Resource Manager computes a global mean across multiple processors. For each method m
invoked locally on the processor, the Profiler supplies feedback information to the Resource Manager
to determine the further allocations and reallocations of the objects on the processors. The time
interval between successive Profiler reports is dynamically adjusted based on the variability of the
applications and the flow of operation in the system. Our previous measurements [7] indicate that
careful selection of the monitoring interval is required, because the Resource Manager uses load
fluctuations reported by the Profilers to adjust the allocation of the objects to the processors.

5.2 Object Allocation

The challenge in a distributed system is to guarantee that the tasks will meet their deadlines, given
object dependencies and resource requirement constraints.

We represent the network topology of the resource management domain with a graph G = (V, E)
where the nodes are the processors and the edges are the communication links. Each processor
is characterized by the its speed, the size of its local memory and the size of its disk space. A
communication link is characterized by the bandwidth of the link. Each of these resources have a
maximum and a current value measured by the Profilers at runtime.

For each remote method invocation or response, the Profiler measures the bandwidth in use
on the communication links between the processors where the invoking and invoked objects are
located. The Profiler computes the total bandwidth used on the links connecting the processors as
the sum of the bandwidth used for all the object invocations between these two processors. Note
here, that, that the Profiler distinguishes between objects collocated on the same processor when
there is no need to measure the network bandwidth.

For each new application task ¢ that arrives in the domain, the Resource Manager tries to
distribute the objects on the processors to maximize the probability that the end-to-end real-
time response requirements of the application task are satisfied. Load balancing is important,
because the execution times of the tasks are affected by the number of tasks in the system, the
objects invoked by the tasks, and the processing and communication times of the methods of the
objects invoked by the tasks. Note though that these factors are not always compatible. For
example, load balancing requires distributing the objects, while performance requires to collocate
them. Furthermore, equally distributing the load on the processors can cause potential resource
fragmentation on the processors. For example, the sum of the available CPU capacity in the system
can be sufficient to accommodate an object with a high load, but there may not be enough available
CPU capacity in a single processor for such an object.

However, even the simpler problem of finding an optimal deployment of the objects for a single
application task that invokes methods on objects across multiple processors is NP-hard. The
problem becomes more complicated as application tasks arrive dynamically; their arrival times is
not know a priori; they concurrently and asynchronously invoke the same objects; and, they
compete for shared computing resources. Consequently, the cost of finding an exact solution is



unjustified.

We propose a greedy algorithm that attempts to distribute the application objects in a way that
(1) minimizes the network traffic on the communication links and (2) distributes evenly the load
on the processors. The Resource Manager uses knowledge obtained from the Profilers during the
previous executions of the task to estimate the amount of processor and communication resources
required for executing the objects of the task and deploying the objects on the processors. The
greedy algorithm is employed at run-time and ensures that the available capacity of each commu-
nication channel and processor is not exceeded. The system configuration can change dynamically
in response to changes in resource loads.

5.3 The Greedy Placement Algorithm

Let Link_capacity,q be the capacity of the communication link connecting processors p and ¢, and
Maz_bandwidthy, be the bandwidth currently in use on the link, measured by the Profilers. The
Resource Manager estimates the available amount of bandwidth on the communication link as:

Avail_bandwidth(E,q) = Link_capacity(E,q) — Maz_bandwidth(Ey,)

The currently available bandwidth on the communication link is a dynamic quantity, that changes
as the estimation of the network traffic changes. A more sophisticated monitoring algorithm could
also detect periodic patterns of utilization.

Round-robin load balancing methods create unequal, highly variable, and unpredictable load
distribution among the objects. Therefore, the Resource Manager uses lower low and upper high
bounds to represent the utilization of the CPU on each processor. The Resource Manager identifies
an underloaded processor whose current load is below low as the best candidate to host a new
object. A processor whose load exceeds load high is considered an overloaded processor and should
not host any more objects. The Resource Manager uses the Profilers’ feedback to compute these
bounds dynamically based on the flow of the operations in the system. For example, a large number
of objects with low load will require a larger value for the lower 1ow bound, while objects with high
load, will require a lower value for the bound.

To find the paths of smallest weight between an invoking and invoked object, we use a link
weighting distance function based on the number of network links that connect the two objects.
The link weighting function gives high weight to the links that are used very heavily, such as:

1

1— Avail_Bandw(Epq)+ Network_Bandw;
Link_capacity(Epq)

w(Epq) =

where Network_Bandw; is the projected network bandwidth required for object 7. Therefore
heavily used links are unlikely to be chosen in the new channels.

Given this information, the Resource Manager can then execute the actual placement algorithm.
The algorithm creates an initial solution by placing the application objects sequentially. To do so
it creates an absolute (but random) ranking for all object types.

e The Greedy algorithm:

1. For each object %, perform the following steps:

(a) Determine where to put the object in the domain.



i. To determine the location, the algorithm uses a modified network graph G'.
To create this graph we remove from the network graph G all the links whose
available capacity is below the bandwidth requirements of the candidate object.
Note here, that we consider both the incoming and outgoing invocations of
object 1.

ii. Using G’ find, for each possible location for object i, the sum the weights of
the shortest paths to all these objects that invoke methods on object %, plus the
paths to those objects whose methods object ¢ will invoke.

iii. Choose the location that minimizes the sum of lengths of communication chan-
nels for the new object 7 and has not been considered yet in this iteration to
host object 1.

iv. Calculate the contribution to the processor’s load and memory after hosting the
new object. Consider this processor, only if the addition of the object 7+ does
not introduce an overloaded processor (load above high) and there is available
memory for object i. Otherwise, mark this processor as unavailable and go back
to step iii to select another processor.

v. Project new values for the processor load, processor memory and bandwidth on
the communication links.

It can be shown that the greedy algorithm satisfies our desiderata. It is efficient, because we have
to run the all-pairs shortest path problem / times. We can make the algorithm faster (O(|E|l) if we
accept an approximate solution for the optimal position of an object. The final solution respects the
QoS guarantees for the application objects: if a solution is found, then all the communication links
are expected to have enough available bandwidth for the object. It tries to optimize the network
resources utilization by: trying to serve invoking objects that are closely located, optimizing the
length of the communication links, and distributing the network traffic uniformly.

During operation, the Resource Manager may detect overloaded or insufficient resources to
provide the quality of service required by the tasks. In such a case, the Resource Manager may
choose to re-distribute some of the objects in the domain. Object migration may also be required
to adjust in the new configuration of the system as it has changed over time or when a processor
fails. The cost of object migration is justified with amortization over many method invocations,
and constrains the rate at which objects are moved [6].

6 Distributed Real-Time Scheduling of Method Invocations

When application tasks invoke methods on objects across multiple processors and multiple domains,
the degree to which end-to-end timeliness is achieved is a combination of two factors; the relative
importance of the tasks and the objects invoked by the tasks and the collective timeliness as tasks
execute methods over multiple processors. Timing requirements and importance metrics are not
normally correlated. Consequently, scheduling tasks to maximize the probability that the most
important tasks meet their deadlines is not a trivial problem.

Our scheduling algorithm is based on the least-laxity scheduling algorithm that has been proven
[4] to be very efficient in multi-processor environments. In least-laxity scheduling the laxity of
a task represents a measure of urgency for the task and is computed as the difference between
the deadline and the projected computation time for the task. To increase the probability that
important tasks meet their deadlines, our scheduling algorithm relaxes the timing constraint (laxity
value) and considers the object importance when scheduling the methods invoked by the tasks on

10



the processors. The order in which the methods are scheduled is driven by both the laxity value of
the invoking tasks and the importance of the objects.

6.1 The Least Laxity Scheduling Algorithm

When a new task ¢ arrives, the Resource Manager computes the initial laxity of the task as:
Lazity, = Deadline; — Projected_latency;

where Deadline; is the time within which the task should be completed and Projected_latency; is
the estimated time to task completion. The task’s initial laxity is computed based on information
collected during previous executions of the task. If no such information is available, the application
programmer must provide an estimated computation time required for the task to run. This infor-
mation is stored in the task graph, kept by the Resource Manager, along with other information
about the application task. As the task executes, the methods of the objects invoked by the task
are scheduled according to the remaining laxity of the task. The laxity value is updated based
on the estimated computation time of the methods of the objects and their actual time measured
by the Profilers during the executions. The Local Scheduler on each processor subtracts from the
remaining laxity Laxity;, the difference between the actual time Processing_time,, for executing
method m measured by the Profilers and the Mean_processing_time,, calculated by the Resource
Manager based on previous executions of method m. The optimality of least laxity scheduling com-
pared to earliest deadline first scheduling, is due to the fact that least laxity scheduling considers
the computation times of the tasks to derive the laxity values.

When an activity traverses a processor boundary, it carries with it the caller’s scheduling param-
eters (laxity value) included in the message header. As the execution of the application task moves
from processor to processor, its scheduling needs are carried along and honored by the scheduler
on each processor. When the activity returns, the scheduling parameters are propagated back to
the caller. When the Reply is received, the actual time required is compared with the Projected
time and the difference is used to adjust the activity’s laxity value.

The adjustment of the laxity, Lazity;, provides the feedback loop shown in Figure 3. This is
the first level of the three-level feedback loop structure of the Resource Management System. If
the invocation completes more quickly than was projected, the task laxity increases and the task’s
scheduling priority decreases. If the invocation completes more slowly, the task laxity decreases and
the task’s scheduling priority increases. All computations are simple and local, allowing the loop
to operate on a millisecond by millisecond basis. In contrast, the feedback loops used to estimate
the projected task latency, from which the initial task laxity is derived, operate more slowly on a
timescale of seconds. The rest of the information flow, shown by light arrows in the Figure, form
the second level of the feedback loop and operate more slowly, on a second-by-second basis. When
a task completes, the task’s remaining laxity is recorded as the residual laxity for the task.

6.2 Application Task States

Figure 4 shows the states of a task during its lifetime. These states result from the scheduling
decisions made on the processors that host the objects whose methods are invoked by the task.
Each task can be found in one of the following states:

e Running: A task is active when the method invoked by the task is currently executing.
The Local Scheduler decides in favor of a new task making a local method invocation on
the processor, only if the new task is more urgent (smaller laxity value) than the currently
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Figure 3: Scheduling and Profiling Loops of the Multiple Feedback Loop Structure.

executing task and the new task’s laxity value is smaller than the remaining computation
time of the currently executing task. In such a case, the current task will be suspended
(task enters the Waiting state) and the new task will be dispatched for execution. When the
currently executing method makes a remote method invocation on an object located on the
same or a different processor, the task’s execution propagates to the invoked object and the
Local Scheduler orders the currently executing method on its queue according to its laxity
value. When the task execution completes, the task becomes Inactive.

e Waiting: A task enters the Waiting state when the method invoked by the task is preempted
by a method with a higher priority executing on the same processor. If, during execution,
the task’s laxity value becomes negative, this indicates that the task will miss its deadline
even if the deadline has not passed yet. Our soft real-time system allows the task to continue
execution even after its deadline, as long as it does not interfere with the execution of the
other objects in the processor. The Local Scheduler schedules those tasks with negative laxity
value during the time that the processor would otherwise have been idle.

e Inactive: A task remains in the Inactive state until the client thread starts executing again.
Each time the task executes, the Resource Manager uses the ratio of the residual laxity to
the initial laxity of the task during the task’s previous executions, to estimate a new initial
laxity value for the task.
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ABORT: The activity
finishes execution

RUN: The activity
is activated

INACTIVE > RUNNING

RESUME: The activity
continues execution

SUSPEND: A new
activity with higher
priority is executing

ABORT: The activity's
laxity value becomes
negative

WAITING

Figure 4: The States of a Task During Its Execution.

7 Determining the Number of the Resource Manager Peers

When an application task ¢ completes, the Resource Manager compares the residual laxity with the
initial laxity of the task. If the Resource Manager’s estimate for the projected latency of the task
was accurate, the residual laxity will be the same with the initial laxity of the task. The Resource
Manager uses the ratio

Residual_Lazity;

Initial _Lazxity,

to adjust the estimates of the projected latency of the task. The Resource Manager can identify
an overloaded domain as the domain in which the residual laxity of the tasks is frequently smaller
than the initial laxity. In such a case, a Resource Manager peer is able to define a new resource
management domain and create a new Resource Manager peer in the domain to offload some of
its work. Although the new Resource Management domain was created by an existing Resource
Manager, yet, it is autonomous and behaves like the rest of the domains.

To avoid uneccessary domain creations, the Resource Manager estimates the remaining time
for some of its application tasks to complete. If the remaining time is small, the creation of a new
domain will not increase the performance gain since it will be a new domain with a small number
of application tasks and objects that will soon need to be merged. So, the creation overhead will
outweight the benefit of balancing the remaining load.

The Resource Manager is an essential component of the domain and, therefore, must be repli-
cated for fault-tolerance and high availability. Different replication styles can be used based on the
level of reliability to be provided by the Resource Manager to the domain. Among the replication
styles, active replication is usually prefered when faults are critical, when recovery must be fast, and
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when the cost of transferring the state is larger than the cost of executing the operation. In active
replication, all the Resource Manager replicas will perform the same operations in the same order.
To maintain consistency among the replicas, we use a group communication protocol to transpar-
ently translate method invocations on an object group into invocations on the individual object
replicas ?7. Typically, the Resource Manager has between two and four replicas. The replication
is transparent to the outside of the domain world.

To determine the number of Resource Manager peers, we are using a ReplicationDegree algorithm
(Figure 5) that incrementally determines if a new Resource Manager peer needs to be created,
based on the benefit that the addition on the peer has for the system. The need for more Resource
Managers increases based on the number of objects requiring service in a domain and the QoS
requirements during the transmissions.

7.1 Resource Manager Utility

The utility of a Resource Manager represents the significance of having that such a Resource
Manager peer in the system. The utility value is computed based on the significance that the
Resource Manager peer has for the system and the probability of faults of the Resource Manager
peers.

Let max_dist, = MAaT; ; in the same domainDist(object;, object;) be the maximum node dis-
tance between any two objects that belong to the same domain. We define the importance Imp, of
the creation of a Resource Manager peer c to be the sum of the number of the objects N serviced by
the Resource Manager, weighted by the level of service level; the objects require and the maximum

distance between any two objects in the domain:

N
Imp,. = Z Consumer; * level; * maz_dist,
i€c
where 7 € ¢ denotes that object ¢ is serviced by Resource Manager c. Essentially, the higher the
level of service provided to the more number of objects with the maximum node distance, the more
important the Resource Manager becomes for a domain.

Assuming that r. represents the number of Resource Manager peers and ¢, is the failure prob-
ability for the Resource Manager within the domain, we compute the utility Ut:l,, of having an
rzh Resource Manager peer ¢ to be the product of the Resource Manager’s importance and the
probability of failure of all but one of the peers:

Util,, = Imp, * Te * q’c"”_1 * (1 —qc)
¢ re—1

7.2 Replication Degree Algorithm

Thus, the problem is narrowed to determining the appropriate number for Resource Manager peers
by computing the utility of having another Resource Manager peer to the system. At least one
Resource Manager is required for the system. Our algorithm incrementally allocates a new Resource
Manager peer, if the addition of the new Resource Manager will benefit the objects requiring service
from this domain. Consequently, each time we allocate a new Resource Manager, we create new
Resource management domain. Our algorithm is novel because the Resource Manager peers are
independent, autonomous and co-operate in a purely decentralized world, there is no centralized
component to manage all the application tasks in the system.
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Replication Degree algorithm:
calculate utility Util,., of having rt* replica of Resource Manager c
allocate one Resource Manager c¢ for the whole system
while maximum remaining UtilityValue > lowUtilityBound
find Resource Manager ¢ with maximum utility Util,,
allocate an ri" replica for Resource Manager c
increment the number of replicas for Resource Manager ¢
return the number r, of replicas for the Resource Manager ¢

Figure 5: Pseudocode for the Replication Degree algorithm.

Since objects can be invoked by multiple tasks, there may be cases when the objects are invoked
by tasks that originate from different domains. In such cases, we try to configure the resource
management domains so that we include both of the tasks in the same domain.

To avoid the continuous creation of Resource Manager peers, we determine a lower bound
lowUtilityBound to be the minimum utility value accepted for a peer. Resource Manager peers
with utility values below this bound are not considered for allocation in the system. Essentially,
the first few Resource Manager peers are the most important to the system. Essentially, we avoid
having Resource Managers servising only a small number of objects. If during operation, some tasks
finish execution, the Resource Manager with a small number of tasks will try to merge domains
with other peers.

The location transparency CORBA provides, is a key element for our system. If a Resource
Manager peer fails, the objects serviced by that Resource Manager, are automatically serviced
by some other Resource Manager peer, which will likely be in a different network location and a
different domain. Although this will introduce some delay in the transmission of the data, it will
not interrupt the actual execution of the applications.

8 Multiple Feedback Loops

The Resource Management System uses a three-level feedback loop structure:

e The first level (milliseconds) uses measurements of elapsed time to refine the estimated resid-
ual laxity of executing tasks, which are used by the least laxity scheduler.

e The second level (seconds) uses measurements of elapsed time and measurements of processor
loads to refine the initial estimates of the laxity for the tasks as they start.

e The third level (several seconds) uses measured processor loads, queueing and network la-
tencies and measured residual laxities to revise the allocation of objects to processors and to
create (or delete) Resource Manager peers for the system.

The distributed Resource Management system (Figure 6) operates on an allocation scheme that
is adaptive. As the new application task runs in a domain (or across multiple domains), a profile
of the method invocations for that task is constructed and is added to the Resource Manager(s)’s
information base. The Resource Manager makes a tentative allocation of new objects to processors
using a greedy algorithm that tries to minimize the network bandwidth on the communication
links and distribute evenly the load among the processors. This increases the load on the processor
and requires new projections of the task latencies. If the allocation is acceptable, it is actually
performed. As the number of application tasks increase or the latency on a processor is too long,
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Figure 6: Multiple Feedback Loops:The Creation of a New Resource Management Domain.

a Resource Manager peer creates a new peer to offload some of its work. If application tasks finish
execution and objects are deleted from a domain, existing Resource Manager peers can be merged
together.

9 Related Work

Many researchers have realized the need for systems that can adapt to dynamic, unpredictable
changes in the computing environment. Nett et al [10] have developed an adaptive object-oriented
system using integrated monitoring, dynamic execution time prediction and scheduling to provide
time-awareness for standard CORBA object invocations. Sydir et al [16] have implemented an end-
to-end QoS-driven resource management scheme within a CORBA-compliant ORB, called ERDoS.
They provide end-to-end QoS requirements corresponding to the resource demand requirements of
each individual object and use an information-driven resource manager that enables applications
to achieve their QoS requirements.

Research into scheduling has been dominated by hard real-time systems, but some useful results
are available for soft real-time distributed systems. Jensen et al [5] propose soft real-time scheduling
algorithms based on application benefit, obtained by scheduling the applications at various times
with respect to their deadlines. Their goal is to schedule the applications so as to maximize the
overall system benefit. Stankovic et al [15] discuss the Spring Kernel developed for large complex
real-time systems. They classify the tasks based on their importance and timing requirements and
use value-based functions to drive the schedule.

Nahrstedt et al [9] have employed resource management mechanisms to provide end-to-end QoS
guarantees for multimedia computing and communication. They present a soft real-time scheduler
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for the Unix environment and a resource broker that provides QoS, negotiation, admission and
reservation capabilities for sharing resources, such as memory and CPU. Their dynamic scheduler
is based on a preliminary round of testing to capture the behavior of the tasks before the actual
execution starts.

There is a large body of work [1, 2, 3, 12] that focuses on maximizing the bandwidth efficiency in
delivering multimedia services. Zhao et al [17] exploit temporal and spatial structures to accomplish
optimal stream multiplexing. Recent work on multi-cast routing algorithms is also related to our
work [14]. However the problem we are solving is different. We are trying to find an optimal
allocation for the objects on the processors, as the objects are invoked by multiple tasks and the
tasks arrive dynamically.

10 Conclusions

The increasing need to share resources and information, the decreasing cost of powerful worksta-
tions, the widespread use of networks and the maturity of software technologies will further increase
the use of distributed systems and applications and so too the demand for more efficient resource
management. The Resource Management System is based on a three-level feedback loop allows ac-
tivities with different levels of temporal granularity, scheduling at the level of milliseconds, profiling
over seconds, and object re-configuration over many seconds.
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