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Abstract 
Simple presentation graphics are intuitive and easy-
to-use, but show only highly aggregated data and 
present only a very limited number of data values 
(as in the case of bar charts), and may have a high 
degree of overlap which may occlude a significant 
portion of the data values (as in the case of the x-y 
plots). In this paper, we therefore propose a 
generalization of traditional bar charts and x-y-plots 
which allows the visualization of large amounts of 
data. The basic idea is to use the pixels within the 
bars to present the detailed information of the data 
records. Our so-called pixel bar charts retain the 
intuitiveness of traditional bar charts while 
allowing very large data sets to be visualized in an 
effective way. We show that, for an effective pixel 
placement, we have to solve complex optimization 
problems, and present an algorithm which 
efficiently solves the problem. Our application 
using real-world e-commerce data shows the wide 
applicability and usefulness of our new idea. 

1.  Introduction 
Because of the fast technological progress, the 
amount of data which is stored in computers 
increases very quickly. Researchers from the 
University of Berkeley estimate that every year 
about 1 Exabyte of data is generated, with 
99.997% available only in digital form. Today, 
computers typically record even simple 
transactions of everyday life, such as paying by 
credit card, using the telephone and shopping in 
e-commerce stores. This data is collected 
because business people believe that it is a 
potential source of valuable information and 
could provide a competitive advantage.  
Finding the valuable information hidden in the 
data, however, is a difficult task. Visual data 
exploration techniques are indispensable to 
solving this problem. In most data mining 
systems, however, only simple graphics, such as 
bar charts, pie charts, x-y plots, etc., are used to 
support the data mining process. While simple 
graphics are intuitive and easy-to-use, they 
either:  

- show highly aggregated data and actually 

present only a very limited number of data 
values (as in the case of bar charts or pie 
charts), or  

- have a high degree of overlap which may 
occlude a significant portion of the data 
values (as in the case of x-y plots). 

The usefulness of bar charts is especially limited 
if the user is interested in relationships between 
different attributes such as product type, price, 
number of orders, and quantities. The reason for 
this limitation is that multiple bar charts for 
different attributes do not support the discovery 
and correlation of interesting subsets, which is 
one of the main tasks in mining customer 
transaction data. 
For an analysis of large volumes of e-commerce 
transactions [Eic 99], the visualization of highly 
aggregated data is not sufficient. What is needed 
is to present an overview of the data but at the 
same time show the detailed information for each 
data item. 
In this paper, we describe a new visualization 
technique called pixel bar chart. The basic idea 
of pixel bar chart is to use the intuitive and 
widely used presentation paradigm of bar charts, 
but also use the available screen space to present 
more detailed information. By coloring the 
pixels within the different bars according to the 
values of the data records, very large amounts of 
data can be presented to the user. To make the 
display more meaningful, two parameters of the 
data records are used to impose an ordering on 
the pixels in the x- and y-directions. Pixel bar 
charts can be seen as a generalization of bar 
charts. They combine the general idea of x-y 
plots and bar charts to allow an overlap-free, 
non-aggregated display of multi-attribute data.  
Since pixel bar charts use each pixel to present 
one data value, they belong to the class of pixel-
oriented techniques. Other pixel-oriented 
techniques include the spiral technique [KK 94], 
the recursive pattern technique [KKA 95], and 
the circle segments technique [AKK 96].  Other 
classes of information visualization techniques 
include geometric projection techniques (e.g. 
[Ins 85,   ID 90]), icon-based techniques (e.g., 
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[PG 88, Bed 90]), hierarchical techniques (e.g.,     
[LWW  90, RCM 91, Shn 92]), graph-based 
techniques (e.g., [EW 93, BEW 95]), which in 
general are combined with some interaction 
techniques (e.g., [BMMS 91, AWS 92,       
ADLP 95]) and sometimes also some distortion 
techniques [SB 94, LRP 95].  

2. From Bar Charts to Pixel Bar Charts 
A common method for visualizing large volumes 
of data is to use bar charts. Bar charts are widely 
used and are very intuitive and easy to 
understand. Figure 1 illustrates the use of a 
regular bar chart to visualize customer 
distribution in an e-commerce sales transaction. 
The height of the bars represents the number of 
customers for 12 different product categories.  
Bar charts, however, require a high degree of 
data aggregation and actually show only a rather 
small number of data values (only 12 values are 
shown in Figure 1). Therefore, for data 
exploration of large multidimensional data, they 
are of limited value and are not able to show 
important information such as:  

- data distributions of multiple attributes 
- local patterns, correlations, and trends 
- detailed information, e.g., each 

customer’s profile (age, income, location, 
etc.) 

 
2.1 Basic Idea of Pixel Bar Charts 
Pixel bar charts are derived from regular bar 
charts (see Figure 1a). The basic idea of a pixel 
bar chart is to present the data values directly 
instead of aggregating them into a few data 
values. The approach is to represent each data 
item (e.g. a customer) by a single pixel in the bar 
chart. The detailed information of one attribute 

of each data item is encoded into the pixel color 
and can be accessed and displayed as needed.  
One important question is: how are the pixels 
arranged within each bar? Our idea is to use one 
or two attributes to separate the data into bars 
and then use two additional attributes to impose 
an ordering within the bars (see Figure 2 for the 
general idea). The pixel bar chart can therefore 
be seen as a combination of the traditional bar 
charts and the x-y diagrams.  
Now, we have a visualization in which one pixel 
corresponds to one customer. If the partitioning 
attribute is redundantly mapped to the colors of 
the pixels, we obtain the regular bar chart shown 
in Figure 1a (Figure 1b shows  the equal-height-
bar-chart" which we will explain in the next 
section). Pixel bar charts, however, can be used 
to present large amounts of detailed information. 
The one-to-one correspondence between 
customers and pixels allows us to use the color 
of the pixels to represent an additional attribute 
of the customer - for example, sales amount, 
number of visits, or sales quantity. 
In Figure 3a, a pixel bar chart is used to visualize 
thousands of e-commerce sales transactions. 
Each pixel in the visualization represents one 
customer. The number of customers can be as 
large as the screen size (about 1.3 million). The 
pixel bar chart shown in Figure 3a uses product 

 

partitining attribute 

x - ordering attribute 

y - ordering attribute 

Figure 2: Pixel Bar Charts 

a). Equal-Width Bar Chart 

Figure 1: Regular Bar Charts 

b). Equal-Height Bar Chart 

Product Type 
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type as the partitioning attribute and number of 
visits and dollar amount as the x and y ordering 
attributes. The color represents the dollar amount 
spent by the corresponding customer. High 
dollar amounts correspond to bright colors, low 
dollar amounts to dark colors.  
 
2.2 Space-Filling Pixel Bar Charts 
One problem of traditional bar charts is that a 
large portion of the screen space can not be used 
due to the differing heights of the bars. With 
very large data sets, we would like to use more 
of the available screen space to visualize the 
data. One idea that increases the number of 
displayable data values is to use equal-height 
instead of equal-width bar charts. In Figure 1b, 
the regular bar chart of Figure 1a is shown as an 
equal-height bar chart. The area (width) of the 
bars corresponds to the attribute shown, namely 
the number of customers.  
If we now apply our pixel bar chart idea to the 
resulting bar charts, we obtain space-filling pixel 
bar charts which use virtually all pixels of the 
screen to display customer data items. In Figure 
3b, we show an example of a space-filling pixel 
bar chart which uses the same partitioning, 
ordering, and coloring attributes as the pixel bar 
chart in Figure 3a. In this way, each customer is 
represented by one pixel.   
Note that pixel bar charts generalize the idea of 
regular bar charts. If the partitioning and 
coloring attributes are identical, both types of   
pixel bar charts become scaled versions of their 
regular bar chart counterparts. The pixel bar 
chart can therefore be seen as a generalization of 
the regular bar charts but they contain 
significantly more information and allow a 
detailed analysis of large original data sets. 

2.3 Multi-Pixel Bar Charts 
In many cases, the data to be analyzed consists 
of multiple attributes. With pixel bar charts we 
can visualize attribute values using multi- pixel 
bar charts which use different color mappings 
but the same partitioning and ordering attributes. 
This means that the arrangement of data items 
within the corresponding bars of multi-pixel bar 
charts is the same, i.e., the colored pixels 
corresponding to the different attribute values of 
the same data item have a unique position in the 
bars. In Figure 4, we show an example of three 
pixel bar charts with product type as the 
partitioning attribute and number of visits and 
dollar amount as the x and y ordering attributes. 
The attributes which are mapped to color are 
dollar amount spent, number of visits, and sales 
quantity. 
Note that the pixels in corresponding bars in 
multiple bar charts are related by their position, 
i.e., the same data record has the same relative 
position with each of the corresponding bars. It 
is therefore possible to relate the different bar 
charts and detect correlations. 
 
3. Formal Definition of Pixel Bar Charts 
In this section we formally describe pixel bar 
charts and the problems that need to be solved in 
order to implement an effective pixel placement 
algorithm. 

3.1 Definition of Pixel Bar Charts 
For a general definition of pixel bar charts, we 
need to specify the:  

- dividing attributes (for between-bar 
partitioning) 

-     ordering attributes (for within-bar ordering) 
-     coloring attributes (for pixel coloring). 

b). Space Filling Pixel Bar Chart a). Pixel Bar Chart 
 

Figure 3: Pixel Bar Charts 

Product Type 
   1    2    3             4               5        6     7    8  9  10   11    12 
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In traditional bar charts there is one dividing 
attribute which partitions the data into disjoint 
groups corresponding to the bars. In space-filling 
bar charts, the bars correspond to a partitioning 
of the screen according to the horizontal axis (x).  
 

 
We may generalize the definition of space-filling 
pixel bar charts by allowing more than one 
dividing attribute, i.e. one for the horizontal axis 
(Dx) and the one for the vertical axis (Dy). 

Next, we need to specify an attribute for ordering 
the pixel in each pixel bar. Again, we can do the 
ordering according to the x- and the y-axis, i.e., 
along the horizontal (Ox) and vertical (Oy) axes 
inside each bar.   

Finally, we need to specify an attribute for 
coloring the pixels. Note that in multi-bar charts 
we may assign different attributes to colors in 
different bar charts, which enables the user to 
relate the different coloring attributes and detect 
partial relationships among them. Note that the 
dividing and ordering attributes have to stay the 
same in order to do that. 
 
Let DB = {d1, …, dn} be the data base of n data 
records, each consisting of k attribute values 

{ }i
k

i
i aad ,,1 K= , l

i
l Aa ∈ , where Al is the 

attribute name of value al.  Formally, a pixel bar 
chart is defined by a five tuple:  

1         2              3 

Product Type 

Figure 7:  Ordering attributes on x- and y-axis 
(e.g., Ox  = Dollar Amount, Oy= Quantity) 

 

Product Type 

1         2              3 
 

 

Figure 6:  Dividing attributes on x- and y-axis 
(e.g., Dx = Product Type,  Dy= Region) 

1         2              3 

Product Type 

Figure 5:  Dividing attribute on x-axis  
(e.g., Dx = Product Type) 
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b) C=number of visits 
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a) C=dollar amount 

Product Type 

Figure 4: Multi Pixel Bar Chart Chart (Dx= Product Type, Dy= ⊥ , Ox=number of visits, Oy=dollar amount, C) 
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<Dx, Dy, Ox, Oy, C > 

where Dx, Dy, Ox, Oy, C ∈  {Al, …, Ak,} ⊥∪ 1 
and Dx/Dy are the dividing attributes in x-/y-
direction, Ox/Oy are the ordering attributes in     
x-/y-direction, and C is the coloring attribute.  
The multi-pixel bar charts of sales transactions 
shown in Figure 4, for example, are defined by 
the five-tuple 

<product type, ⊥ , no. of visits, dollar amount, C> 

where C corresponds to different attributes, i.e., 
number of visits, dollar amount, quantity. 

3.2 Formalization of the Problem 
The basic idea of pixel bar charts is to produce 
dense pixel visualizations which are capable of 
showing large amounts of data on a value by 
value basis without aggregation. The specific 
requirements for pixel displays are: 

- dense display, i.e., bars are filled 
completely  

- non-overlapping, i.e., no overlap of pixels 
in the display 

- locality, i.e., similar data records are placed 
close to each other  

- ordering, i.e., ordering of data records 
according to Ox, Oy .  

To formalize these requirements we first have to 
introduce the screen positioning function  

IntIntAAf k ×→××K1: , 

which determines the x-/y-screen positions of 
each data record di, i.e., ),()( yxdf i =  denotes 
the position of data record di on the screen, and 

xdf i ).(  denotes the x-coordinate and ydf i ).(  
the y-coordinate. Without loss of generality, we 
assume that Ox = A1 and Oy = A2. The 
requirements can then be formalized as: 

1. Dense Display Constraint 
The dense display constraint requires that all 
pixel rows (columns) except the last one are 
completely filled with pixels.  For equal-width 
bar charts, the width w of the bars is fixed. For a 
partition p consisting of |p| pixels, we have to 
ensure that  

  ),()(:/..1,..1 jidfwithdwpjwi íí =∃=∀=∀  

For equal-height bar charts of height h the 
corresponding constraint is 

  ),()(:..1,/..1 jidfwithdhjhpi íí =∃=∀=∀  

                                                           
1 The element ⊥  is used if no attribute is specified. 

2. No -Overlap Constraint 
The no-overlap constraint means that a unique 
position is assigned to each data record. 
Formally, we have to ensure that two different 
data records are placed at different positions, i.e.,  

)()(:, jiji dfdfjiDBdd ≠⇒≠∈∀ . 

3. Locality Constraint 
In dense pixel displays the locality of pixels 
plays an important role. Locality means that 
similar data records are placed close to each 
other. The partitioning in pixel bar charts ensures 
a basic similarity of the data records within a 
single bar. In positioning the pixels within the 
bars, however, the locality property also has to 
be ensured. For the formalization, we need a 
function sim(di, dj) →  [0…1]  which determines 
the similarity of two data records and the inverse 
function of the pixel placement function f-1, 
which determines the data record for a given 
(x,y)-position on the screen. The locality 
constraint can then be expressed as 

min)),1(),,((

))1,(),,((
1

1 1
11

1

1

1
11
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++
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= =
−−
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h

y

w

x

h

y

yxfyxfsim

yxfyxfsim

Note that in general it is not possible to place all 
similar pixels close to each other while 
respecting the dense display and no-overlap 
constraints. This is the reason why the locality 
constraint is formalized as a global optimization 
problem. 

4. Ordering Constraint 
The last constraint which is closely related to the 
locality constraint is the ordering constraint. The 
idea is to enforce a one-dimensional ordering in 
x- and y-direction according to the specified 
attributes Ox = A1 and Oy =A2. Formally, we have 
to ensure  

xdfxdfaanji ji
ji ).().(:..1, 11 >⇒>∈∀  

ydfydfaanji ji
ji ).().(:..1, 22 >⇒>∈∀  

Note that ordering the data records according to 
the attribute and placing them in a row-by-row or 
column-by-column fashion may easily fulfill 
each one of the two constraints. Ensuring both 
constraints at the same time may be impossible 
in the general case. We can formalize the 
constraint as an optimization problem: 
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Note that there may be a trade-off between the x- 
and the y-ordering constraint. In addition, the 
optima for the locality and the ordering 
constraints are in general not identical. This is 
due to the fact that the similarity function may 
induce a different optimization criterion than the 
x-/y-ordering constraint. For solving the pixel 
placement problem, we therefore have to solve 
an optimization problem with multiple 
competing optimization goals. The problem is a 
typical complex optimization problem which is 
likely to be NP-complete and can therefore only 
be solved efficiently by a heuristic algorithm. 

 
3.3 Pixel Placement Algorithm 
For the generation of pixel bar charts, we have to    

- partition the data set according  to Dx and Dy 
-  determine the pixel color according to C2  
-  place the pixels of each partition in the 

corresponding regions according to Ox, Oy . 
The partitioning according to Dx and Dy and the 
color mapping are simple and straightforward to 
implement, and therefore do not need to be 
described in detail here. The pixel placement 
within one bar, however, is a difficult 
optimization problem because it requires a two-
dimensional sort. In the following, we describe 
our heuristic pixel placement algorithm which 
provides an efficient solution to the problem. 
The basic idea of the heuristic pixel placement 
algorithm is to partition the data set into subsets 
according to Ox and Oy, and use those subsets to 
place the bottom- and left-most pixels. This 
provides a good starting point which is the basis 
for the iterative placement of the remaining 
pixels. The algorithm works as follows: 
1. For an efficient pixel placement within a 

single bar, we first determine the one-
dimensional histograms for Ox and Oy, which 
are used to determine the α-quantiles of Ox 
and Oy. If the bar under consideration has 
extension w x h pixels, we determine the 

www )1(,,1 −K -quantiles for the 
                                                           
2  We use a colormap which maps high data values to 

bright colors and low data values to dark colors. 

partitioning of Ox, and the hhh )1(,,1 −K - 
quantiles for the partitioning of Oy. The 
quantiles are then used to determine the 
partitions X1, …,Xw of Ox and Y1, …,Yh of Oy. 
The partitions X1, …,Xw  are sorted according 
to Oy and the partitions Y1, …,Yh according to 
Ox.   

2. We can start now to place the pixel in the 
lower-left corner, i.e., position (1,1), of the 
pixel bar:  

{ } { }








==
∈∈

−
1

1
2

1

1 .min.min|)1,1( adaddf sYsdsXsds

Next we place all pixels in the lower and left 
pixel rows of the bar. This is done as 

{ } wiaddif s
iXsds ..1.min|)1,( 2

1 =∀








=
∈

−  

{ } hjaddjf s
jYsds ..1.min|),1( 1

1 =∀








=
∈
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3. The final step is the iterative placement of all 
remaining pixels. This is done starting from 
the lower left to the upper right. If pixels at 
positions (i-1, j) and (i, j-1) are already 
placed, the pixel at position (i, j) is 
determined as 

{ }

∅≠∩








+=
∩∈

−

jYiXif

adaddjif ss
jYiXsds 21

1 ..min|),(
 

Because we have placed the data structures as 
introduced in step 1, the pixel to be placed at 
position can be determined in O(1) time if 

∅≠∩ jYiX . If ∅=∩ jYiX , we have to 
iteratively extend the partitions Xi and Yj and 
consider  

jYXXd iis ∩∪∈ + )( 1 . 

If this set is still empty, we have to consider 
)()( 11 ++ ∪∩∪∈ jjiis YYXXd  

and so on, until a data point to be placed is 
found. Note that this procedure is quite 
efficient due to the data structure used.  

4.  The Pixel Bar Chart System 
To analyze large volumes of transaction data 
with multiple attributes, pixel bar charts have 
been integrated with a data mining visualization 
system [Hao 99]. The system uses a web browser 
with a Java activator to allow real-time 
interactive visual data mining on the web. The 
web interfaces are based on standard HTML and 
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Java applets, which are used to explore 
relationships and to retrieve data within a region 
of interest.  The server is integrated with the data 
warehouse and the mining engine. The user at 
the client side visually explores the data by 
dynamically accessing the large multi-attribute 
transactions with complex relationships through 
HTML pages in a web browser. 

4.1 System Architecture and Components 
The pixel bar chart system connects to a data 
warehouse server and uses the database to query 
for detailed data as needed. The data to build the 
pixel array is kept in memory to support real-
time manipulation and correlation. As illustrated 
in Figure 8, the pixel bar chart system 
architecture contains three basic components: 

1. Pixel array ordering and grouping 
A pixel array is constructed from the pixel 
bar chart five tuple specification. One pixel 
represents one data record, i.e., a customer. 
The partitioning algorithm assigns each data 
record to the corresponding bar according to 
the partitioning attribute(s).  The pixel 
placement implements a simplified version 
of the heuristic algorithm presented in 
subsection 3.4. 

2. Multiple linked pixel bars 
In multi-bar charts, the position of the pixels 
belonging to the same data record remains 
the same across multi-pixel bar charts for 
correlation. The colors of the pixel 
correspond to the value of the selected 
attributes (such as price, number of orders, 
etc.).  

3. Interactive data exploration 
This system provides simultaneous browsing 
and navigation of multiple attributes. 

  
4.2 Interactive Data Analysis 

Interactivity is an important aspect of the pixel 
bar chart system. To make large volumes of 
multi-attribute data sets easy to explore and 
interpret, the pixel bar chart system provides the 
following interaction capabilities: 

• visual querying 
• layered drill-down / detail-on-demand 
• multiple linked visualizations  
• zoom in and out of the pixel bar charts 

The attributes used for partitioning (Dx, Dy), 
ordering (Ox, Oy), and coloring (C) can be 
selected and changed at execution time. For 
identifying correlations, a subset of data items in 
a pixel bar chart can be selected to get the pixels 
corresponding to related attribute values 
highlighted within the same display. A drill-
down technique allows the viewing of all related 
information after selecting a single data item. 
When multi-bar charts are presented, pixels 
reside at the same location across all the charts 
with different attributes. In addition to 
discovering correlations and patterns, the user 
can select a single data item to relate all its 
attribute values. 

5.  Application and Evaluation 
The pixel bar chart technique has been 
prototyped in several e-commerce applications at 
Hewlett Packard Laboratories. It has been used 
to visually mine large volumes of sales 
transactions and customer shopping activities at 
HP shopping web sites. 

5.1 Customer Analysis 
The pixel bar chart system has been applied to 
customer buying patterns and behaviors. In 
Figure 9, the pixels of the bar chart represent 
customers making transactions on the web. In the 
resulting pixel bar chart, customers with similar 
purchasing behaviors (i.e., product type, 
geographical location, dollar amount, number of 
visits, and quantity) are placed close to each 
other. A store manager can use the visualization 
to rapidly discover customer buying patterns and 
use those patterns to target marketing campaigns.  
Figure 9 shows the four attributes of 106,199 
customer buying records. The four pixel bar 
charts of Figure 9 are constructed as follows:  
 

                  Pixel Bar Chart 
 

Pixel Bar 
 
 
sorting 
grouping 

  Multi- 
Pixel Bar 
 
linked  
coloring 

Interaction  
 
 
exploring 
data 

Figure 8: System Architecture & Components 

Client 

Server 
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- Product type is the dividing attribute Dx 
       12 product types     
- Dollar amount is the x-ordering attribute Ox 
         Region is the y-ordering attribute Oy 
      for 10 United States regions 
- Region, dollar amount, number of visits, 
      and quantity are the four coloring  
      attributes C 

Many important facts may be discovered in 
Figure 9 (a, b, c, d). In the bars for the different 
attributes, the user may observe the following 
facts:  
a) Region attribute  

There are 10 different colors to represent 10 
different regions (labeled 1-10 in Figure 9a) 
in the United States. The colored wave 
indicates the number of customers in each 
region. After analyzing customer 
distributions, region 9 (largest area) is found 
to have the largest number of customers. 
Region 7 (smallest area) has the least number 
of customers across all product types. 

b) Dollar amount attribute 
Product type 5 has the most top dollar 
amount sales  (blue & brown). The dollar 
amount sales of product types 6 and 7 have a 
very small variance across all regions (solid 
blue/brown). 

c) Number of visits attribute 
The blue color distribution in product type 4 
indicates that customers of this product type 
(consumables) come back more often than 
customers of other product types.  

d) Quantity attribute 
The green color of product type 6 indicates 
that in this category all customers bought the 
same number of items across all regions. It is 
also obvious that product type 4 customers 
have the largest quantities.  

By relating the different bar charts of the multi 
bar chart of Figure 9, the user may observe for 
example the following clusters and trends: 
   - Region 4 has the most customers but region 9 

is the most profitable with the most frequent 
visits and the largest quantities. 

   - The top dollar amount customers come back 
more frequently and purchase larger 
quantities.  

5.2 Sales Transaction Analysis 
One of the common questions electronic store 
managers ask is how to use the customer 
purchase history for improving product sales and 
promotion. Product managers want to understand 
which products have the top sales and who are 
their top dollar amount customers. 
An e-commerce manager, for example, needs to 
answer questions as to which product types have 
the highest dollar amount customers, how often 
the customers come back and for which 
products. These analyses may also be used to 
determine which products may be impacted 
when the store issues coupons. 
 

Figure 9: Multi-Pixel Bar Chart for Mining 106,199 Customer Buying Transactions 
(Dx= Product Type, Dy= ⊥ , Ox=dollar amount, Oy=region, C) 
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While regular bar charts provide only aggregated 
information on the number of customers by 
product type (Figure 1), the corresponding pixel 
bar charts include important additional 
information such as the dollar amount 
distribution of the sales. More specifically, the 
pixel bar chart provides the following additional 
information: 

-   Dollar amount versus product distribution 

-  Each customer’s detail information can be 
drilled down as needed. 

Figure 10 illustrates an example of a multi-pixel 
bar chart of 405,000 multi-attribute web sales 
transactions. The dividing attribute (Dx) is again 
product type; the ordering attributes are number 
of visits and dollar amount (Ox and Oy). The 
colors (C) in the different bar charts represent the 
attributes dollar amount, number of visits, and 
quantity. From Figure 10, the following 
information about the web sales can be obtained: 

a) Product type 10 and product type 7 have the 
top dollar amount customers (dark colors of 
bar 7 and 10 in Figure 10a).  

b) The dollar amount spent and the number of 
visits are clearly correlated, especially for 
product type 4 (linear increase of dark 
colors at the top of bar 4 in Figure 10b).  

c) Product types 4 and 11 have the highest 
quantities sold (dark colors of bar 4 and 11 
in Figure 10c).  

d) By clicking on a specific pixel (A), we may 
find out that customer A visited 25 times, 
bought 500 items, and spent $345,000 on 
product type 5. 

It is further interesting that there are clusters of 
darker colors in bar 4 of Figure 10c, which 
means that there are certain ranges of dollar 
amount sales for which the quantity tends to be 
higher than in other segments. This observation 
is unexpected and may be used to identify the 
clusters of sales transactions and make use of the 
information to further increase the sales. Note 
that the information mentioned above cannot be 
detected by regular bar charts. 

6.  Conclusion 
In this paper, we presented pixel bar charts, a 
new method for visualizing large amounts of 
multi-attribute data. The approach is a 
generalization of traditional bar charts and x-y 
diagrams, which avoids the problem of losing 
information by aggregation or overplotting. 
Instead, pixel bar charts map each data point to 
one pixel of the display. For generating the pixel 
bar chart visualizations, we have to solve a 
complex optimization problem. The pixel 

 

customer A 
$345,000 

Figure 10: Multi-Pixel Bar Chart for Mining 405,000 Sales Transaction Records 
(Dx= Product Type, Dy= ⊥ , Ox=no. of visits, Oy= dollar amount, C) 
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placement algorithm is an efficient and effective 
solution to the problem. We apply the pixel bar 
chart idea to real data sets from an e-commerce 
application and show that pixel bar charts 
provide significantly more information than 
regular bar charts.  
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