

Pixel Bar Charts: A New Technique for
Visualizing Large Multi-Attribute Data Sets
without Aggregation

Daniel Keim1, Ming C. Hao, Julian Ladisch1, Meichun Hsu,
Umeshwar Dayal
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-92
April 11th , 2001*

E-mail: (ming_hao, mhsu, dayal)@hpl.hp.com, keim@informatik.uni-konstanz.de, julian@ladisch.de

pixel, bar chart,
web
transactions,
visualization

Simple presentation graphics are intuitive and easy-to-use, but
show only highly aggregated data and present only a very
limited number of data values (as in the case of bar charts), and
may have a high degree of overlap which may occlude a
significant portion of the data values (as in the case of the x-y
plots). In this paper, we therefore propose a generalization of
traditional bar charts and x-y-plots which allows the
visualization of large amounts of data. The basic idea is to use
the pixels within the bars to present the detailed information of
the data records. Our so-called pixel bar charts retain the
intuitiveness of traditional bar charts while allowing very large
data sets to be visualized in an effective way. We show that, for
an effective pixel placement, we have to solve complex
optimization problems, and present an algorithm which
efficiently solves the problem. Our application using real-world
e-commerce data shows the wide applicability and usefulness of
our new idea.

* Internal Accession Date Only Approved for External Publication
1 Presently with the Computer Science Institute, University of Constance, Constance, Germany

 Copyright Hewlett-Packard Company 2001

*Presently with the Computer Science Institute, University of Constance, Constance, Germany
keim@informatik.uni-konstanz.de ; julian@ladisch.de

1

Pixel Bar Charts: A New Technique for Visualizing Large
Multi-Attribute Data Sets without Aggregation

Daniel Keim*, Ming C. Hao, Julian Ladisch*, Meichun Hsu, Umeshwar Dayal

Hewlett Packard Research Laboratories, Palo Alto, CA
(ming_hao, mhsu, dayal)@hpl.hp.com

Abstract
Simple presentation graphics are intuitive and easy-
to-use, but show only highly aggregated data and
present only a very limited number of data values
(as in the case of bar charts), and may have a high
degree of overlap which may occlude a significant
portion of the data values (as in the case of the x-y
plots). In this paper, we therefore propose a
generalization of traditional bar charts and x-y-plots
which allows the visualization of large amounts of
data. The basic idea is to use the pixels within the
bars to present the detailed information of the data
records. Our so-called pixel bar charts retain the
intuitiveness of traditional bar charts while
allowing very large data sets to be visualized in an
effective way. We show that, for an effective pixel
placement, we have to solve complex optimization
problems, and present an algorithm which
efficiently solves the problem. Our application
using real-world e-commerce data shows the wide
applicability and usefulness of our new idea.

1. Introduction
Because of the fast technological progress, the
amount of data which is stored in computers
increases very quickly. Researchers from the
University of Berkeley estimate that every year
about 1 Exabyte of data is generated, with
99.997% available only in digital form. Today,
computers typically record even simple
transactions of everyday life, such as paying by
credit card, using the telephone and shopping in
e-commerce stores. This data is collected
because business people believe that it is a
potential source of valuable information and
could provide a competitive advantage.
Finding the valuable information hidden in the
data, however, is a difficult task. Visual data
exploration techniques are indispensable to
solving this problem. In most data mining
systems, however, only simple graphics, such as
bar charts, pie charts, x-y plots, etc., are used to
support the data mining process. While simple
graphics are intuitive and easy-to-use, they
either:

- show highly aggregated data and actually

present only a very limited number of data
values (as in the case of bar charts or pie
charts), or

- have a high degree of overlap which may
occlude a significant portion of the data
values (as in the case of x-y plots).

The usefulness of bar charts is especially limited
if the user is interested in relationships between
different attributes such as product type, price,
number of orders, and quantities. The reason for
this limitation is that multiple bar charts for
different attributes do not support the discovery
and correlation of interesting subsets, which is
one of the main tasks in mining customer
transaction data.
For an analysis of large volumes of e-commerce
transactions [Eic 99], the visualization of highly
aggregated data is not sufficient. What is needed
is to present an overview of the data but at the
same time show the detailed information for each
data item.
In this paper, we describe a new visualization
technique called pixel bar chart. The basic idea
of pixel bar chart is to use the intuitive and
widely used presentation paradigm of bar charts,
but also use the available screen space to present
more detailed information. By coloring the
pixels within the different bars according to the
values of the data records, very large amounts of
data can be presented to the user. To make the
display more meaningful, two parameters of the
data records are used to impose an ordering on
the pixels in the x- and y-directions. Pixel bar
charts can be seen as a generalization of bar
charts. They combine the general idea of x-y
plots and bar charts to allow an overlap-free,
non-aggregated display of multi-attribute data.
Since pixel bar charts use each pixel to present
one data value, they belong to the class of pixel-
oriented techniques. Other pixel-oriented
techniques include the spiral technique [KK 94],
the recursive pattern technique [KKA 95], and
the circle segments technique [AKK 96]. Other
classes of information visualization techniques
include geometric projection techniques (e.g.
[Ins 85, ID 90]), icon-based techniques (e.g.,

2

[PG 88, Bed 90]), hierarchical techniques (e.g.,
[LWW 90, RCM 91, Shn 92]), graph-based
techniques (e.g., [EW 93, BEW 95]), which in
general are combined with some interaction
techniques (e.g., [BMMS 91, AWS 92,
ADLP 95]) and sometimes also some distortion
techniques [SB 94, LRP 95].

2. From Bar Charts to Pixel Bar Charts
A common method for visualizing large volumes
of data is to use bar charts. Bar charts are widely
used and are very intuitive and easy to
understand. Figure 1 illustrates the use of a
regular bar chart to visualize customer
distribution in an e-commerce sales transaction.
The height of the bars represents the number of
customers for 12 different product categories.
Bar charts, however, require a high degree of
data aggregation and actually show only a rather
small number of data values (only 12 values are
shown in Figure 1). Therefore, for data
exploration of large multidimensional data, they
are of limited value and are not able to show
important information such as:

- data distributions of multiple attributes
- local patterns, correlations, and trends
- detailed information, e.g., each

customer’s profile (age, income, location,
etc.)

2.1 Basic Idea of Pixel Bar Charts
Pixel bar charts are derived from regular bar
charts (see Figure 1a). The basic idea of a pixel
bar chart is to present the data values directly
instead of aggregating them into a few data
values. The approach is to represent each data
item (e.g. a customer) by a single pixel in the bar
chart. The detailed information of one attribute

of each data item is encoded into the pixel color
and can be accessed and displayed as needed.
One important question is: how are the pixels
arranged within each bar? Our idea is to use one
or two attributes to separate the data into bars
and then use two additional attributes to impose
an ordering within the bars (see Figure 2 for the
general idea). The pixel bar chart can therefore
be seen as a combination of the traditional bar
charts and the x-y diagrams.
Now, we have a visualization in which one pixel
corresponds to one customer. If the partitioning
attribute is redundantly mapped to the colors of
the pixels, we obtain the regular bar chart shown
in Figure 1a (Figure 1b shows the equal-height-
bar-chart" which we will explain in the next
section). Pixel bar charts, however, can be used
to present large amounts of detailed information.
The one-to-one correspondence between
customers and pixels allows us to use the color
of the pixels to represent an additional attribute
of the customer - for example, sales amount,
number of visits, or sales quantity.
In Figure 3a, a pixel bar chart is used to visualize
thousands of e-commerce sales transactions.
Each pixel in the visualization represents one
customer. The number of customers can be as
large as the screen size (about 1.3 million). The
pixel bar chart shown in Figure 3a uses product

partitining attribute

x - ordering attribute

y - ordering attribute

Figure 2: Pixel Bar Charts

a). Equal-Width Bar Chart

Figure 1: Regular Bar Charts

b). Equal-Height Bar Chart

Product Type
 1 2 3 4 5 6 7 8 9 10 11 12

3

type as the partitioning attribute and number of
visits and dollar amount as the x and y ordering
attributes. The color represents the dollar amount
spent by the corresponding customer. High
dollar amounts correspond to bright colors, low
dollar amounts to dark colors.

2.2 Space-Filling Pixel Bar Charts
One problem of traditional bar charts is that a
large portion of the screen space can not be used
due to the differing heights of the bars. With
very large data sets, we would like to use more
of the available screen space to visualize the
data. One idea that increases the number of
displayable data values is to use equal-height
instead of equal-width bar charts. In Figure 1b,
the regular bar chart of Figure 1a is shown as an
equal-height bar chart. The area (width) of the
bars corresponds to the attribute shown, namely
the number of customers.
If we now apply our pixel bar chart idea to the
resulting bar charts, we obtain space-filling pixel
bar charts which use virtually all pixels of the
screen to display customer data items. In Figure
3b, we show an example of a space-filling pixel
bar chart which uses the same partitioning,
ordering, and coloring attributes as the pixel bar
chart in Figure 3a. In this way, each customer is
represented by one pixel.
Note that pixel bar charts generalize the idea of
regular bar charts. If the partitioning and
coloring attributes are identical, both types of
pixel bar charts become scaled versions of their
regular bar chart counterparts. The pixel bar
chart can therefore be seen as a generalization of
the regular bar charts but they contain
significantly more information and allow a
detailed analysis of large original data sets.

2.3 Multi-Pixel Bar Charts
In many cases, the data to be analyzed consists
of multiple attributes. With pixel bar charts we
can visualize attribute values using multi- pixel
bar charts which use different color mappings
but the same partitioning and ordering attributes.
This means that the arrangement of data items
within the corresponding bars of multi-pixel bar
charts is the same, i.e., the colored pixels
corresponding to the different attribute values of
the same data item have a unique position in the
bars. In Figure 4, we show an example of three
pixel bar charts with product type as the
partitioning attribute and number of visits and
dollar amount as the x and y ordering attributes.
The attributes which are mapped to color are
dollar amount spent, number of visits, and sales
quantity.
Note that the pixels in corresponding bars in
multiple bar charts are related by their position,
i.e., the same data record has the same relative
position with each of the corresponding bars. It
is therefore possible to relate the different bar
charts and detect correlations.

3. Formal Definition of Pixel Bar Charts
In this section we formally describe pixel bar
charts and the problems that need to be solved in
order to implement an effective pixel placement
algorithm.

3.1 Definition of Pixel Bar Charts
For a general definition of pixel bar charts, we
need to specify the:

- dividing attributes (for between-bar
partitioning)

- ordering attributes (for within-bar ordering)
- coloring attributes (for pixel coloring).

b). Space Filling Pixel Bar Chart a). Pixel Bar Chart

Figure 3: Pixel Bar Charts

Product Type
 1 2 3 4 5 6 7 8 9 10 11 12

4

In traditional bar charts there is one dividing
attribute which partitions the data into disjoint
groups corresponding to the bars. In space-filling
bar charts, the bars correspond to a partitioning
of the screen according to the horizontal axis (x).

We may generalize the definition of space-filling
pixel bar charts by allowing more than one
dividing attribute, i.e. one for the horizontal axis
(Dx) and the one for the vertical axis (Dy).

Next, we need to specify an attribute for ordering
the pixel in each pixel bar. Again, we can do the
ordering according to the x- and the y-axis, i.e.,
along the horizontal (Ox) and vertical (Oy) axes
inside each bar.

Finally, we need to specify an attribute for
coloring the pixels. Note that in multi-bar charts
we may assign different attributes to colors in
different bar charts, which enables the user to
relate the different coloring attributes and detect
partial relationships among them. Note that the
dividing and ordering attributes have to stay the
same in order to do that.

Let DB = {d1, …, dn} be the data base of n data
records, each consisting of k attribute values

{ }i
k

i
i aad ,,1 K= , l

i
l Aa ∈ , where Al is the

attribute name of value al. Formally, a pixel bar
chart is defined by a five tuple:

1 2 3

Product Type

Figure 7: Ordering attributes on x- and y-axis
(e.g., Ox = Dollar Amount, Oy= Quantity)

Product Type

1 2 3

Figure 6: Dividing attributes on x- and y-axis
(e.g., Dx = Product Type, Dy= Region)

1 2 3

Product Type

Figure 5: Dividing attribute on x-axis
(e.g., Dx = Product Type)

1 2 3 4 5 6 7 10 11 12

c) C=quantity

Product Type

$
A
m
o
u
n
t

Product Type

b) C=number of visits

1 2 3 4 5 6 7 10 11 12

1 2 3 4 5 6 7 10 11 12

a) C=dollar amount

Product Type

Figure 4: Multi Pixel Bar Chart Chart (Dx= Product Type, Dy= ⊥ , Ox=number of visits, Oy=dollar amount, C)

5

<Dx, Dy, Ox, Oy, C >

where Dx, Dy, Ox, Oy, C ∈ {Al, …, Ak,} ⊥∪ 1
and Dx/Dy are the dividing attributes in x-/y-
direction, Ox/Oy are the ordering attributes in
x-/y-direction, and C is the coloring attribute.
The multi-pixel bar charts of sales transactions
shown in Figure 4, for example, are defined by
the five-tuple

<product type, ⊥ , no. of visits, dollar amount, C>

where C corresponds to different attributes, i.e.,
number of visits, dollar amount, quantity.

3.2 Formalization of the Problem
The basic idea of pixel bar charts is to produce
dense pixel visualizations which are capable of
showing large amounts of data on a value by
value basis without aggregation. The specific
requirements for pixel displays are:

- dense display, i.e., bars are filled
completely

- non-overlapping, i.e., no overlap of pixels
in the display

- locality, i.e., similar data records are placed
close to each other

- ordering, i.e., ordering of data records
according to Ox, Oy .

To formalize these requirements we first have to
introduce the screen positioning function

IntIntAAf k ×→××K1: ,

which determines the x-/y-screen positions of
each data record di, i.e.,),()(yxdf i = denotes
the position of data record di on the screen, and

xdf i).(denotes the x-coordinate and ydf i).(
the y-coordinate. Without loss of generality, we
assume that Ox = A1 and Oy = A2. The
requirements can then be formalized as:

1. Dense Display Constraint
The dense display constraint requires that all
pixel rows (columns) except the last one are
completely filled with pixels. For equal-width
bar charts, the width w of the bars is fixed. For a
partition p consisting of |p| pixels, we have to
ensure that

),()(:/..1,..1 jidfwithdwpjwi íí =∃=∀=∀

For equal-height bar charts of height h the
corresponding constraint is

),()(:..1,/..1 jidfwithdhjhpi íí =∃=∀=∀

1 The element ⊥ is used if no attribute is specified.

2. No -Overlap Constraint
The no-overlap constraint means that a unique
position is assigned to each data record.
Formally, we have to ensure that two different
data records are placed at different positions, i.e.,

)()(:, jiji dfdfjiDBdd ≠⇒≠∈∀ .

3. Locality Constraint
In dense pixel displays the locality of pixels
plays an important role. Locality means that
similar data records are placed close to each
other. The partitioning in pixel bar charts ensures
a basic similarity of the data records within a
single bar. In positioning the pixels within the
bars, however, the locality property also has to
be ensured. For the formalization, we need a
function sim(di, dj) → [0…1] which determines
the similarity of two data records and the inverse
function of the pixel placement function f-1,
which determines the data record for a given
(x,y)-position on the screen. The locality
constraint can then be expressed as

min)),1(),,((

))1,(),,((
1

1 1
11

1

1

1
11

→+

++

∑ ∑
∑ ∑

−

= =
−−

=

−

=
−−

w

x

h

y

w

x

h

y

yxfyxfsim

yxfyxfsim

Note that in general it is not possible to place all
similar pixels close to each other while
respecting the dense display and no-overlap
constraints. This is the reason why the locality
constraint is formalized as a global optimization
problem.

4. Ordering Constraint
The last constraint which is closely related to the
locality constraint is the ordering constraint. The
idea is to enforce a one-dimensional ordering in
x- and y-direction according to the specified
attributes Ox = A1 and Oy =A2. Formally, we have
to ensure

xdfxdfaanji ji
ji).().(:..1, 11 >⇒>∈∀

ydfydfaanji ji
ji).().(:..1, 22 >⇒>∈∀

Note that ordering the data records according to
the attribute and placing them in a row-by-row or
column-by-column fashion may easily fulfill
each one of the two constraints. Ensuring both
constraints at the same time may be impossible
in the general case. We can formalize the
constraint as an optimization problem:

6

min2)).,1().,(

).,1().,((

2)).1,().,(

).1,().,((

2
1

2
1

1

1 1 2
1

2
1

1
1

1
1

1

1

1 1
1

1
1

→+−

++−

++−

++−

−−

−

= =
−−

−−

=

−

=
−−

∑ ∑

∑ ∑

ayxfayxf

ayxfayxf

ayxfayxf

ayxfayxf

w

x

h

y

w

x

h

y

Note that there may be a trade-off between the x-
and the y-ordering constraint. In addition, the
optima for the locality and the ordering
constraints are in general not identical. This is
due to the fact that the similarity function may
induce a different optimization criterion than the
x-/y-ordering constraint. For solving the pixel
placement problem, we therefore have to solve
an optimization problem with multiple
competing optimization goals. The problem is a
typical complex optimization problem which is
likely to be NP-complete and can therefore only
be solved efficiently by a heuristic algorithm.

3.3 Pixel Placement Algorithm
For the generation of pixel bar charts, we have to

- partition the data set according to Dx and Dy
- determine the pixel color according to C2
- place the pixels of each partition in the

corresponding regions according to Ox, Oy .
The partitioning according to Dx and Dy and the
color mapping are simple and straightforward to
implement, and therefore do not need to be
described in detail here. The pixel placement
within one bar, however, is a difficult
optimization problem because it requires a two-
dimensional sort. In the following, we describe
our heuristic pixel placement algorithm which
provides an efficient solution to the problem.
The basic idea of the heuristic pixel placement
algorithm is to partition the data set into subsets
according to Ox and Oy, and use those subsets to
place the bottom- and left-most pixels. This
provides a good starting point which is the basis
for the iterative placement of the remaining
pixels. The algorithm works as follows:
1. For an efficient pixel placement within a

single bar, we first determine the one-
dimensional histograms for Ox and Oy, which
are used to determine the α-quantiles of Ox
and Oy. If the bar under consideration has
extension w x h pixels, we determine the

www)1(,,1 −K -quantiles for the

2 We use a colormap which maps high data values to

bright colors and low data values to dark colors.

partitioning of Ox, and the hhh)1(,,1 −K -
quantiles for the partitioning of Oy. The
quantiles are then used to determine the
partitions X1, …,Xw of Ox and Y1, …,Yh of Oy.
The partitions X1, …,Xw are sorted according
to Oy and the partitions Y1, …,Yh according to
Ox.

2. We can start now to place the pixel in the
lower-left corner, i.e., position (1,1), of the
pixel bar:

{ } { }

==
∈∈

−
1

1
2

1

1 .min.min|)1,1(adaddf sYsdsXsds

Next we place all pixels in the lower and left
pixel rows of the bar. This is done as

{ } wiaddif s
iXsds ..1.min|)1,(2

1 =∀

=
∈

−

{ } hjaddjf s
jYsds ..1.min|),1(1

1 =∀

=
∈

−

3. The final step is the iterative placement of all
remaining pixels. This is done starting from
the lower left to the upper right. If pixels at
positions (i-1, j) and (i, j-1) are already
placed, the pixel at position (i, j) is
determined as

{ }

∅≠∩

+=
∩∈

−

jYiXif

adaddjif ss
jYiXsds 21

1 ..min|),(

Because we have placed the data structures as
introduced in step 1, the pixel to be placed at
position can be determined in O(1) time if

∅≠∩ jYiX . If ∅=∩ jYiX , we have to
iteratively extend the partitions Xi and Yj and
consider

jYXXd iis ∩∪∈ +)(1 .

If this set is still empty, we have to consider
)()(11 ++ ∪∩∪∈ jjiis YYXXd

and so on, until a data point to be placed is
found. Note that this procedure is quite
efficient due to the data structure used.

4. The Pixel Bar Chart System
To analyze large volumes of transaction data
with multiple attributes, pixel bar charts have
been integrated with a data mining visualization
system [Hao 99]. The system uses a web browser
with a Java activator to allow real-time
interactive visual data mining on the web. The
web interfaces are based on standard HTML and

7

Java applets, which are used to explore
relationships and to retrieve data within a region
of interest. The server is integrated with the data
warehouse and the mining engine. The user at
the client side visually explores the data by
dynamically accessing the large multi-attribute
transactions with complex relationships through
HTML pages in a web browser.

4.1 System Architecture and Components
The pixel bar chart system connects to a data
warehouse server and uses the database to query
for detailed data as needed. The data to build the
pixel array is kept in memory to support real-
time manipulation and correlation. As illustrated
in Figure 8, the pixel bar chart system
architecture contains three basic components:

1. Pixel array ordering and grouping
A pixel array is constructed from the pixel
bar chart five tuple specification. One pixel
represents one data record, i.e., a customer.
The partitioning algorithm assigns each data
record to the corresponding bar according to
the partitioning attribute(s). The pixel
placement implements a simplified version
of the heuristic algorithm presented in
subsection 3.4.

2. Multiple linked pixel bars
In multi-bar charts, the position of the pixels
belonging to the same data record remains
the same across multi-pixel bar charts for
correlation. The colors of the pixel
correspond to the value of the selected
attributes (such as price, number of orders,
etc.).

3. Interactive data exploration
This system provides simultaneous browsing
and navigation of multiple attributes.

4.2 Interactive Data Analysis

Interactivity is an important aspect of the pixel
bar chart system. To make large volumes of
multi-attribute data sets easy to explore and
interpret, the pixel bar chart system provides the
following interaction capabilities:

• visual querying
• layered drill-down / detail-on-demand
• multiple linked visualizations
• zoom in and out of the pixel bar charts

The attributes used for partitioning (Dx, Dy),
ordering (Ox, Oy), and coloring (C) can be
selected and changed at execution time. For
identifying correlations, a subset of data items in
a pixel bar chart can be selected to get the pixels
corresponding to related attribute values
highlighted within the same display. A drill-
down technique allows the viewing of all related
information after selecting a single data item.
When multi-bar charts are presented, pixels
reside at the same location across all the charts
with different attributes. In addition to
discovering correlations and patterns, the user
can select a single data item to relate all its
attribute values.

5. Application and Evaluation
The pixel bar chart technique has been
prototyped in several e-commerce applications at
Hewlett Packard Laboratories. It has been used
to visually mine large volumes of sales
transactions and customer shopping activities at
HP shopping web sites.

5.1 Customer Analysis
The pixel bar chart system has been applied to
customer buying patterns and behaviors. In
Figure 9, the pixels of the bar chart represent
customers making transactions on the web. In the
resulting pixel bar chart, customers with similar
purchasing behaviors (i.e., product type,
geographical location, dollar amount, number of
visits, and quantity) are placed close to each
other. A store manager can use the visualization
to rapidly discover customer buying patterns and
use those patterns to target marketing campaigns.
Figure 9 shows the four attributes of 106,199
customer buying records. The four pixel bar
charts of Figure 9 are constructed as follows:

 Pixel Bar Chart

Pixel Bar

sorting
grouping

 Multi-
Pixel Bar

linked
coloring

Interaction

exploring
data

Figure 8: System Architecture & Components

Client

Server

8

- Product type is the dividing attribute Dx
 12 product types
- Dollar amount is the x-ordering attribute Ox
 Region is the y-ordering attribute Oy
 for 10 United States regions
- Region, dollar amount, number of visits,
 and quantity are the four coloring
 attributes C

Many important facts may be discovered in
Figure 9 (a, b, c, d). In the bars for the different
attributes, the user may observe the following
facts:
a) Region attribute

There are 10 different colors to represent 10
different regions (labeled 1-10 in Figure 9a)
in the United States. The colored wave
indicates the number of customers in each
region. After analyzing customer
distributions, region 9 (largest area) is found
to have the largest number of customers.
Region 7 (smallest area) has the least number
of customers across all product types.

b) Dollar amount attribute
Product type 5 has the most top dollar
amount sales (blue & brown). The dollar
amount sales of product types 6 and 7 have a
very small variance across all regions (solid
blue/brown).

c) Number of visits attribute
The blue color distribution in product type 4
indicates that customers of this product type
(consumables) come back more often than
customers of other product types.

d) Quantity attribute
The green color of product type 6 indicates
that in this category all customers bought the
same number of items across all regions. It is
also obvious that product type 4 customers
have the largest quantities.

By relating the different bar charts of the multi
bar chart of Figure 9, the user may observe for
example the following clusters and trends:
 - Region 4 has the most customers but region 9

is the most profitable with the most frequent
visits and the largest quantities.

 - The top dollar amount customers come back
more frequently and purchase larger
quantities.

5.2 Sales Transaction Analysis
One of the common questions electronic store
managers ask is how to use the customer
purchase history for improving product sales and
promotion. Product managers want to understand
which products have the top sales and who are
their top dollar amount customers.
An e-commerce manager, for example, needs to
answer questions as to which product types have
the highest dollar amount customers, how often
the customers come back and for which
products. These analyses may also be used to
determine which products may be impacted
when the store issues coupons.

Figure 9: Multi-Pixel Bar Chart for Mining 106,199 Customer Buying Transactions
(Dx= Product Type, Dy= ⊥ , Ox=dollar amount, Oy=region, C)

b) Color: Dollar amount c) Color: No. of Visits d) Color: Quantity a) Color: Region

 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12

low

high

1

2

3

4

5

7
8

9

10

6

9

While regular bar charts provide only aggregated
information on the number of customers by
product type (Figure 1), the corresponding pixel
bar charts include important additional
information such as the dollar amount
distribution of the sales. More specifically, the
pixel bar chart provides the following additional
information:

- Dollar amount versus product distribution

- Each customer’s detail information can be
drilled down as needed.

Figure 10 illustrates an example of a multi-pixel
bar chart of 405,000 multi-attribute web sales
transactions. The dividing attribute (Dx) is again
product type; the ordering attributes are number
of visits and dollar amount (Ox and Oy). The
colors (C) in the different bar charts represent the
attributes dollar amount, number of visits, and
quantity. From Figure 10, the following
information about the web sales can be obtained:

a) Product type 10 and product type 7 have the
top dollar amount customers (dark colors of
bar 7 and 10 in Figure 10a).

b) The dollar amount spent and the number of
visits are clearly correlated, especially for
product type 4 (linear increase of dark
colors at the top of bar 4 in Figure 10b).

c) Product types 4 and 11 have the highest
quantities sold (dark colors of bar 4 and 11
in Figure 10c).

d) By clicking on a specific pixel (A), we may
find out that customer A visited 25 times,
bought 500 items, and spent $345,000 on
product type 5.

It is further interesting that there are clusters of
darker colors in bar 4 of Figure 10c, which
means that there are certain ranges of dollar
amount sales for which the quantity tends to be
higher than in other segments. This observation
is unexpected and may be used to identify the
clusters of sales transactions and make use of the
information to further increase the sales. Note
that the information mentioned above cannot be
detected by regular bar charts.

6. Conclusion
In this paper, we presented pixel bar charts, a
new method for visualizing large amounts of
multi-attribute data. The approach is a
generalization of traditional bar charts and x-y
diagrams, which avoids the problem of losing
information by aggregation or overplotting.
Instead, pixel bar charts map each data point to
one pixel of the display. For generating the pixel
bar chart visualizations, we have to solve a
complex optimization problem. The pixel

customer A
$345,000

Figure 10: Multi-Pixel Bar Chart for Mining 405,000 Sales Transaction Records
(Dx= Product Type, Dy= ⊥ , Ox=no. of visits, Oy= dollar amount, C)

b) Color: no. of visits c) Color: quantity a) Color: dollar amount

 1 2 3 4 5 6 7 10 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 7 10 12

low

high
 customer A

25 visits

customer A
500 items

10

placement algorithm is an efficient and effective
solution to the problem. We apply the pixel bar
chart idea to real data sets from an e-commerce
application and show that pixel bar charts
provide significantly more information than
regular bar charts.

Acknowledgements:
Thanks to Sharon Beach of HP Laboratories for
her encouragement and suggestions, Shu Feng
Wei and Brain Ono from HP Shopping for
providing data and reviewing the results, and to
Graham Pollock of Agilent Laboratories for his
review and comments.

References
[ADLP 95] Anupam V., Dar S., Leibfried T., Petajan E.:

‘DataSpace: 3-D Visualization of Large Databases’,
Proc. Int. Symp. on Information Visualization, Atlanta,
GA, 1995, pp. 82-88.

[AKK 96] Ankers M., Keim D. A., Kriegel H.P.: ‘Circle
Segments: A Technique for Visually Exploring Large

Multidimensional Data Sets’, VISUALIZATION ‘96, HOT

TOPIC SESSION, San Francisco, CA, 1996.
[AWS 92] Ahlberg C., Williamson C., Shneiderman B.:

‘Dynamic Queries for Information Exploration: An
Implementation and Evaluation’, Proc. ACM CHI Int.
Conf. on Human Factors in Computing, Monterey, CA,
1992, pp. 619-626.

[Bed 90] Beddow J.: ‘Shape Coding of Multidimensional
Data on a Mircocomputer Display’, Proc.
Visualization ‘90, San Francisco, CA, 1990, pp. 238-246.

[BEW 95] Becker R. A., Eick S. G., Wills G. J.: ‘Visualizing
Network Data’, IEEE Transactions on Visualizations and
Graphics, Vol. 1, No. 1, 1995, pp. 16-28.

[BMMS 91] Buja A., McDonald J. A., Michalak J.,
Stuetzle W.: ‘Interactive Data Visualization Using
Focusing and Linking’, Proc. Visualization ‘91, San
Diego, CA, 1991, pp. 156-163.

[Eic 99] Stephen G. Eick: Visualizing Multi-dimensional
Data with ADVISOR/2000, Visualinsights, 1999.

[EW 93] Eick S., Wills G. J.: ‘Navigating Large Networks
with Hierarchies’, Proc. Visualization ‘93, San Jose, CA,
1993, pp. 204-210.

[Hao 99] Hao Ming, Dayal Umeshwar, Hsu Meichun,
D'eletto Bob, Becker Jim, ‘A Java-based Visual Mining
Infrastructure and Applications‘, IEEE InfoVis99, San
Francisco, CA. 1999.

[ID 90] Inselberg A., Dimsdale B.: ‘Parallel Coordinates:
A Tool for Visualizing Multi-Dimensional Geometry’,
Proc. Visualization ‘90, San Francisco, CA, 1990,
pp. 361-370.

[Ins 85] Inselberg A.: ‘The Plane with Parallel
Coordinates, Special Issue on Computational Geometry’,
The Visual Computer, Vol. 1, 1985, pp. 69-97.

[KK 94] Keim D. A., Kriegel H. P.:‘VisDB: Database
Exploration using Multidimensional Visualization’,
Computer Graphics & Applications, Sept. 1994,
pp. 40-49.

[KKA 95] Keim D. A., Kriegel H. P., Ankerst M.:
‘Recursive Pattern: A Technique for Visualizing Very
Large Amounts of Data’, Proc. Visualization ‘95, Atlanta,
GA, 1995, pp. 279-286.

[LWW 90] LeBlanc J., Ward M. O., Wittels N.: ‘Exploring
N-Dimensional Databases’, Proc. Visualization ‘90, San
Francisco, CA, 1990, pp. 230-237.

[LRP 95] Lamping J., Rao R., Pirolli P.: ‘A Focus +
Context Technique Based on Hyperbolic Geometry for
Visualizing Large Hierarchies’, Proc. ACM CHI Conf. on
Human Factors in Computing (CHI95), 1995, pp.
401-408.

[PG 88] Pickett R. M., Grinstein G. G.: ‘Iconographic
Displays for Visualizing Multidimensional Data’, Proc.
IEEE Conf. on Systems, Man and Cybernetics, IEEE
Press, Piscataway, NJ, 1988, pp. 514-519.

[RCM 91] Robertson G., Card S., Mackinlay J.: ‘Cone
Trees: Animated 3D Visualizations of Hierarchical
Information’, Proc. ACM CHI Int. Conf. on Human
Factors in Computing, 1991, pp. 189-194.

[SB 94] Sarkar M., Brown M.: ‘Graphical Fisheye Views’,
Communications of the ACM, Vol. 37, No. 12, 1994,
pp. 73-84.

[Shn 92] Shneiderman B.: ‘Tree Visualization with
Treemaps: A 2D Space-Filling Approach’, ACM
Transactions on Graphics, Vol. 11, No. 1, 1992,
pp. 92-99.

