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Abstract  Intuitively, clustering algorithms should work better on the datasets that have well separated 
clusters.  But we found the contrary for the center-based clustering algorithms, including K-Means, K-
Harmonic Means and EM.  We generated 1200 synthetic datasets with varying ratio of inter-cluster variance 
over within-cluster variance, which we call the clustered-ness of the dataset.  We run K-Means, K-Harmonic 
Means and EM on these datasets and found that the ratio of the performance over the global optimum grows 
with increasing clustered-ness.  Dependence of clustering algorithm performance on other parameters -- 
quality of initialization and dimensionality of data -- are also demonstrated. 
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1.0 Introduction 

 
Clustering is one of the principle workhorse techniques in the field of data mining [FPU96], statistical data 
analysis [KR90], data compression and vector quantization [GG92], and many others.  K-Means (KM), first 
developed more than three decades ago [M67], and the Expectation Maximization (EM) with linear mixing 
of Gaussian density function [DLR77] are two of the most popular clustering algorithms.  See [GG92] for 
more complete references on K-Means and [MK97][RW84] on EM.  K-Harmonic Means is another center-
based clustering algorithm, developed by this author [ZHD00][Z00].   The details of each algorithm is 
reviewed in Section 2. 

With guarantee of convergence to only a local optimum, the quality of the converged results, measured 
by the performance function of the algorithm, could be far from the global optimum.  Understanding when 
these algorithms converge to a good local optimum and when they do not is very important to the 
practitioners.  Such understanding may also provide hints on how the algorithms might be improved.     

Let { | 1,..., }iX x i N= = be a dataset with K clusters1 and { | 1,..., }kM m k K= = be a set of K centers to 
mark the location of the clusters.  All three algorithms minimize a function of the following form over M 
(details in Section 2) 
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where d(x,M) measures the “distance” from a data point to the set of centers.  If the global optimum is 
reached, the centers will be positioned in such a way that each data point is close to one of the centers.  
However, these algorithms converge only to local optima of their performance functions.  The “defects” 
seen in the local optima are that some clusters trap more centers than their fair share and other clusters 
attract less or none of their share2.  When this happens, the value of the performance function will be higher 
than the global optimum.  Intuitively, the farther separated the clusters are the more the performance 

                                                      
1  See [TWH00] for how to detect the number of clusters in a dataset. 
2 This picture is most clear when K is set to the correct number of well separated clusters in the dataset.   
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function increases on each of the defects.  The experimental results in Section 3 give a quantitative 
illustration of this relationship.  
 
 
1.1 Quality Ratio of A Local Optimum 

 
We measure the quality of a local optimum by the ratio, which we call quality ratio QR,  of the 
performance value at the local optimum over the global optimum.   Let Mloc be a local optimum,  
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Quality ratio has been used widely in the development of approximate algorithms.  The most widely 

known is the two-times-optimum approximate solution to the Traveling Salesman Problem.  Such a ratio 
can also be used in experimental studies when a good estimation of the global optimum is available.  This 
is the case in this paper with the use of synthetic datasets.  

We found that the average3 quality ratio is a function of an important characteristic of the dataset, 
which we call the clustered-ness of the dataset.    

 
 

1.2 Clustered-ness of A Dataset 
 

For a partition of the dataset, ,kS X⊂  k=1,…,K, the variance of the dataset decomposes into the sum of 
the within partition-variance and the inter-partition variance [DH72], 
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the centroids of kS  and X .  The first term in (3) is exactly the same as the K-Means performance 
function.  Minimizing the first term will match the partitions with the clusters in the dataset.  Then the first 
term is called the within-cluster variance and the second term the inter-cluster variance.  Minimizing the 
within-partition variance is the same as maximizing the ratio of inter-partition variance over the within-
partition variance because the total variance, the summation in (3), remains constant.   We call the ratio the 
K-clustered-ness or simply clustered-ness of the dataset when there is no confusion about K, 
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 The larger the clustered-ness the better separated are the clusters.  It is natural to expect clustering 
algorithms to work better on the datasets that have well separated clusters.  But we found the contrary that 
the quality ratio, QR, grows with increasing clustered-ness of the dataset in our experiments with all three 
algorithms -- the better separated the clusters are in a dataset, the worse on average the algorithm will 
perform, measured by the quality ratio.  The experimental results are presented in Section 3.   
                                                      
3 Average is done over different initializations to the algorithm.  It may also be averaged over different 
datasets with the same (or similar) clustered-ness. 
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The clustered-ness of a dataset depends on K, the number of clusters we look for.  An example is given 

in Figure 1.  The dataset, S, has 8 one-dimensional data points.  The distance between any close pair of 
points is 2 and 1 2 2> >d d .   

 
 
 
 
 
 

Figure 1.  An example: The clustered-ness of a dataset depends on K. 
 
For K=2, the four points on the left is one cluster and the four on the right is another.  For K=4, every 

close pair of points is a cluster.  The clustered-ness' are  
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The following table shows three possible combinations of 2 4/C C :  
d1=8 d2=4 C2=16/5 C4=20 
d1=large d2=4 C2=large C4=large 
d1=2d2 d2=large C2=small C4=large 

 
The fourth combination, C2=large/C4=small, is not possible because 2 4C C<  in this example.  In general 
as K → ∞ , the inter-cluster variance approaches the variance of the dataset and the within-cluster variance 
goes to zero, therefore the clustered-ness of a dataset goes to infinity. 
 

The rest of the paper is organized as follows:  Section 2 introduces three clustering algorithms, K-
Means, (generalized) K-Harmonic Means, and EM.  Section 3 presents the results of the experiments.  
Section 4 concludes the paper. 
  
 
2.0 Center-Based Clustering Algorithms 

 
Among many clustering algorithms, the center-based clustering algorithms stand out on two most important 
aspects – a clearly defined objective function that the algorithm minimizes and a low runtime cost.   The 
time complexity per iteration for all three algorithms is linear in the size of the dataset, N, the number of 
clusters, K, and the dimensionality of data, D.  The number of iterations it takes for the algorithms to 
converge is very insensitive to N, the size of the dataset. 

 
 

2.1 K-Means (or LBG) Algorithm 
 
K-Means’ performance function is the within-partition variance, 
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where kS X⊂  is the subset of x’s that are closer to mk than all other centers (the Voronoi partition).  (6) 
can also be written as 
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K-Means algorithm calculates its centers’ locations in the following iterative steps: 

d2 d2 

d1 
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Step 0:  Initialize the centers in M  
Step 1:  Partition the dataset X into K partitions Sk={x| argmink||x-mk||=k} (Voronoi partition) 
Step 2:  Calculate new mk  as the centroid of Sk 
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Repeat Step 1 and Step 2 until there is no more change to the partitions.  The local optimal K-Means 
converges depends on the initialization of the centers.  Randomly sampling K points from the dataset as the 
initialization of the K centers is commonly used.    

 
 

2.2 K-Median – A Variant of K-Means 
 
Comparing the K-Median algorithm with K-Means, the calculation of the centroids in the Step 2 above is 
replaced by a search algorithm, searching for the location of mk (within the data set) that minimizes the total 
distances from it to all the data points in the partition.  The advantage is the removal of the dependency on 
the geometry of the Euclidian space, which makes K-median meaningful under a metric space.  The 
disadvantage is the O(N2) time-cost of the search comparing with the linear cost of calculating the centroid.  
This makes K-Median about 50 times more expensive in time than K-Means for the datasets of size 2500 
used in all experiments in this paper.  Since we need to run each algorithm on hundreds of datasets, K-
Median’s high cost prevents us from considering it further.  
 
 
2.3 K-Harmonic Means 

 
The performance function of KHMp is defined by: 
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where p > 2.  The quantity under the outer summation in (9) is the harmonic average of the distances from 
data point x to all the centers.  Harmonic average of K numbers is sandwiched by the MIN(), 
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which makes it serving a similar purpose the K-Means’ performance function (7) but leads to an algorithm 
much less sensitive to initialization (see Figure 3 to Figure 5 in Section 3,  or [Z01]). 

Taking partial derivatives of the KHMp’s performance function (9) with respect to the center positions 
mk, k=1,…,K, and set them to zero, we have 
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where di,l  = ||xi – ml||.  “Solving” for the centers from (10), we get the KHMp iterative algorithm: 
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For more details, see [Z00]. 
 
 
2.4 Expectation-Maximization (EM) 

 
We limit ourselves to the EM algorithm with linear mixing of K identical spherical bell-shape (Gaussian 
distribution) functions.  The performance function of EM is the log-likelihood,     
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EM algorithm is a recursive algorithm with the following two steps: 
 
E-Step:    ,
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where p(x|m) is the prior probability with Gaussian distribution, p(ml ) is the mixing probability. 
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where N is the size of the whole data set.  For more details, see [MK97] and the references there.  
  
 
3.0 Experiments 
 
We run all three algorithms -- K-Means, K-Harmonic Means and EM -- on 1200 datasets, with three 
different initializations for each dataset -- bad, better and good.  A total of 10800 individual experiments 
were conducted. 

 
 

3.1 Datasets 
 

We set the size of the datasets N=2500, which is large enough to create non-trivial clusters and small 
enough to be affordable to run many experiments.  We set the number of clusters K=50 and the 
dimensionality D= 2, 5, and 8.  For each dimensionality, we randomly generated 400 datasets, Dataset(i), 
i=1, …, 400, with their clustered-ness uniformly distributed in [0,60].  This range of clustered-ness covers 
from datasets with all clusters overlapping almost completely to datasets with very well separated clusters.  
The following Matlab function is used to generate all the datasets. 

 
function [dataset,centers] = ClusGen(K, N, D, r) 

% K = # clusters, N = #data points, D = dimensionality,  
% r = a parameter to control the within cluster variance/inter-cluster variance. 
%Step 1: Generate cluster centers. 
centers = r * rand(K,D);     
% K center locations are generated and scaled up by the factor r. 
% Step 2: Generate the random sizes of the K clusters. 
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s = 2*rand(K,1)+1; s = round(N*s/sum(s));  N1 = sum(s);  diff = abs(N-N1); 
s(1:diff) = s(1:diff) + sign(N-N1);  % adjust the size so that they add up to N. 
%Step 3: Generate clusters one-by-one. 
for k=1:K 

cluster = randn(s(k),D); % normal distribution.    
       % move the clusters to the kth center location. 
       mean = sum(cluster)/s(k); Sk = repmat(centers(k,:)-mean,s(k),1)+cluster; 
       % merge the cluster into the dataset. 
       dataset = [dataset' Sk']'; 
end;  % of for loop.      
%End of the cluster dataset generator. 
 
 

3.2 Initialization 
 

We use three types of random initializations with each dataset, Init(i,j), j=1, 2, 3, for i=1,…,400.   
Separating initializations into three bins help to reduce the variance on the quality ratio we collect in each 
bin, so that the dependence on the clustered-ness is less interfered by the dependence on initialization, 
which is very strong for K-Means and EM.   Three types of initializations are 

 
Type-1:  Bad -- all 50 centers are initialized to be within a small region relative to the data.   
Type-2:  Better -- all centers are randomly initialized, covering the region of data.  The centers have a 

bigger spread than the data itself.   
Type-3:  Good  -- the centers are initialized to 50 randomly chosen data points from the dataset.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Two samples of each type of initializations are shown here.  Ordered from left to 
right: Type-1, Type-2, and Type-3.  The light yellow backgrounds are the data 
points and the dark blue dots are the initial center locations. 

 
 

3.3 A Common Performance Measure 
 

Each algorithm optimizes its own performance function.  To compare different algorithms under the same 
measure, we use the square-root of K-Means’ performance function to measure the quality of the clusters 
(centers) derived by all algorithms.  We choose K-Means’ performance function because it is more popular, 
more intuitive and simpler than others.  Taking square root is to remove the quadratic behavior of the 
function and restore the linear behavior.  To calculate the quality ratio, the global optimal performance, 
which is measured by the same function, is derived by running K-Means starting from the location of the 
“true” centers of the clusters returned by the ClusGen() function4.   Except for the datasets that has very 
small clustered-ness (below 10), the global optimum we calculated are very good approximations.  

                                                      
4 which is, of course, only an approximation of the true global optimum.   
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To plot the quality ratio as a function of the clustered-ness, we equally partition the clustered-ness 
interval, [0,60], into 12 bins.  The datasets and the experiments on them are also partitioned into 12 groups 
accordingly, Gl, l=1,…,12.  Each group has about 400/12 datasets because the clustered-ness was uniformly 
generated. 

The average and coefficient of standard deviation of the quality ratios in the l-th group under the j-th 
type initialization is calculated as 
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3.4 Results 
 

Each algorithm, K-Means, K-Harmonic Means (p=3) and EM, was run up to 100 iterations on all pairs 
(Dataset(i), Init(i,j)), which is sufficient for the centers to stabilize.  The average quality ratio is plotted 
against the average clustered-ness of the dataset from Figure 3 to Figure 5.  Each Figure has three plots, one 
for each type of initialization.  The scales of the vertical axis are different for different plots.  
Dimensionality of the datasets is 2 in Figure 3, 5 in Figure 4 and 8 in Figure 5.   
 

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Type 1 Initialization: Bad.

0 10 20 30 40 50 60
0

4

8

12

16

20
Type 2 Initialization: Better.

V
er

tic
al

 A
xi

s:
 A

ve
ra

ge
(Q

ua
lit

y_
Ra

tio
 o

r Q
R

)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Horizontal Axis: clusteredness=(Inter-Cluster Variance)/(Within Cluster Variance)

Type 3 Initialization: Good.

1-σ above
EM            
1-σ below
1-σ above
KM            
1-σ below
1-σ above
KHM p=3       
1-σ below

 
Figure 3.  The dependence of clustering algorithm performance on the clustered-ness of the dataset.   

One-sigma (on each side) confidence intervals are printed as dots of the same color. 
The dimensionality of the datasets equals to 2.   For KHM,  p=3. 
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Figure 4.  The dependence of clustering algorithm performance on the clustered-ness of the dataset.   

The dimensionality of the datasets equals to 5.  For KHM, p=3. 
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Figure 5.  The dependence of clustering algorithm performance on the clustered-ness of the dataset.    

The dimensionality of the datasets equals to 8.  For KHM, p=3.5.5 

                                                      
5 As the dimensionality of data become higher, the parameter p in KHM need to be set higher to 

achieve the best result.  It exact relationship between the dimensionality and the best p is not known.  We 
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3.5 An explanation  
 
The almost linear growth of the quality ratio is partially caused by the way the performance is measured.  If 
we compare the local optimum the algorithm converged to with the global optimum, we see that some 
centers are “misplaced” in the local optimum.  Such misplaced centers are either squeezed into a cluster 
that already has one or more centers, or more than one clusters share one center (especially for K-Means) 
and the center is not in any of the clusters.  The better separated the clusters are, the more (linearly) each of 
such defects contributes to the increase of the quality ratio.   
 The quality ratio grows at different rates for different algorithms.  QR’s growth rate also depends on 
the quality of initialization and dimensionality of the data.  This rate reflects the average number and  the 
severity of the defects.   

 
 

3.6 On high dimensional data 
 
From our results in the Section 3, we see that the performance of all three algorithms deteriorates as the 
dimensionality become higher.  This does not prevent us from seeing K-Means, KHM and EM working on 
some high dimensional datasets.  Many such cases have been reported in the literature.  We have run K-
Means and K-Harmonic Means (p=6) on the 1998 KDD-CUP data mining contest dataset [Z01].   
 
 
4.0 Conclusion 
 
We identified a parameter (characteristic) of data that influences of the average performance of the center-
based clustering algorithms.  
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Appendix.  The Tables of Results 
 
We provide the tables of results that were used for the plots in this paper.  These tables are for more 
detailed examination of the results by the reviewers, optional for the final publication. 

 
 
Table 1.  Type 1 Initialization.  Dimension=2. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

7.1 2.70 0.4711 1.42 0.2229 1.41 0.8788
12.1 2.64 0.2827 2.59 0.3792 1.06 0.0358
17.3 4.64 0.3753 3.91 0.3377 1.17 0.0909
21.7 6.85 0.3054 4.93 0.3114 1.28 0.1004
26.4 10.24 0.3596 6.45 0.2718 1.36 0.1276
31.0 12.65 0.4593 7.36 0.3661 1.43 0.1560
36.5 17.53 0.6520 8.58 0.3560 1.67 0.1876
40.9 22.63 0.6297 10.59 0.3948 1.58 0.1539
46.2 31.77 0.6597 13.57 0.2774 1.68 0.1764
50.5 33.86 0.5442 14.90 0.3616 1.75 0.1972
55.6 39.88 0.5029 14.48 0.2985 1.76 0.2334
59.1 45.11 0.5467 17.44 0.3473 1.85 0.2244

 
 
 

Table 2.  Type 2 Initialization.  Dimension=2. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

7.1 1.72 0.2874 1.26 0.1803 1.01 0.0139
12.1 1.95 0.1622 1.95 0.1527 1.07 0.0401
17.3 3.21 0.2166 3.03 0.1682 1.15 0.0642
21.7 4.46 0.1863 3.77 0.1635 1.21 0.0934
26.4 6.00 0.1869 4.55 0.1492 1.31 0.0711
31.0 7.91 0.3478 5.46 0.1669 1.35 0.1121
36.5 9.90 0.2514 6.91 0.1698 1.52 0.1455
40.9 12.50 0.1521 7.44 0.1407 1.59 0.1401
46.2 14.97 0.1641 8.77 0.1629 1.59 0.1781
50.5 17.79 0.2328 9.60 0.1500 1.66 0.1495
55.6 20.44 0.1998 10.66 0.1196 1.78 0.1299
59.1 23.06 0.2220 11.39 0.1719 1.96 0.2253
 
 
 

http://www-stat.stanford.edu/~tibs/research.html
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Table 3.  Type 3 Initialization.  Dimension=2. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

7.1 1.84 0.4072 1.02 0.0249 1.01 0.0101
12.1 1.47 0.1823 1.12 0.0777 1.06 0.0371
17.3 1.75 0.1916 1.36 0.1228 1.15 0.0730
21.7 1.97 0.1630 1.56 0.1556 1.22 0.0863
26.4 2.47 0.2541 1.88 0.1599 1.33 0.1225
31.0 2.80 0.2444 2.21 0.1921 1.36 0.1039
36.5 3.40 0.2207 2.63 0.1916 1.46 0.1149
40.9 3.85 0.2612 2.91 0.1635 1.57 0.1564
46.2 5.41 0.2628 3.58 0.2075 1.66 0.1871
50.5 5.53 0.3212 3.49 0.1920 1.69 0.1666
55.6 6.81 0.2111 4.11 0.2411 1.68 0.1619
59.1 6.63 0.2638 4.20 0.1636 1.93 0.1924
 
Table 4.  Type 1 Initialization.  Dimension=5. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.3 3.33 0.3625 1.59 0.4073 1.32 0.2599
8.6 7.59 0.2661 4.24 0.2677 1.24 0.3333

13.9 14.53 0.3906 7.19 0.1802 1.21 0.1221
19.5 23.14 0.4055 10.80 0.1876 1.38 0.4337
23.8 32.13 0.4240 12.45 0.1864 1.29 0.2209
29.2 40.94 0.3704 15.60 0.1686 1.66 0.9640
33.5 52.43 0.2856 18.15 0.1454 1.37 0.2547
39.0 69.59 0.2081 21.21 0.1514 1.69 0.7107
44.0 82.64 0.1844 25.40 0.1751 2.64 1.8518
48.9 93.66 0.1601 28.10 0.1295 2.24 1.4712
54.2 95.74 0.2217 28.99 0.1590 1.99 0.9088
58.3 112.60 0.0797 32.06 0.0972 1.60 0.3862
 
Table 5.  Type 2 Initialization.  Dimension=5. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.3 2.43 0.1341 1.30 0.2606 1.13 0.0804
8.6 3.89 0.1823 2.77 0.1993 1.19 0.0805

13.9 8.22 0.2312 4.91 0.1592 1.25 0.1292
19.5 16.37 0.1182 6.80 0.1055 1.26 0.1597
23.8 24.32 0.3043 8.68 0.1378 1.29 0.2109
29.2 37.17 0.3501 10.24 0.1185 1.47 0.2835
33.5 52.29 0.3151 11.94 0.1117 1.47 0.2435
39.0 68.56 0.2470 14.25 0.1074 1.39 0.2711
44.0 86.36 0.1514 16.46 0.0970 1.51 0.3474
48.9 94.14 0.1696 18.41 0.1366 1.56 0.3580
54.2 105.51 0.1325 20.12 0.1228 1.81 0.4519
58.3 112.66 0.1132 21.55 0.0870 2.30 0.5285
 
 
 
 
 
 
 
 
 

Table 6.  Type 3 Initialization.  Dimension=5. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.3 2.61 0.1671 1.11 0.1333 1.13 0.0770
8.6 3.47 0.1763 1.79 0.1492 1.22 0.0838

13.9 5.45 0.1519 2.94 0.1445 1.19 0.1080
19.5 7.64 0.1564 4.03 0.1670 1.22 0.1984
23.8 9.06 0.1311 4.79 0.1475 1.30 0.2084
29.2 11.77 0.1143 6.14 0.1832 1.49 0.2653
33.5 12.66 0.0835 7.32 0.1359 1.41 0.1939
39.0 14.63 0.1013 8.12 0.1373 1.46 0.2982
44.0 16.39 0.0790 9.23 0.0997 1.63 0.3323
48.9 17.56 0.1485 9.92 0.1786 1.56 0.2711
54.2 20.34 0.1124 11.39 0.1584 1.76 0.3835
58.3 22.29 0.0954 12.06 0.1252 2.12 0.6567

 
Table 7.  Type 1 Initialization.  Dimension=8. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.6 3.62 0.4449 2.24 0.4690 3.54 0.4460
8.6 9.39 0.4209 5.51 0.1502 7.98 0.0811

12.6 17.82 0.4390 8.19 0.1917 11.88 0.1266
18.8 34.85 0.1956 12.25 0.1281 17.26 0.1159
23.8 47.61 0.1095 15.86 0.1093 21.82 0.0816
28.1 56.47 0.0876 18.40 0.0927 25.72 0.0805
33.6 66.86 0.1005 22.41 0.1205 31.07 0.0767
38.1 76.44 0.0677 25.91 0.1134 34.45 0.0934
42.7 86.60 0.0422 29.32 0.1284 39.33 0.0812
46.9 95.21 0.0407 32.33 0.1501 43.73 0.0995
52.3 106.32 0.0401 35.56 0.0940 47.91 0.0779
56.9 114.17 0.0332 38.69 0.0782 51.61 0.0782

 
Table 8.  Type 2 Initialization.  Dimension=8. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.6 2.44 0.2580 1.51 0.3048 1.53 0.2272
8.6 4.53 0.1815 3.13 0.1205 1.26 0.1346

12.6 10.11 0.2209 4.66 0.1649 1.32 0.2515
18.8 28.90 0.3713 7.05 0.1256 1.37 0.2715
23.8 46.53 0.1587 8.61 0.1198 1.39 0.3302
28.1 56.89 0.0646 10.06 0.1239 1.42 0.4529
33.6 67.65 0.0503 12.77 0.1256 1.59 0.5065
38.1 75.98 0.0979 13.99 0.1226 1.73 0.6002
42.7 86.60 0.0422 16.71 0.1046 2.08 0.5097
46.9 95.21 0.0407 18.02 0.1112 2.44 0.6311
52.3 106.32 0.0401 20.30 0.0877 2.06 0.6302
56.9 114.17 0.0332 22.55 0.1050 1.91 0.6473
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Table 9.  Type 3 Initialization.  Dimension=8. 

 EM K-Means 
K-Harmonic 

Means 
Avg. 

C 
Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

Avg. 
QR 

Coef. 
Std. 

3.6 2.71 0.2857 1.31 0.2358 1.39 0.1106
8.6 4.62 0.1472 2.39 0.1212 1.31 0.2010

12.6 6.38 0.1368 3.43 0.1332 1.27 0.2214
18.8 9.22 0.1117 5.31 0.1660 1.31 0.2459
23.8 11.36 0.0925 6.38 0.1292 1.43 0.3594
28.1 13.30 0.1157 7.68 0.1387 1.36 0.3979
33.6 15.81 0.0914 9.29 0.1472 1.44 0.5697
38.1 18.10 0.0846 10.39 0.1074 1.50 0.4793
42.7 20.25 0.1036 12.43 0.1205 1.55 0.6534
46.9 22.75 0.0971 13.29 0.1143 1.68 0.6273
52.3 25.23 0.0791 15.13 0.1237 1.93 0.6942
56.9 27.08 0.0908 15.76 0.0970 2.48 0.8813
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