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Abstract
Future systems have been characterized as ubiquitous, perva-
sive, and invisible. They will consist of devices that are diverse
in size, performance, and power consumption. Some of these
devices will be mobile, posing additional requirements to sys-
tem software and applications. The focus will move from tech-
nology to deployment and ease of use of services.
Consequently, traditional paradigms for reasoning about,
designing, and implementing software systems and services
will no longer be sufficient.

We believe that this future vision will rely on a three-tier infra-
structure consisting of back-end servers, infrastructure serv-
ers, and front-end clients (mobile or static, handheld or
embedded). The critical question for future systems will be
how to deliver services on-demand from back-end servers to
resource-constrained clients. If we can handle the new
requirements of these systems, we can enable this computing
infrastructure to offer significantly more services to users in a
more pervasive way.

1 Introduction

The future of computing has been painted by many
visionaries. It was coined as ubiquitous computing by
Mark Weiser [31], and D.A. Norman introduced invisi-
ble computing [22]. IBM promotes pervasive computing
[11], Sybase calls it mobile embedded computing [28],
and Sun uses the term Post-PC era [27]. HP Labs’ vision
is presented in CoolTown [14]. Several umbrella
projects in major universities are also exploring these
topics, such as Aura at CMU [21], Portolano at the Uni-
versity of Washington [7], Endeavour at Berkeley [10],
and Oxygen at MIT [6]. The government is investigat-
ing Ubiquitous Computing [4] and Composable High
Assurance Trusted Systems [5]. Finally, there are
numerous startups in this area, such as StreamTheory
[26], Transvirtual [29], and WordWalla [32].

Common to most of these visions are the ideas of blend-
ing computers into the infrastructure and providing user-
friendly services to non-expert users. The center of
gravity is moving from technology to users and services.
Mobile and wireless are becoming common rather than
the exception. Connectivity and bandwidth are improv-
ing, approaching 5-20Mbps for 4G networks in 2005.
We believe that the focus of future technology will be in
the intersection of the Internet, on-line services, and
mobile wireless communication. The environment will
consist of globally distributed high-end servers hosting

services (e.g., Oceanstore [15]), mid-point servers cach-
ing and otherwise complementing service delivery to
clients (e.g., Akamai), and a variety of client devices.

Under services, we assume a variety of applications and
underlying support (description, look-up, storing state,
etc.). Examples include traditional desktop applications,
enterprise applications (e.g., project management,
expense reporting), personal information management,
and various vertical market applications, such as retail,
health care, financial, entertainment, and travel.

We are investigating a Pervasive Services Infrastructure
(PSI—Ψ in Greek) for delivering Internet services to
(wireless) users. The Ψ vision is “Any service to any
client (anytime, anywhere)”. We envision that in the
future it will be possible to deliver services to clients on
their mobile, handheld devices in the same way as it is
possible at the desktop today. In addition to the tradi-
tional challenges of mobile computing [25], we believe
that the biggest challenges of this environment are in
adapting services to diverse client devices and in deliv-
ering services to clients.

Most devices are resource-constrained compared to
desktop systems. They differ in many ways, such as user
interfaces, CPU, memory size, and power constraints,
all of which will require some form of adaptation of the
service delivery. We are investigating how offloading
parts of applications to mid-point servers can enable and
enhance service execution on a resource-constrained
device. Dynamic delivery of services to devices is
required to eliminate the need for pre-installed services,
to enable the downloading of dynamically composed
services, and to support system evolution. For Ψ, client
devices and infrastructure act as caches for delivering
services from back-end servers, thereby improving the
performance of remote access.

The rest of the document is organized as follows. Sec-
tion 2 discusses adaptive offloaded services. Services-
on-Demand is described in Section 3. In Section 4, we
present some initial results. In Section 5, we compare
our project to related work. We summarize the paper
and present future work in Section 6.

2 Adaptive Offloaded Services

Pervasive systems bring a proliferation of devices and
infrastructure with differing capabilities and capacities.



We believe the scale and diversity will lead to several
problems in supporting services on these devices. Con-
sider Personal Digital Assistants (PDAs). While funda-
mentally doing the same task, specifications have varied
greatly: color screens, faster processors, memory capac-
ities. Providing even a simple service to these similar
devices presents a complex task for the software manu-
facturer who must provide software for the lowest com-
mon denominator or must provide separate versions.
When computing is pervasive or multiple services are
run simultaneously, this problem becomes more acute.

We believe such device limitations can be relieved when
devices are universally networked. Instead of hitting
resource constraints when supporting a service, other
parts of the infrastructure could cooperate to offload
parts of the service from devices. However, offloading
services in a networked environment is difficult,
because the available device resources and each device’s
location may change dynamically. Therefore, we believe
that if services are to best exploit this environment, they
will also need to adapt to changes in it.

Scalability also poses interesting problems when pro-
viding services to so many devices. With just three to
five networked devices per user and several million
users, the problem of running complex services such as
multimedia or interactive services can easily outgrow a
single central server cluster. Proxy caches and compa-
nies such as Akamai have shown that a multi-tier
approach can be used for data to overcome this problem
of scale. We believe that service provision can similarly
benefit by a multi-tier approach for caching and execu-
tion, allowing service offloading into the infrastructure.

To illustrate our vision, consider using a PDA to edit a
digital photograph sent to you by URL. This poses a
problem for your device, because despite having a color
screen there is little spare capacity. Yet, you would like
to edit the photograph even if you cannot fully execute
an editing application, such as Adobe Photoshop.
Instead, the device’s runtime uses its understanding of
the service, its surrounding devices, and back-end serv-
ers to allow the device access to the service, indepen-
dent of the limitations of the device. For example, the
main execution may be performed on a nearby server
leaving the device to handle performance sensitive oper-
ations and I/O (see Figure 1). A more capable device
might run the main execution and user interface, and use
the server to hold swapped memory and to perform
intensive image processing.

We believe that dividing service responsibility can be
achieved by borrowing resources from mid-point serv-
ers (e.g., memory swapping), or by constructing the ser-
vice from multiple components that are placed and

executed separately. Services developed in composi-
tional frameworks are therefore good candidates for our
vision. Unfortunately, except for very coarse granular-
ity, few services have been constructed this way. How-
ever, we believe that some automatic decomposition
may be possible using additional system support in
modular systems (e.g., Java).

We believe that infrastructure support for service off-
loading and adaptivity will allow scalable, high-perfor-
mance services for a multitude of differing devices in a
mobile environment. However, several questions will
have to be answered. What service framework require-
ments would be needed for such distributed execution?
Can existing services be automatically split and effi-
ciently placed? Can placement be performed transpar-
ently or should services and runtimes interact? Can
services be performant and scalable when distributed
across a multi-tier environment? Can service offloading
effectively cope with the widely varying characteristics
of different devices? Can users roam and still effectively
obtain service? What if the service infrastructure
decides to migrate parts of the service onto another
node, or there are communication errors? If operation is
not transparent, it may be necessary to do a service-spe-
cific cleanup, such as closing temporary files or restart-
ing, requiring extra application code.

Initially, we will investigate the division, placement, and
execution and of support for services. We will manually
divide a service’s storage and execution across a three-
tier environment (server, mid-point and client) to study
the performance and scalability effects of distributed
execution with an educated split. At the same time, we
will examine the characteristics of services (active
memory footprint/access patterns, execution paths) to
determine whether manual or automatic splitting is
appropriate for services. Using these results, we will
investigate the effect of roaming in such an environment
and the effects of placing the same service on alternative
resource-constrained devices.

3 Services-on-Demand

It is becoming increasingly important to provide ser-
vices-on-demand with minimal support from users. In
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Figure 1 Adaptive Offloaded Services



general, users will be less computer savvy and will want
to focus on using services, not administering them.
Users will connect to the Internet with a wide variety of
devices running a diverse collection of system software
(operating systems). Many services will become avail-
able and will be updated frequently. Users will want to
access their preferred services and environments from
any location and any device.

These trends call for a new system software infrastruc-
ture to support services-on-demand. In this approach, no
“a priori” service installation will be required. Instead,
desired services will be dynamically located and
retrieved, perhaps with service brokers, based on avail-
able resources. A trust framework will be needed so that
services with an appropriate level of trust can be
obtained, and services with different levels of trust can
work together. Appropriate billing models will have to
be integrated into the infrastructure so that clients can be
dynamically billed for the services they use. Because
user devices will have volatile storage, user environ-
ments and data will have to be securely and persistently
stored on storage servers, with support for privacy and
integrity. Services, user environments, and data will
have to be enabled and loaded on a user's device wher-
ever the user is located, even if the user is moving. The
infrastructure should also support disconnected opera-
tion for services that can operate in that manner.

Consider the following scenario. While listening to the
news, you hear about a new financial service that makes
it possible to simulate some investment model. You con-
nect to the internet, request the service, and start it. The
service might also be located by type from a look-up
service provided by a service broker. As opposed to a
Web-server-based service running remotely, the service
may run partially or entirely on your device. This is sim-
ilar to Java applets. In reality, the service can be any
type of Java software, and it will be seamlessly installed
(or cached) on your device, if it fits. Otherwise, it will
be offloaded to a support server.

Assume that the service saves simulation results as files.
Your data is managed by a storage provider, and the files
are transparently updated there, at reconnection time if
required. You decide to move and will either carry your
PDA or use another device at your destination (hotel,
airport, etc.). When you log in on this new device, you
will provide a user key to the storage provider. The ser-
vice will be downloaded (if it is not already cached), and
your private files and environment will be retrieved (see
Figure 2).

Achieving these goals poses several fundamental chal-
lenges. How should device resources be characterized
(primary and secondary storage, user interface, periph-

erals, etc.), and how should service resource require-
ments be characterized? How can services be acquired
and composed with appropriate levels of trust? What
service look-up strategies make sense, and how should
users be billed for services? What service-dependent
reconciliation strategies can be used for disconnected
operation?

Our plan is to first build a simple prototype for the Java
Virtual Machine to investigate performance. Switching
to system software that noticeably degrades perfor-
mance is unacceptable. We want to determine the real
cost of using a virtual machine and downloading ser-
vices-on-demand, and to see how much caching helps.
We will experiment with the infrastructure devices that
are small, portable, resource-constrained, and JVM-
enabled. In the long term, we will investigate resource
characterization and disconnected operation, and pro-
vide a security and trust framework.

4 Preliminary Performance Measurements

To investigate service offloading, we explored the bene-
fit of offloading parts of the Java runtime libraries. We
used jPure [3] on top of the Pure OS [1]. We compared
the EmbeddedCaffeineMark benchmark on a variety of
JVMs and Java-to-native compiler-based solutions with
a static offloading of the runtime libraries using jPure.
Table 1 illustrates that a fixed offloading of runtime
libraries can offer a footprint/performance trade-off.
Because jPure is a distributed system, its memory is dis-
tributed on a client and server.

Next, to determine the dynamic behavior of such Java
executions, we modified Kaffe to record the thread and
heap pages (4kB) touched for each 10,000 bytecodes
executed. Figure 3 indicates that for a 1538-page heap

Internet
Secured Storage

Provider

Service broker

ASP

ASP

Day 1, John in Sydney

Day 2, John in Montreal

InternetInternet
Secured Storage

Provider

Service broker

ASP

ASP

Day 1, John in Sydney

Day 2, John in Montreal

Figure 2 Services-on-Demand Infrastructure

Table 1 Java Execution Environment Comparison

Java environment vs
consumption & score

Total initial memory
consumption (KB)

CaffeineMark
overall score

kB per
score point

Sun JDK 1.3 (JIT) 7476 1828 4.1
IBM JDK 1.3 (JIT) 8212 5155 1.6
GCJ-Linux 2.95 1416 3109 0.5
jPure (client+server) 312+800 2167 0.5



with between 125 and 225 pages of live objects only
between 6 and 70 pages are actually accessed. This sim-
ple example indicates that there are possibilities for
dynamic offloading of memory for services, because for
very few pages are actively used at the same time.

To investigate the cost of downloading services on
demand, a prototype system was instrumented to mea-
sure the elapsed time until a service is ready. Table 2
shows the performance of various service classes,
ordered by download size. All services are downloaded
from servers outside of the HP intranet. The reference is
measured when the service is fully cached. The down-
load overhead is only incurred when the service is first
used. The relative performance (in addition to reference
time) is measured uncached for three connection types:

• Intranet within HP (with Web proxy side effects).

• Wavelan connected to the HP intranet.

• Dialup telephone line.

These preliminary results indicate that, on a reasonable
network link of the future, the overhead of downloading
and installing services on demand is relatively small (a
couple of seconds). Even for large applications that can
be compressed in the JAR format, performance is not
unreasonable. However, we can see that for this applica-
tion (mail) the code size is only 300KB leaving the rest
as documentation and graphics. A service-on-demand
version of this application might download these sup-
plemental items incrementally or they may be cached to
avoid noticeable delays. Overall, these results point
towards the suitability of Java applications coupled with
a good infrastructure to effectively present services on
demand without adversely affecting performance.

5 Related Work

Due to limited space, we do not discuss related work in
detail; instead we just compare it with our project. In
addition, we omit some of related work, such as Rover
[12], Coda [19], and GAIA [24].

The Odyssey project defines a software platform for
application-aware adaptation of diverse mobile applica-
tions [21]. This approach considers agile applications in
varying fidelities, adapting to system variations, e.g., in
network bandwidth. Our work takes a similar view to
adaptability applied to services and the system. We are
interested in adaptability in a different scope, such as
adaptability using computation and storage placement.

The Ninja project (as well as earlier work by Fox [8])
investigates a software infrastructure for next generation
Internet services [10]. Services are designed to be com-
posable, customizable, and accessible from a variety of
device types. The service components can be executed
closer to the client to enable transcoding. Our approach
takes locality of computation further by considering
mid-point servers as locations for computation and stor-
age used by service providers and service clients. In
addition, our focus is on offloading services rather than
altering service fidelity as with proxy transcoding.

The Oxygen project studies software environments for
composable applications and systems [6]. Their
approach is to use abstraction, specification, persistent
storage, and transactions to support change through
adaptation and customization. The Portolano projects
(Active Fabric and ARCaDE) focus on service provi-
sioning for self-organizing, mobile, composable ser-
vices; service migration; and automatic service
management [7]. Oxygen and Portolano take an active
networks approach. We instead consider the computa-
tion and storage in the infrastructure to be temporary
service caches, with services ultimately originating from
back-end service providers.

To support nomadic users, HPL’s CoolTown project
offers a model based on a convergence of Web technol-
ogy, wireless networks, and portable devices [14]. Cool-
Town attempts to bridge physical and virtual worlds,
whereas Ψ addresses resources and services. CoolTown
addresses location dependency and connectivity, while
Ψ emphasizes deployment and disconnection.

There are also related industrial standards. Universal
Description, Discovery, and Integration (UDDI) is a
specification that defines a way to publish and discover
information about services [30]. Open Services Gate-
way Initiative (OSGi) explores Java platform indepen-
dence and dynamic code-loading for small-memory
devices [23]. Ψ can benefit from either standard.

Table 2 Services-on-Demand (SoD) Loading Overhead

Service Local
Loading (s)

SoD Loading (s) Loaded URLs Java Class

Intranet Wave Dialup Cnt Size (B) Cnt Size (B)

calculator 0.1 ~0 +0.1 +4.7 2 9520 2 9520

calendar 0.2 ~0 +0.4 +4.7 4 12952 4 12952

editor 0.2 ~0 +0.3 +5.2 7 15885 7 15885

game 0.2 ~0 +0.3 +6.1 9 18739 9 18739

agenda 0.2 +0.1 +0.7 +8.4 1 35360 12 59846

ftp 0.6 +2.1 +3.2 +20.9 3 107725 22 142155

mail 2.5 +2.7 +15.1 +129.4 1 675046 138 365574

Figure 3 The Java heap page working set of ‘Hello World’
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6 Summary and Future Work

We presented our vision of a pervasive services infra-
structure. In particular, we addressed the two technolo-
gies required to achieve our vision: adapting services to
execute on resource-constrained devices and installing
services on demand. We believe that both are required to
achieve ubiquitous systems. We also presented prelimi-
nary results indicating the benefits of offloading and
downloading services. If the Ψ vision can be achieved,
it may be possible to offer today's desktop services to a
variety of resource-constrained devices in a mobile
environment.

We are also interested in investigating service composi-
tion. Promising techniques in this area are component-
based computing [20] and aspect-oriented programming
[13]. The ideal service would consist of a number of
components glued together, and would separate place-
ment and configuration from the core functionality, such
as in Regis [18]. The service component boundaries
would provide points for switching between local and
remote execution control of the infrastructure runtime.
Java RMI/JavaBeans, Puppeteer [16], and CANS [9] are
other examples of component-based systems. Aspect-
oriented programming takes a similar approach [13]. A
tool called the aspect weaver can be used to connect the
components with the implementations of their technical
aspects. The result is a loose coupling, which leads to a
high degree of configurability at either compile- or run-
time. Examples include D [17] and work by Becker [2].
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