

Context Authentication Using
Constrained Channels

Tim Kindberg, Kan Zhang
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2001-84
April 2nd , 2001*

E-mail: timothy@hpl.hp.com, kzhang@hpl.hp.com

context-aware
computing,
location-based
computing,
security,
authentication

This paper presents a paradigm shift from conventional
authentication—of a principal's identity—to authentication of
parameters that characterise a principal's context. Location, in
particular, is a highly significant contextual parameter. It is
one that features in what are known as mobile, ubiquitous,
pervasive and nomadic computing systems. We present a
model of context authentication based on the characteristics of
communication channels. As an example, we present protocols
for location authentication that are based on physical channel
characteristics. We conclude with a summary and discussion of
the work.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1

Context authentication using constrained channels
Tim Kindberg & Kan Zhang

Internet and Mobile Systems Laboratory
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304, USA

timothy@hpl.hp.com, kzhang@hpl.hp.com

Abstract

This paper presents a paradigm shift from conventional
authenticationof a principal's identityto
authentication of parameters that characterise a
principal's context. Location, in particular, is a highly
significant contextual parameter. It is one that features
in what are known as mobile, ubiquitous, pervasive and
nomadic computing systems. We present a model of
context authentication based on the characteristics of
communication channels. As an example, we present
protocols for location authentication that are based on
physical channel characteristics. We conclude with a
summary and discussion of the work.

1 Introduction

This paper describes a model and protocols for context
authentication: authentication of a principal's status in
a certain context; in particular, its physical location.
This work is part of the CoolTown project [1,2,3,4],
which is investigating 'nomadic' computing systems:
ones in which users, carrying wirelessly connected
devices, enter places and use local services associated
with those places, as well as remote services.

Conventional authentication protocols establish the
identity of a principal p based upon the premise that
only p possesses some secret K. What is really proved
is possession of K, and the association between p and K
is a given that lies outside the protocol.

However, in some circumstances we are interested in
the characteristics of a principal's context, such as their
location, in addition to or instead of their identity. For
example:

1. To attract customers, the Kardomah Coffee House
wishes to provide a service S only to those who
are, or who have recently been, on their premises.

2. The President of Coolania wishes to take calls on
the Red Phone only from those who are physically
inside the inner sanctum of Hotria's centre of
government.

3. A computer that provides a service inside a
company's headquarters is to cease to operate if
taken outside the building.

4. A public 'kiosk' computer in an airport is to erase
its memory if the user, who has downloaded
personal data onto it, walks away for more than T
seconds.

5. Only users who click an 'I agree' button on a
certain web page with certain contentsi.e. users
who visit that virtual locationare to be provided
with service S.

6. A government document is not to be accessible
before January 1st, 2002.

We can consider a principal's context to be
characterised by a set of contextual predicates, such as
'the location of p is the Kardomah cafe', 'the date of p's
action is 2002/1/1 or later', 'the temperature in p's
environment is 15C or more'. To authenticate such a
contextual predicate φ for a principal p is to verify
securely that φ (p).

In particular, we wish to know that the principal who
issues a given request message satisfies φ. For
example, we may require that a principal that requests
a service is in a certain location, or exists within some
particular interval of time. We shall show how
communication channels can be the trusted artifacts
that verify contextual predicates as they apply to
communicating principals.

Section 2 outlines related work. Section 3 presents a
model that captures the essential features of context
authentication in terms of constructs called constrained
communication channels. Section 4 demonstrates the
application of the model to the particular case of
authenticating a principal's location. Section 5
concludes.

2 Related work

Context-awareness has been identified as a key issue in
nomadic computing with location being the most
prominent contextual parameter [4, 5, 8]. Contextual
data are usually collected via sensing technologies,
e.g., GPS and the Active Badge [5]. However, to our
knowledge, very little has been published on
authenticating contextual data. Many sensing-based
approaches are intrinsically difficult for use in
authentication. For example, in the Active Badge

2

system the badges are easily separable from the owner.
The outputs of conventional (code correlating and
differential) GPS receivers can be easily forged since
there is no way to tell whether they were actually
calculated by a GPS receiver. To make forgery
difficult, Denning, et al. [6] introduced location
signature sensors (LSS) to compute a location signature
from the microwave signals transmitted by the GPS
satellites. Location signatures are hard to forge since
GPS observations are unpredictable. However, this
system is vulnerable if an attacker is able to record the
GPS satellite signals and re-assemble the aggregate
signal with the appropriate delays for the location he is
trying to spoof. Moreover, there is commercially
available test equipment to simulate GPS satellites,
which transmit a signal appropriate for any location
entered into them.

Location or distance information has been found useful
in designing cryptographic protocols. For example, the
so-called “mafia frauds” [9] against identification
protocols work when a fraudulent prover is able to use
an honest verifier as an oracle without them noticing it.
Knowing the physical distance between the prover and
the verifier can prevent a fraudulent prover from using
a distant honest prover. Brands and Chaum [10]
introduced a distance-bounding technique to determine
an upper-bound on the distance between two
communicating parties by timing the delay between
sending out a challenge bit and receiving back the
corresponding response bit. They showed how to
integrate their technique into common identification
protocols and also some three-party protocols.

We are continuing from the work of Caswell and
Debaty, also within the CoolTown project [4]. Caswell
and Debaty introduced the idea of “establishing a
user’s presence by proving proximity to a known
reference point within a place”. They went on to
present a timestamp-based protocol for location
authentication. A short-range wireless beacon is used
to emit a time-varying token for location
authentication. A shortcoming of this approach is that
the clocks of the beacon and the authenticator have to
be synchronised to avoid replay attacks.

In this work, we are interested in a general model of
context authentication without assuming a particular
technology. As an instantiation of our model, we will
present some new location authentication protocols that
do not use time.

3 The model

We are interested in channels that implement a
contextual constraint: ones that allow us to make
inferences about the context of sending or receiving
principals. In this section, we first define such channels
and then show how they can be realised.

Any one-way channel c has message send and receive
operations as follows:

m = c.receive()
c.send(m).

We denote the principals that perform those operations
for a uniquely identified message m as receiver(m) and
sender(m), respectively.

A constrained channel is a one-way communication
channel that is either send-constrained or receive-
constrained or both (Figure 1):

send-constrained channel scφ on the predicate φ:
if m = scφ.receive() then φ (sender(m)).

receive-constrained channel rcφ on the predicate φ:
φ(receiver(m)) for any message m appearing in an
operation rcφ.send(m).

These definitions capture some properties established
by conventional security protocols. For example,
consider two principals connected by a Transport Layer
Security (TLS) connection [7], who send and receive
clear-text messages that are encrypted and decrypted
by the connection. Then that channel is both send-
constrained and receive-constrained on the predicate
'possesses secret key K' for some K negotiated by the
TLS protocol.

But constrained channels are designed to capture a
much wider class of contextual predicates: any that can
be established by construction of suitable hardware and
software systems. Among the possibilities, an
important example is a channel that imposes
constraints upon the location of the communicating
parties at one or other end of the channel.

The telephone system
The telephone system provides a simple example of
constrained channelsat least, assuming that we were
to trust certain aspects of its implementation. First, it
provides receive-constrained channels on predicates of
the form 'is in the location L'. If a principal wishes to
impart some information to any principal who is in a
particular place, they can do so by knowing the

S

φ(p)

¬φ(p)

φ(p)

¬φ(p)

R

scφ

rcφ

Figure 1. Send-constrained and receive-constrained
channels

3

appropriate number to dial for a telephone fixed in the
place. Assuming that we trust the integrity of the
system, anyone who answers and receives that message
is near to the phone. (In films, this is a technique
favoured by kidnappers arranging to pick up a ransom
payment!)

Caller-id provides us with send-constrained channels
on predicates of the form 'is in the location L'. The user
of a telephone may choose to answer only calls that
originate from a specified telephone numberin
particular, one that is wired in a fixed location. The
user plus the phone system together implement a send-
constrained channel.

3.1 Implementing constrained channels
The telephone system shows how we can exploit a
channel with appropriate mechanical characteristics.
Our telephone examples assume that the series of links
and logic circuits connecting one telephone to another
is proof against tampering, and that telephone circuits
are not physically moved. That type of assumption is
more likely to hold reliably in the case of short-range
wired links in physically secured environments.

Other physical characteristics of communication
channels also enable us to construct constrained
channels: the speed of signal propagation and the
decrease in signal strength as it propagates.

Constrained propagation
One way of establishing location information is to use
network time-of-flight. In principle, with sufficiently
accurate instrumentation and knowledge of real-time
system parameters, we can use round-trip times to
bound the location of a network node. To gauge a
bound on the distance to node M, node N sends a 1-bit
message to it, which M is to return to N immediately. If
the speed of signal propagation is c then, if M can
return the message to node N in time t < (l + 2d/c), it is
within a distance d of N, where l is the total
communication latency imposed by software and
hardware.

We can also employ wireless network segments whose
range (the distance over which messages may
effectively propagate) is bounded. This includes radio
(e.g. bluetooth or 802.11), with a range of 10cm-1km;
infrared (IR), with a range of 10cm-10m; and
ultrasound, up to 10m in range.

Radio permeates walls, in general, so its reach often
does not match the physical territory that we think of as
a distinct location. IR [3, 5] and ultrasound [8], on the
other hand, have the useful property that walls tend to
attenuate their signals to a negligible level.

We may combine several short-range transmitters, if
necessary (see Figure 2). Transmitters can be placed so
as to cover (most of) a place such as a room, without it
being practically possible to receive their signals from
anywhere outside that place.

In principle, an attacker that has an arbitrarily powerful
transmitter or an arbitrarily sensitive receiver may be
able to flout what are normally considered to be the
limits of wireless technologies. However, we can make
it reasonably difficult for an attacker to do so. For
example, we can control line-of-sight access to thwart
directional antennae, and use highly attenuating
materials.

3.2 Constrained channels as building blocks
We can use constrained channels as building blocks for
making further constrained channels. We do so by
inserting a proxy between two constrained channels;
and by running a protocol that turns a send-constrained
channel into a receive-constrained channel, or vice
versa.

A channel proxy P is a process that connects exactly
two one-way channels c1 and c2. We denote the
complex of the proxy and two channels as c1.P.c2. The
channel proxy receives messages from channel c1 and
selectively forwards the messages on to channel c2. For
each message it receives, it may either discard or
forward it, possibly after a delay but without modifying
it. The proxy may only send messages that it has
received.

The complex C = c1.P.c2 behaves as a (possibly lossy)
channel, if we identify C.send ≡ c1.send, and C.receive
≡ c2. receive.

One particular configuration in which we are interested
is where a channel proxy P is connected to a channel
that is send-constrained on the predicate 'sender is P'.
We shall denote that channel as sc(P). Similarly, we
can consider a proxy whose input side is a channel that
is receive-constrained on the predicate 'receiver is P'.
We shall denote that channel as rc(P).

Appending channels
We can construct new send-constrained or receive-
constrained channels from others, as follows.

Figure 2. A room covered (mostly) by three
IR beacons, which do not penetrate walls.

4

If scφ is a send-constrained channel on the predicate φ,
then so is the channel C = scφ.P.sc(P) (see Figure 3).
To verify this, we must show that all senders of a
message received from C satisfy φ. C.receive(m) means
sc(P).receive(m). That implies, by the definition of
sc(P), that P sent m. But P can only send what it
receives, so m arrives through an operation
scφ.receive(). Therefore, φ(sender(m)).

Similarly, we can create a new receive-constrained
channel from a receive-constrained channel and a
channel proxy. If rcφ is a receive-constrained channel
on the predicate φ, then so is the channel C =
rc(P).P.rcφ. We must show that all receivers of the
message outside C satisfy φ. If m is sent on C then it is
sent on rc(P). Therefore, by definition, only P receives
it. Since P may only forward m along rcφ, we have that
φ (receiver(m))if P forwards m.

Channel proxies and contextual parameters
The simplest type of channel proxy forwards all the
messages it receives. But we are free to use channel
proxies that delay or discard messages.

By delaying messages, proxies can implement temporal
constraints: a proxy could delay all messages until
midnight 1/1/2002.

Another type of proxy decides whether to discard or
forward messages based upon some property of a
context. Suppose that, for Tim to access the Kan filing
cabinet service, (a) he must be present in Kan's office
and (b) Kan must also be present (so that he can
observe Tim's activities). Kan installs a proxy in his
office that uses a wireless network to detect the
presence of users in the office. When Tim sends a
message to the filing cabinet service on that channel,
the proxy knows that Tim is present. But it holds onto
the message until it can establish, using the same
wireless channel, that Kan is also present. If so, it
forwards the request. Otherwise, it discards it.

In general, we can construct channel proxies that can
independently evaluate a contextual predicate ψ that
applies to any principal p such that φ(p). For example,
it could be a proxy that measures the set of people in a
room or the temperature in the room. Employing an
input channel that is send-constrained on φ, we can use
the proxy to implement a channel constrained on φ∧ψ.

Reversing channels
Let rcφ be a receive-constrained channel on the
predicate φ. We shall show how to construct a channel
s(rcφ), which is send-constrained on φ.

We use a trusted node N. When it receives a message
m, it uses the receive-constrained channel to return to
the sender a signed hash sig{h(m)}.

Let c be any (possibly unconstrained) channel
connecting the parties that we wish to be able to
communicate. We construct s(rcφ) from c and N. The
rules for sending and receiving on s(rcφ) are as follows:

To send m on s(rcφ):

send m to N
receive sig{h(m)} from N over rcφ

send <m, sig{h(m)}> on c.

To receive m on s(rcφ):

receive <m, h> on c
verify h = sig{h(m)}
Discard m if verification fails, else receive m.

In a similar fashion, we can implement a receive-
constrained channel from a send-constrained channel.
All messages are sent (over any channel) to a trusted
node, which stores them. Receivers must use a
particular send-constrained channel to reach that node,
which responds with the next message for them.

4 Location authentication protocols

In the preceding, we developed a model of constrained
channels and outlined how they can be constructed
from components with appropriate physical
characteristics, and from other constrained channels.
We now look more closely at protocols for the
particular case of location authentication, filling in the
more important details that are necessary for practical
purposes.

A location authentication protocol enables an
authenticator to verify their own location or the
location of another principal. The statement 'principal p
is at location L' can be seen as a contextual predicate,
which we denote λL(p). As we have discussed earlier, a
send- or receive-constrained channel can be used to
authenticate contextual properties of the principal who
uses the channel. If we can find a receive-constrained
channel or a send-constrained channel on the predicate
λL(p), we can design location authentication protocols
by requiring the principal in question to communicate
over the constrained channel.

Note that location authentication is different from
location identification, where the aim is to determine a
principal’s location, e.g., using a GPS system. In a
location authentication problem, the location of the
principal in question is asserted; the task is to find out
whether the assertion is true.

S
φ(p)

¬φ(p)

P
sc(P)scφ

S

Figure 3. A channel proxy interposed to
construct a new send-constrained channel.

5

In this section, we shall introduce several location
authentication protocols based on constrained
communication channels. As we stated above, there are
many short-range communication technologies that can
be used to implement constrained communication
channels for location authentication, with various
degrees of precision. For example, a Bluetooth radio or
an IR transceiver can be used as either a receive- or a
send-constrained channel.

The basic idea of our approach to authenticating a
principal’s location is to employ a challenge-response
protocol. The authenticator can choose a nonce and
either ask the principal in question to send it back to
the authenticator over a send-constrained channel; or
send the nonce to the principal in question over a
receive-constrained channel and check if the principal
has received it.

If the authenticator has direct access to a physically
constrained (e.g. range-bounded) channel, that is, if the
authenticator is located inside location L, it is trivial to
implement location authentication. For example, the
authenticator can send a nonce using a Bluetooth
transceiver located at L and check if the principal
receives it. If the principal is actually within the range
of the Bluetooth transceiver, he/she should be able to
receive the data from the Bluetooth transceiver. Here,
the Bluetooth radio link is used as a receive-
constrained channel.

What we are interested in is the more general case
where the authenticator does not have direct access to a
physically constrained communication channel at
location L, i.e. the authenticator is remote from location
L. In such a case, we need to use a trusted channel
proxy to connect the authenticator with the constrained
channel or to turn a local constrained channel into a
remote constrained channel. We outlined such
protocols in Section 3.2. In the following, we give
more detailed protocols for this general case.

Before we describe the protocols, we should clarify one
assumption we make about our constrained channels.
That is 'whoever uses a physically constrained channel
must be physically located within the transmission
range of that channel'. It is conceivable that our
protocols can be defeated by an attacker who sends an
agent to the place of the constrained channel and uses
the agent to relay the communication between the
attacker and the constrained channel. Such an attack
works unless the underlying communication system
allows sufficiently accurate measurement of the
response time to find out if a message has traveled
'extra' miles. This is not generally feasible on the
Internet.

But there are many cases where it is either difficult or
not worthwhile to send an agent or put a relaying
device at the place of interest. For example, to use a
relaying device means that the attacker has to put it

there beforehand but the whereabouts of 'there' is often
unforeseeable. In these cases, it is safe to make the
assumption that whoever communicates with the
constrained channel at a certain location is physically
there. In this sense, we are providing reasonable
solutions for some practical problems. Finally, we want
to point out that it does not mean that the model we
presented earlier is flawed. It only means we need
some assumptions about the physical world to get the
desired constrained channels.

4.1 The telephone protocol
This protocol uses a receive-constrained channel for
location authentication. The principals in our telephone
protocol are the following (see Figure 4):

• A server S

• A channel proxy PL

• A client C

Server S wants to verify that client C is at a certain
location Lthat is, that λL(C)before providing
services. Channel proxy PL is a process (device) that
connects securely to the send-end of a channel rcλL at
location L that is receive-constrained on λL. Channel
proxy PL shares a secret key KSP with S and is trusted
by S to behave correctly. Channel rcλL could be a
network whose physical reach is limited to L, such as
one or more wireless LANs or infrared beacons. The
constrained channel is such that data may be received
from the channel only if the receiver is physically
inside location L.

The goal of the telephone protocol is for S to verify that
λL(sender(R)), where R is a service request and L is the
asserted location of C = sender(R). The protocol
proceeds as follows (we use the standard notation
{M}K for the encryption of M with key K):

(1) C → S: C, R, L

(2) S → PL: {C, N}K, {K}KSP
/* N is a nonce and K is a randomly chosen
session key */

SC

channel proxy

client target service

rcλL

location L

KSPPL

Figure 4. System model for telephone protocol

6

(3) PL → C: C, N
/* broadcast over receive-constrained channel
rcλL */

(4) C → S: C, R, N
/* S checks whether the received N is equal to the
N sent to PL */

In Step (2), the message sent is an encryption of {C, N}
using key KSP. Session key K is used to defend against
known-plaintext attacks on KSP. Since only PL knows
KSP, only PL can receive {C, N}. Hence, the protocol
effectively set up a receive-constrained channel rc(PL)
on the predicate 'receiver is PL' between S and PL. (see
Section 3.2). Moreover, Step (2) and (3) together can
be viewed as a single step in which S sends {C, N} to C
over the aggregated receive-constrained channel
rc(PL).PL. rcλL.

We call this the 'telephone protocol' because a
telephone could, in principle, serve to implement rcλL
(it rings and C must answer it to prove his presence in
L).

Our protocol does not address issues of identity
authentication or anonymity. Those are important for
nomadic computing systems but they are orthogonal to
our current purposes.

4.2 The private telephone protocol
The above telephone protocol does not protect client
C’s privacy since {C, N} sent in Step (3) may be
broadcast to all receivers located in L, e.g., over a
Bluetooth link. An eavesdropper could pick up {C, N}
and learn about C’s identity. Suppose we have the
same principals and the same set-up as in the telephone
protocol, except that, for privacy reasons, C and S
share an encrypted channel. We can protect client C’s
identity by using the following private telephone
protocol:

(1) C → S: C, R, L, N1
/* N1 is a nonce generated by C */

(2) S → PL: {N1, N2}K, {K}KSP
/* K is a randomly chosen session key and N2 is a
nonce generated by S */

(3) PL → C: N1, N2
/* broadcast over receive-constrained channel
rcλL */

(4) C → S: C, R, N2
/* S checks if the received N2 is equal to the N2
sent to PL */

This protocol is similar to the telephone protocol. The
difference is that a random identifier (N1) is used to
protect the identity of client C.

4.3 The offline protocol
The above two protocols assume that S and PL can
communicate in real-time. In cases where this is not

true, we can use an 'offline' protocol to achieve our
goal.

We assume the same principals and the same set-up as
in the telephone protocol except that S and PL cannot
communicate directly (although they do share a secret
key KSP). The offline protocol follows:

(1) C → S: C, R, L

(2) S → C: {N1}KSP, {N1⊗N2}KSP
/* N1, N2 are nonces; '⊗' denotes the exclusive-or
operation */

(3) C → PL: {N1}KSP, {N1⊗N2}KSP

(4) PL → C: {N2}KSP
/* sent over receive-constrained channel rcλL */

(5) C → S: C, R, {N2}KSP
/* S checks whether the received N2 is equal to the
N2 sent in Step (2) */

Since PL is the only party (except S) that can compute
{N2}KSP from {{N1}KSP, {N1⊗N2}KSP}, the fact that C
can show the correct {N2}KSP means that C is able to
receive it from the receive-constrained channel rcλL.
Therefore, it verifies that C is at location L. Note that
no nonce is sent in the clear, thus we avoid known-
plaintext attacks.

In Step (4), C receives {N2}KSP over a receive-
constrained channel rcλL. However, if we view Steps
(3) and (4) combined as the precondition for Step (5),
the protocol is effectively turning a receive-constrained
channel from PL to C into an aggregated send-
constrained channel from C to Sas we outlined in
Section 3.2.

This protocol can be implemented transparently for a
standard web browser. Suppose a client’s browser C
contacts a web server S for services in Step (1). The
response coming back from S in Step (2) includes an
HTTP redirection pointing to a local channel proxy PL.
Similarly, the response from PL in Step (4) includes
another HTTP redirection pointing back to S. Hence,
the browser can be transparently directed to contact PL
for authenticating its location.

4.4 The self-verification protocol
Interestingly, a constrained channel can be used to
verify a principal’s own location. In the case of a
receive-constrained channel, a principal can send a
message to a receive-constrained channel rcλL for
location L and check if he can receive the same
message from this channel. The principal has to know
how to send a message to rcλL but the self-verification
protocol itself is trivial once the receive-constrained
channel is available. The difficulty lies in how to
construct rcλL so that its guarantees are securely
implemented.

Alternatively, a principal can send a message to a local
send-constrained channel scλL at location L and check if

7

the same message can be received from scλL. Again the
self-verification protocol itself is trivial once the send-
constrained channel is available.

A real-life example arises from using the fixed-line
telephone system (again, assuming that that system
were to be sufficiently secure). If a user knows the
telephone number of the fixed phone located at a
certain place, the user can check if they are in that
place by calling that number using, for example, a
mobile phone and seeing whether the phone at their
current location rings. In this way, they are using the
fixed-line telephone system as a receive-constrained
channel.

Alternatively, the user can employ the fixed-line
telephone system as a send-constrained channel by
calling their mobile phone from the fixed phone at their
current location. The user checks whether the caller-id
shown on the mobile phone matches the phone number
of the place whose verification is in question.

5 Conclusion

We have described a model of send- and receive-
constrained channels for context authentication. We
have shown how to construct simple examples of
constrained channels on location predicates. For this
purpose, we use physical communication channels that
are subject to mechanical or signal propagation
constraints.

We further showed how, by inserting channel proxies,
we can 'lengthen' channels constrained on location
predicates. Moreover, proxies enable us to broaden
channel constraints to temporal and other contextual
predicates. We showed how to construct send-
constrained channels from receive- constrained
channels and vice versa.

Finally, we gave practical protocols for location
authentication, including one that protects clients'
privacy. We outlined how components can use similar
protocols to authenticate their own location.

Applicability
In Section 1, we listed six problems that exemplify the
types of context authentication in which we are
interested. The first four are examples of location
authentication; the third and fourth involve self-
verification of location (a computer inside a building, a
kiosk near to a human carrying a short-range radio
transceiver). We have shown how to achieve those
types of authentication in Section 4.

The fifth asks us to authenticate that a principal is in a
certain 'virtual location'. That problem falls under the
techniques we have given for physical location. A
server can place a nonce on the web page, of which the
client (who must 'visit the URL') must demonstrate
knowledge.

The final example illustrates a temporal predicate. We
have shown how to use a channel proxy to achieve that.

Status
We are engaged in an implementation of a location
authentication protocol for CoolTown places. Users
with handheld devices running standard web browsers
will be able to prove their presence in, for example, a
coffee shop or bookshop, and thus obtain privileged
services such as printing-on-the-go, or a discount.

In this paper, we have contributed a new
abstractionthe send- or receive-constrained
channelto help us formulate a notion of context
authentication that can be realised. We have given
protocols for some simple cases involving location,
based on assumptions about signal propagation. It
remains to show the true practicality of implementing a
location authentication system in a real situation, and
extending the work to a broader notion of context
beyond toy examples such as time, to complex notions
of, for example, user-presence.

References
[1] John Barton & Tim Kindberg (2001). “The

challenges and opportunities of integrating the
physical world and networked systems”. HPL
Technical report HPL-2001-18, available as
http://www.champignon.net/TimKindberg/Mobi
comChallengeAsTR.pdf.

[2] Tim Kindberg & John Barton (2001). “A Web-
Based Nomadic Computing System”. To appear,
Computer Networks, Elsevier. Available as
http://www.cooltown.hp.com/papers/nomadic/n
omadic.htm.

[3] Tim Kindberg et al. (2000). “People, Places,
Things: Web Presence for the Real World”. In
proceedings WMCSA2000. Available as
http://www.cooltown.hp.com/papers/webpres/-
webpresence.htm.

[4] Debbie Caswell & Philippe Debaty (2000).
“Creating web representations for places”.
Proceedings Handheld and Ubiquitous
Computing 2000, Springer, pp. 114-126.
Available as http://www.cooltown.hp.com/
papers/placeman/placesHUC2000.pdf.

[5] R. Want, A. Hopper, V. Falcao, and J. Gibbons
(1992). “The active badge location system”.
ACM Transactions on Information Systems, vol.
10, pp. 91-102.

[6] Dorothy E. Denning and Peter F. MacDoran
(1996). “Location-Based Authentication:
Grounding Cyberspace for Better Security”. In
Computer Fraud & Security, February.
Available as http://www.cosc.georgetown.edu/
~denning/infosec/Grounding.txt.

8

[7] T. Dierks and C. Allen (1999). “Transport Layer
Security”. RFC 2246. www.ietf.org.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward, P.
Webster. “The Anatomy of a Context-Aware
Application”. Proc. 5th Annual ACM/IEEE Int’l
Conf. on Mobile Computing and Networking,
Seattle, Washington, USA, August 1999, pp. 59-
68.

[9] Y. Desmedt. “Major security problems with the
‘unforgeable’ (Feige)-Fiat-Shamir proofs of
identity and how to overcome them,”
SecuriCom’88, SEDEP Paris, 1988, pp 15-17.

[10] S. Brands and D. Chaum, “Distance-Bounding
Protocols,” Proc. EUROCRYPT '93, Lecture
Notes in Computer Science, no. 765, Springer-
Verlag, pp. 344-359.

