HEWLETT
[/ cacianc
Current Technologies for Device Independence

Mark H. Butler

Publishing Systems and Solutions Laboratory
HP Laboratories Bristol

HPL-2001-83

April 4t/ 2001*

world-wide web, Increasing numbers of users want to access web content from

mobile, XML, devices such as WAP phones or PDA's. Creating content for

device each device would be expensive and time consuming. This

independent, report provides a survey of current technologies related to the

adaptation creation of device independent web content and web
applications.

* Internal Accession Date Only Approved for External Publication

o) Copyright Hewlett-Packard Company 2001

Current Technologies for Device |ndependence Page 2

I 1o 17 [F e (o o PP TOU R RUPRPRTURN 3
2 B 1 Y o= TP RR TR 3
3 Specifying Device CapabilitieS.........cccoiuiie i 4
31 HTTPRequest Header Fields.o 4
3.2 CC/PP Composite Capability Preferences Profile..........cccoveeeiiciiiee i 5
3.3 WAP UAPROF ...ttt ettt sttt sttt et e e anb e e e sabee e 5
B SYNCML i e s raeeeanres 6
35 Universd PlUgand Playccoovviiiiiiiee e 7

/R T o U 07 0D === o1 o 1 [0 SR 7
41 Printed MediaLangUaOEScccocuveeeiiiieee e iiiee e estee e e s e s se e saee e e sree e sree e 7
4.2 WYSIWY G Document Preparation.............ueeeeeceuveeeeeiscinieeeeeessieeeeessssnesesssnnreens 8
43 Web Oriented LanNQUBOESccoicuveeeiiiieeeeiiieeeeiiee e e sseteeessnseeessnseeeesnsaeesseeesnneenns 8
44 ElectroniC PUDIICEIONScueieiiiie ettt 9
44.1 DOCHOOK ...t e e e 9
4.4.2 P bbb be e saeeane 9
4.4.3 Open Electronic BOOK FOMUMccoviiiieiiiee e e e csiee e seee e e 9

45 Congtraint-Based LayOULc.ceeeiveeeiiiieeiies sieeesieeessteeesnsenessnees srneeeessnnnneees 10

LS o= | o 11 1 S 11
6 WED APPIICAIONS. ...ceiiiiiieeiiiee e cciiie et s st e s e et r e st e e e srtee e e s sntee e e snreeesnnseees 12
L2 A O] PO PP OU PP PPPR 13
B.2 SEIVIELS. ...ttt 13
6.3 Embedded SCripting LanQUBOgESuvveirreereeiiireessiieeessiieeesssieeeesnnreeessseeeeens 14
6.4 TemMpPlaE LaNQUAKEScccoicueeeeiiiiee ettt ettt e ettt e e st e e s st e e s snbae e e snbae e s snneeee e e 14
6.5 SesIoNBased LanQUagEScc.veveiiiiiiieiiiie et siee st 15
6.6 FOrM Based LanQUEOEScoeeiiuieeeeiiieeeeriiee e e siiee e e s itee e s siaee e s snvee e e sntaeessnneeee e e 15
6.7 Userinterface Based LangUagEScccoiiuiiiieeiiiiieeeesisiieeeesssiieeeeessnrieeesssninnnnnes 16
6.8 COMPONENTISALIONeeiieiiiiieeieieee et iee e et e e e e e e s ree e e s sbee e e s sabee e e snbeeeesnseeeeens 17
6.9 ATCHITECIUIES ...t 17
6.10 XML TransformMation...........ccueeiiureeiiiie ettt s 18
6.11 XML / XSLT ArChItECIUIES.....eeeivieee ettt ettt et cenareeae e 19

7 Other APPrOBCNES. ...c.tietieitee ettt b ettt e b e be e sbe e sae e san e 21
% R 1 7= 115 & oo [o TSRO OPRPRTPRO 21
£ N V- 1 1€ LR 22
7.3 WED ClIPPING. ettt ettt sttt et e bbb i sree b 23
T AN o B o 1)1 SR 24
75 PHPHAWHANW LIDrarycccoooeiiieieiiee e 24
T8 XHTML /T CSS .ottt ettt ettt e st e e snae e sneeas 24

8 CONCIUSIONS ...ttt ettt e e sa e e et e e e nbe e e saneesnbeeens 25
S I 1 0o L= PP 26

Current Technologies for Device |ndependence Page 3

1 Introduction

Due to device proliferation, content providers can no longer ddiver one verson of ther
content to the user as they need to deliver an appropriate form of content depending on the
capabilities of the viewing device. Reauthoring content, in order to support different markup
languages or the different capabilities of each device, is clearly impractical wheress providing
content for a single device or browser excludes large numbers of users. This report
investigates how we can address these problems by providing device independent content. It
provides a comprehensive survey of exigting technologies organized in the Framework shown
inFigure L

< Other approaches Devices

Technologies

03/04/2001 - v36

Accessibility

4 Device capabilities

<=Web applications Document description >

Figure 1 - Existing technology for deviceindependence

2 Devices

Users want to view Internet content and use web applications on a variety of devices
including PCs, dectronic book readers, PDAS, phones, interactive TVsS, voice browsers,
printers and embedded devices such as cameras. A useful simmary of typica variations in
device cgpabilitiesis shown in Figure 2

Native code

Application language Java

~_Intermediate Code Q
otNet

Devices
08/03/2001 - v23 23

Browser language

Processor

Figure2- Variationsin Device Capabilities

When the device uses content it receives it n the form of multimedia objects, application
languages or browser languages (shown on the right hand of Figure 2). Current devices
support a variety of different content types partly determined by their underlying hardware

Current Technologies for Device |ndependence Page 4

capabilities (shown on the left hand side of Figure 2). In order to support device independence
we must be able to deliver content in a format compatible with a device. For example if a
handheld device can read GIF images but not JPEG images it is necessary to convert one
format to another. In addition the content must reflect the underlying hardware capabilities of
the device so we may need to do some additional image processing if the target device can
only display four level grey scae output.

3 Specifying Device Capabilities

Currently there are three different places adaptation can take place as shown in Figure 3: the
sarver, the proxy and the client browser. There are examples of al three architectures. server
based (Cocoon, Axkit), proxy based (AvantGg Padm Web Clipping) and client based
(XHTML / CSS). These examples will be discussed in later sections. If adaptation occurs at
the server or the proxy, these entities will need to know something about the capabilities of
the dlient. They will either need a unique identifier for the client device so they can retrieve a
capability specification from arepository or they will need the capability specification itsdlf.

Adapted
Server Based Server content Client
Adaptation Capability
[4-specification
requests
Adapted
——content—» —
Proxy Based Server Pro content Client
Adaptation Xy Capability
<—requests— <speC|f|cat|on—,
requests
. ——content—»
Client Based .
Adaptation Server Client
P [¢—requests—

Figure 3- Adaptation Types

Currently, servers and proxies can determine the identity of a particular device using the
request header fied in the HTTP protocol. In addition there are four aternative proposed
capability specification schemes: the W3C composite capability / preferences profile
(CC/PP), the WAP User Agent Profile (UAPROF) standard, the SyncML Device Information
standard (DevInf) and the Universd Plug and Play Standard (UPnP).

3.1 HTTP Request Header Fields

User agents (web clients) identify themsalves when they send requests to web servers'. Thisis
done primarily for satistical purposes and the tracing of protocol violations but does support
the automated recognition of user agents. For example early Netscape products generate User-
Agent gtringsthat look like this:

Mozillal/4.04 (X11; |; SunCS 5.4 sun4dm

Where the user agent string has the following syntax:

Browser / version(platform; security-level; OS or-CPU description)

Ideally, devices should reved more information about their capabilities and preferences than
this. There have been attempts to extend the request header format but this has not occurred in

Current Technologies for Device |ndependence Page 5

a dandardized way. For example Netscape request headers contain a proprietary language
specification; certain proxies append proprietary information to the request header.

Using the user-agent string to perform content adaptation has caused problems. Early on in
the development of the web, webmasters used the user-agent string to determine whether to
send frames to a browser. These sites would only send frames to browsers that identified
themsdves as "Mozilla' as this was the first browser with frames support. Consequently
Microsoft made their browser clam to be Mozilla because that was the only way to let their
users view framed web pages. Clearly if we do provide specific content for a device, we need
to make sure the device or browser can override that if necessary.

3.2 CC/PP Composite Capability Preferences Profile

The Composite Capability / Preferences Profile (CC/PP) standard? is being created by the
W3C. CC/PP is a comprehensive method for communicating the capabilities of devices such
as clients, proxies, gateways and caches as well as resources such as documents. CC/PP is
based on the Resource Description Framework (RDF)®, another standard created by the W3C.
RDF was origindly intended for describing web pages so that they are more easly indexed
and understood by search engines. In RDF dl entities are described as resources and consist
of a resource name, a resource property and an attribute. These resources areorganized in
components to form a schema CC/PP is not a specific vocabulary for specifying device
capabilities. Rather it is a generic language for condructing such vocabularies. Example
vocabularies have been demonstrated for:

Print and display devices describing the device identifier, the screen Sze in characters
and pixds, the MIME types, the character set and the colour paette available.

User agent headers describing, the termina hardware e.g. CPU, screen size, the termind
software e.g. OS Name, OS Version, OS Vendor and the browser e.g. type, name, version
and the MIME types it accepts.

Proxy servers describing the MIME types it accepts on behdf of the client, the MIME
types it transforms on behalf of the client and the MIME types it rgects on behaf of the
client.

Currently CC/PP fails to address two of the key problems concerning device independence:
firgly it does not provide a standard vocabulary for web clients to communicate their
cgpabilities to servers. Secondly it does not describe the type of transformations and
customisations that servers are expected to perform on the behalf of devices based on ther
capahilities. These problems are beyond the scope of the CC/PP working group but they must
be addressed in order for CC/PP to be of practical use.

3.3 WAP UAPROF

The WAP User Agent Profile (UAPROF)* is a standard being developed by the WAP Forum.
It is intended that future WAP devices will use it to communicate their capabilities to a server.
It is a CC/PP application so it addresses the first problem highlighted in the previous section
i.e. provides a standard vocabulary for WAP clients to communicate their capabilities to
servers. However it is not ided as it would be preferable to have a single vocabulary for dl
web clients rather than just WAP devices. The current UAPROF specification does not
address the second problem highlighted in the previous section mainly how servers or proxies
should use the information supplied by clients using the UAPROF-.

Interestingly WAP UAPROF consders five different categories of device capability as shown
in Figure 3: software, hardware, browser, network and WAP. This means the server can adapt
to the capabilities of the network as wdll as the capabilities of the device

Current Technologies for Device |ndependence

AcceptDownloadableSoftware

AudiolnputEncode

Page 6

DownloadableSoftwareSuppo BitsPerPixel
JVMversion ColorCapable
CPU

Mexe Classmark
MexeSpec
OSName
OSVendo
OSVersio
RecipientAppAgen

Software

Image Capable
InputCharSet
Keyvooarda
MaxScreenChar
Model

Hardware " outputCharSet

PointingResolution

SoftwareNumbe

VideolnputEncode

ScreenSize

ScreenSizeChar
SoftKeysCapable
SoundQutputCapable
TextinputCapable

BrowserName

BrowserVersio
CCPPaccept

CCPPaccept-charset \\

CCPPaccept-encoding “

UAProf

26/02/2001 - v12

Yendor

\ gicelnp apable
CCPPaccept-language \\|

DownloadableBrowserApps

: Browser MapDeviceClass

WAPPushMsgPriority
WAPPushMsqgSize
WAPVersion
WMLDeckSize
WMLScriptLibraries

FramesCapable
HTMLVersion
JavaScriptVersio

PreferenceForFrame
TablesCapable
XHTMLversio#
XHTMLModule

WML ScriptVersion
WMLVersion
WTAILibraries
WTAVersion

CurrentBearerService

SecuritySupport Network

SupportedBeare

Figure 4- The WAPUAPROF Specification

3.4 SyncML

The SyncML initigive® aims to develop a common synchronisation protocol for data between
mobile devices such as phones, PDAS, desktop PCs and servers. Devices such as phones only
support a limited number of applications. for example most have an address book and some
have diaries. SyncML can be used to synchronise entries used in these applications, but could
be used for potentialy any file type. The intention is to make SyncML interoperable across a
wide variety of transport protocols such as HTTP, WSP (the WAP session protocol) and
OBEX (the Bluetooth / IrDA / USB transmission protocol).

When two devices undergo a synchronisation, if they have not synchronised before they have
to exchange a description of their capabilities. This is done usng the SyncML Device
Information (Devinf) standard. Instead of implementing Devinf as a CC/PP vocabulary it has
been implemented directly usng XML. This choice is unfortunate as CC/PP has been
developed expresdy to implement standards like Devinf. The Devinf device description
comes in a four parts as shown in Figure 5: the device, the content types it can accept, its
datastore and any extensions it supports. Like CC/PP, it uses MIME types in order to express
the content types that can be transmitted and received by a device.

Current Technologies for Device |ndependence Page 7

reference URI for local datastore

device

datastore

Devinf
02/03/2001 - v35 ko

T ——.

content type transmitted by device >
referred content received by device

enumerated value of propel
parameters content capabilities

size of a proj or parameter
display name
data

extensions

value of extension
€element

Figure5- SyncM L Devlnf Specification

Devinf is purely concerned with the logicd structure of application data. This is fine for
phone book or diary entries, but the SyncML requirements do describe use cases involving
the exchange of documents such as presentations. This would require exchange of
information about the presentation capabilities of a device.

3.5 Universal Plug and Play

Universa Plug and Play® is an interconnectivity standard being proposed by Microsoft. It is
amed at device independent interconnection rather than device independent content but does
overlap with CC/PP. Like CC/PP, UPnP uses XML in order to provide a generd way of
describing device capabilities rather than specifying vocabularies as it is expected that this
will be done by device manufacturers. There are a number of example device descriptions
such as a CD-Player’ and a Web-enabled camerd. Interestingly, UPnP proposes that XSL as
well as XML can be used so that the parent device can manipulate the device description in
different ways, for example displaying device capability information as well as controlling
device parameters.

4 Document Description

4.1 Printed Media Languages

Document language processors like Troff’, TexX™, LaTex", and Lout” are designed to
produce paginated, hard copy documents. Some of them describe the logica structureof a
document e.g. headings, sections, paragraphs, figures etc. In documents the logical structure
is diginct from the physical dructure i.e. the size of text, the width of margins. Document
processors convert logica structure to physical structure automaticaly during document
processing. For example LaTeX uses dgorithms to try to determine the optimum breaking of
sentences in order to form paragraphs, the optimum placement and breaking of paragraphs in
relation to pages and the optimum placement of floating objects in relation to where they are
referenced. Parameters controlling the physicd structure of the document can be inherited
from templates for document styles or from specific instructions in the document. Document
style templates are created for a specific type of media i.e. A4, letter or dides. Therefore in
theory reformatting the document for a different media type should just reguire changing the
document style template. However because authors typically add instructions controlling the
physica structure directly to the document, changing the media will aso generdly requires
changes to the document. Although these languages try primarily to capture logica structure,

Current Technologies for Device |ndependence Page 8

the resulting documents often fail to separate the logicad and physica structures of the
document so are tied to specific output media

Documents written in these languages can be digtributed eectronicaly by taking the output of
the language processor and converting it to an eectronic digtribution format eg. PDF or
HTML via a different document processor such as Latex2HTML®. This takes the logical
structure of the document and converts it to HTML so web browsers can read it. Often though
HTML converters do not render the document exactly as the author envisoned so it may be
necessary to dter ether the input document or the output HTML in order to obtain the
required results.

4.2 WYSIWYG Document Preparation

As computers have increased in performance, users have moved away from using document
description languages to usng WYSIWYG (What You See Is What You Get) document
preparation systems such as Microsoft Word. These systems are simpler for naive users as
they do not require the user to learn the syntax of the language. Also, the user can see what
the fina document will look like as they edit it. Unfortunately they alow users to edit both
the logical and physical structure of the document. As users may be unsure of the difference,
they often add physica structure information when redlly they mean to add logica structure
information e.g. changing a font size as opposed to selecting some text as being a header. This
means that compared to document description languages, documents are hard to reformat for
other media types. Converters do exist for turning documents to PDF or HTML, athough the
HTML conversion is less than ided.

4.3 Web Oriented Languages

The World Wide Web was origindly envisoned as being a means of dlowing multiple,
heterogeneous clients to retrieve and display documents in a common language. HTML
concentrates on logical document layout e.g. headers, titles and paragraphs for this reason.
Increesingly though, many HTML pages contain physicadl document layout infarmation
meaning that pages are not compatible with al web clients. This has occurred for a number of
reasons. Firgly designers who use the web were frustrated with the amount of physica
document layout control available in HTML so they found ways of "subverting® HTML
elements in order to perform tasks they were never intended to. For example tables are often
used to achieve effects such as multiple column page layout. Secondly HTML browsers
added support for physicd layout tags such as the font tag to HTML in order to increase the
variety of layout available on their browser. HTML authors have then adopted these tags and
HTML has been forced to adopt physica layout as well as logica layout tags™. Thirdly
WYSWYG editors have become available for HTML which alow HTML authors to make
the same migtake as with WYSIWYG documents i.e. specifying physical document layout
when they should be specifying logica document layout and viceversa. In some cases the
editing tools themselves use physica layout in preference to logica layout. Some pages are 0
browser dependent it is not uncommon to see them displaying a "best viewed in browser x"
logo or "best displayed at resolution X" logo™.

The W3C is aware of these problems so has severd activities amed at resolving them. Firdtly
they have proposed that the physical structure description of pages should be separated from
the page and placed in a Stylesheet’® In this way different devices and media can be
accommodated using different stylesheets, in a similar way to different document templates
for printed media languages. The W3C aso has an accessibility activity™” which recognizes
that content authors, browser creators and editing tool cregtors al have a part to play in
ensuring the web is device independent. This accessibility activity will be discussed in more
depth inlBa later section. Findly they have crested a revised verson of HTML cdled
XHTML™.

Current Technologies for Device |ndependence Page 9

4.4 Electronic Publications

Currently there are three mgor standard formats for eectronic publications. Docbook, PDF
and the Open E-Book (OEB) Forum specification.

441 Docbook

Although it is possible to convert document layout languages or WY SIWY G documentsin to
HTML, or HTML documents into a form suitable for printing, the converted document is
never as good as if the document had been produced for that media from scratch. It is possible
to modify the results of trandation programs by hand but this means the changes have to be
applied every time the document is updated in the master format. Therefore there is a need for
a document layout language aimed at text only eectronic, web and hard copy media
Dochook ™ is a popular set of tags for describing books, articles and other prose documents,
paticularly technicd documentation. It can annotate documents in quite a rich way; for
example it can digtinguish between screen shots and diagrams. It is defined using SGML and
XML and has been used in the Linux Documentation project’. There are transformations for
producing HTML or PDF from the XML version of Docbook using XSLT.

The origind LinuxDoc format and another language called Laite™ also alows the crestion of
documents targeted at text, HTML and PDF output. Docbook has now replaced LinuxDoc.
Latteislesswell known than Docbook and has a TeX like syntax rather than an XML syntax.

442 PDF

PDF? is an dectronic document distribution format developed by Adobe to replace
Postscript. Whereas Postscript was a full programming language, PDF is a page description
format. This means PDF code is generdly smpler, more consstent and predictable than
Postscript. PDF dso has the advantage that it is page independent meaning individua pages
can be rendered without having to interpret the whole document specification. It uses vectors
as opposed to bit maps, which means it scales well and can render high quality documents.

PDF is amed primarily a capturing the documents appearance rather that its structure. This
has a number of advantages. PDF is easy to cregte. It is better at typography and presentation
than OEB, as it can render documents so they are identica to printed media. It is effective for
technica publishing and foreign languages as it is possible to include non-standard characters
in the document, therefore ensuring the reader can render them correctly. PDF also has a
number of disadvantages. The format is controlled by Adobe and is proprietary. It only works
well if the document is formatted for the device it is displayed on so if you have a PDA
device, you are going to have difficulty reading documents formatted for A4 without
excessive scrolling and zooming. It is not possible to extract the document structure and text
from the PDF document, which means certain processng and searching operations are
difficult. Finally PDF files dso contain little structurd information that can make searching or
navigating them difficult.

4.4.3 Open Electronic Book Forum

The Open Electronic Book Forum® tries to set devices for electronic book readers and
eectronic book content. The OEB standard tries to capture document structure rather than
appearance. OEB is based on XML and comes in two flavours. basic OEB is based on an
XML compliant version of HTML 4.0 and can use CSS stylesheets (with some restrictions).
Extended OEB is based on XML and requires the use of CSS in order to render unfamiliar
mark-up. OEB aso supports JPEG and PNG images as core media types and can optionaly
support other media types using a "fdlback” file in case readers cannot process them.

OEB has some advantages compared to PDF. Firgly it should be better at coping with a wide
range of devices than PDF as it separates the logical and physica structures of documents.

Current Technologies for Device |ndependence Page 10

However this will depend on how authors mark up their publications just @ it doesin HTML.
OEB should provide better backward compatibility than PDF does, and there is aways the
possihility of upgrading files by adding additiond mark-up. It should dso be possble to
provide dternative renderings of OEB documents - for example Braille or audio - which is
not possible with PDF. Findly, unlike HTML, there are DTDs for the basic and extended
OEB formats enabling documents to be validated.

OEB does have some disadvantages. Firstly many publishers use proprietary formats like
Quark for storing publications. Converting from these proprietary formats to XML is hard
athough tools are becoming available to help with the process. However, as noted in the
section on WYSIWYG editors, tools can be used incorrectly so authors or editors must
properly understand logical and physica document structure and the need to separate the two.
Secondly dthough OEB is based on Unicode, there is no guarantee that readers will have the
correct character set for displaying symbols or international Unicode characters. Thirdly there
is no guarantee of the graphics capability of readers and as OEB uses a hitmap graphics
format it degrades badly on less capable devices.

As PDF and OEB both have disadvantages and advantages, it is expected that publishers will
need to use both PDF and OEB publication formats™. PDF is aimed at distributing documents
dectronicdly - for example journd papers - so they may be printed out or read on the screen
of a PC. OEB on the other hand is targeted a eectronic book readers that are aimed a
replacing conventional books by alowing users to download Epublications eectronicdly to
the reader. In addition to dedicated EBook readers, OEB reader software is also available for
PDA's. For example MobiPocket® has produced reader software for Palm OS, EPOC32 and
Windows CE devices.

4.5 Constraint-Based Layout

We have discussed how documents may be stored in document description languages,
proprietary formats amed a editing packages, web-oriented languages and dectronic
document formats. All these formats are currently in use today by different publishing and
reading communities. In addition to these descriptions, there has dso been research into an
dternative way of gspecifying document physical structure so that it adapts more eadly to
different devices. This method is caled congdraint-based layout® and is related to work on
constraint-based user interfaces that has been conducted since the early eghties. Here the
document author describes aspects of the physical structure of the document as a series of
mathematica congraints e.g.

page_hei ght =header _hei ght +t ext _ar ea_hei ght +f oot er _hei ght

It is then the responsbility of software hat is rendering the document to try to come up with a
feasble solution that meets the document layout condraints, the congraints inherent in the
device (e.g. screen size) and those specified by the user (eg. preferred font size). Document
layout languages such as LaTeX use smilar optimisation methods in order to decide on the
optimum bresking of lines or the optimum postioning of paragraphs on pages. However in
LaTeX the optimisaion agorithms are hard-coded into the document processor and use
heurigtics to solve the congtraints efficiently.

A prototype web page browser for viewing documents using condraint-based layout is
available on-liné” and typical output from the browser for different screen configurations are
shown in Figure 6, Figure 7, Figure 8 and Figure 9. The solvers used in this prototype use
both local propagation methods (for continuous constraints) and finite domain solvers (for
discrete condraints such as font size). Constraint satisfaction is computationaly expensive
compared to rendering aHTML document but can be achieved at a reasonable speed on a PC.

Current Technologies for Device |ndependence Page 11

There are a number of problems with congtraint-based layout. Firdtly it is necessary for
designers or editors to specify document layout as mathematical formulae that may be
difficult. Secondly it is necessary for the browser to support constraint-based layout. Thirdly
typicdly these methods use hierarchica condraints meaning different congraints have
different "weights' of importance. This can lead to unexpected results from the solver.
Therefore for the moment it is not clear whether condtraint based layout offers a viable
solution to the problem of device independence.

=l [o e Vit B+
W Fh owe by fa o9 am bup

L L 1] Tesianer (las Factary Py, Lid Desigieer Glins Fuolory Pry, Lid

..... P

BiE

| sl T |

Figure6 - AlternativeL ayout 1 Figure 7 - Alternative Layout 2

ENTOTT T =13l EEETTTICT T SI=TE1)
I v b v

Designer Class Fuciors Puy. Lad Deeabgner Gllass Factors 'y, Lad,
Mrmd 1ie LAt LIE T

Cia Limen

e
&

T, W i

Figure8 - AlternativeLayout 3 Figure9 - Alter native Layout 4

5 Accessibility

As previoudy noted the origind intention of HTML was to make documents available on a
number of devices. Due to the way HTML has been used and the way the language has
developed HTML has not redly lived up to this origind design goa. Therefore the W3C has
an accessihbility activity” that aims to ensure that content, browsers and authoring tools dll
make the web accessible as possible to users with different needs and different browsing
clients. The HTML Writer's Guild is also trying to promote web accessibility”®. The term
accessihility is often used to refer to users with specia needs eg. those requiring Braille or
speech output but the methods do support device independence. However it is worth stressing
that accessibility in redity covers any web browser other than the one used by the designer
when they designed the page. The accessihility activity has produced a number of guiddines
and theseare summarised in Figure 10.

The guidelines are based on the idea that the only truly device independent form of content is
text. Therefore any eement essentid to a page that is not text must have a text equivaent.
Careful thought needs to be given to providing an equivadent with the same meaning for dl

Current Technologies for Device |ndependence Page 12

users”. Secondly they recognise that the physica structure of documents is device specific so
should be separated from the document using a stylesheet. This alows the document to be
rendered on multiple devices using different stylesheets. Findly they emphasise that content,
authoring tools and browsing software must al obey the W3C gtandards in order to achieve
accessibility.
support accessible authoring practices

generate standard markup

<

<
support the creation of accessible contel

<

provide ways of checking and correcting
inaccessible content

integrate accessibility solutions into the

4 overall look and feel

authoring tools
clarify natural language usage‘>

create tables that transform gracefull
ensure that pages featuring new technologies
transform gracefully >
ensure user control of time-sensitive content
changes

promote accessibility in help and
documentation
ensure the authoring tool is accessible tq
authors with disabilities

content

<

D>
ensure direct accessibility of embedded user
interfaces >

design for device independenca‘>
use interim solution

support input and output device
independence

<

ensure user access to all conte

Accessibility

26/02/2001 - v16

>
use W3C technologies and guideline&
provide content and orientation informatio

allow the user to configure the user agent nof

to render some content that may reduce

accessibilit
< Y

provide clear navigation mechanism
ensure documents are clear and simple
Lo

ensure user control of styles

observe system conventions and standard

interfaces user agents

implement specifications that promote
_, accessibility
A

< provide navigation mechanis
orient the user,
allow configuration and customisati

provide accessible product documentation,
and help

Figure 10 - W3C Guidelinesfor accessibility

Early on in the higtory of the web, improving web site accessibility would have solved the
problem of device independence. Unfortunately as new web markup languages such as WML
and HDML have arrived, this is no longer the case. One way around this may be to replace
WML and HTML with a single language such as XHTML and this will be discussed later.

6 Web Applications

Cal

Servlets MAWL

<BigWig>

Element Construction Set Session Based Languages

ASP

Java Taglibs
Java Beans
Enterprise Java Beans
XMLC PROPRIETAR

UIML PROPRIETARY

GUI Languages /~ Hammock PROPRIETARY

XPToolkit XUL

Embedded Scripting

Web Applications

23/02/2001 - v4

Form Languages
Mozquito Form Markup Language
PROPRIETARY

Template Languag

TextGeneratg Serif (Resin) PROPRIETARY

Struts
Turbine MVC Architectures
Expresso

XML Transformation AxKit

Infozone

Figure 11 - Existing technology for web applications

Current Technologies for Device |ndependence Page 13

Although the World-Wide Web was first created as a means for accessing documents,
increasingly the web is used to access gpplications. Even when users are using documents
they often obtain those documents via gpplications known as portds. Therefore in order to
understand how to achieve device independence we dso need to consder how applications
are built as well as how documents are written. Figure 11 shows aframework for categorising
different technologies involved in the creation of web gpplications. These technologies will be
discussed in subsecluent sections but there are dso a number of surveys available on the web
such as *, ® and *. One problem common in web application technologies is how to separate
gpplication logic from presentetion. This is a very smilar problem to the device independence
problem of separating document content from document presentation.

6.1 CGI

CGl, the common gateway interface, was one of the first methods for creasting web
applications. It defines a communication standard between a CGl application and the web
sarver. As it is a communication protocol rather than a language, CGI agpplications can be
written with a variety of languages including C, C++, Java, Perl or Visud Basc. Perl in
paticular is a popular choice as it is dmple, highlevd and has many fredy available
extension libraries.

In its most basic form, CGlI is inefficient a handling concurrent client requests. A CGl
program needs to create a separate process for each user request. Each process terminates as
soon as the data transfer is complete. Spawning a separate program instance for each client
request takes extra time so CGl programs are not redly suitable for highttraffic applications
that need to process a large number of client requests. Recently FastCGI® and the Apache
mod_perl module have addressed these inefficiencies.

CGl, dong with many other approaches, aso has two other problems. the difficulty of
separating presentation from logic and the way that HTTP, which is a stateless protocol,
makes it difficult to control the sequence of pages in a session. It is hard to separate
presentation from logic because CGI code often contains embedded HTML markup. This is
not idedl as changes to the presentation of the agpplication, idedly done by a designer, requires
changes to code which must be done by a programmer.

In order to understand the problem about controlling the sequence of pages in a session,
consider an example where we may need to make sure that a user has supplied their details
before they are dlowed to use a web agpplication. In a conventiond program this could be
achieved smply by flow of control. In a web application the flow of control is determined by
the order the user retrieves pages so it is necessary to use other approaches. Netscape redised
this problem early on and proposed cookies as a mechanism to give the dient a ate that
could be set by the server. Typicdly programmers solve this problem using a mixture of
hidden form input values, query parameters and cookies to store the state of the web client.
This is necessary because not al browsers support cookies or users may turn them off. In
order to provide security or control of session sequence, pages have to cal code to interrogate
the client's state before it is dlowed to access that page as wel as generate the page
accordingly. Thisis not an ided solution as it leads to unnecessary code complication or if it
is neglected can lead to possible access control issues.

6.2 Servlets

Servlets” were developed by Sun to address the efficiency problems of CGl. A servlet isa
piece of server side Java code run in a server application to answer client requests normaly
usng HTTP. When a sarvlet is cdled for the first time, it is loaded into memory. After the
request is processed, the servlet remains in memory and will not be unloaded until the server
is shut down. This means that Servlets can be cdled efficiently many times without the

Current Technologies for Device |ndependence Page 14

overheads of creating new processes as in CGIl. The Java servlet API is threaded so that each
instance of a servlet can handle multiple requests simultaneoudly.

However, just like CGlI, Servlets typicdly contain embedded HTML. They have request and
response API's for dedling with form variables, query strings or cookies but as in G3l
programmers have to work a quite a low level in order to control the sesson sequence of a
web gpplication.

Servlets ae not necessarily page-centric i.e. there does not have to be a one-to-one
correspondence between pages and Servlets. This means that pages can potentialy share
common code or resources, such as keeping database connections persistent via a connection

pooal.

6.3 Embedded Scripting Languages

As well as CGl and Servlets a number of embedded scripting languages have been developed
for creating web applications. Embedded scripting languages alow you to put snippets of
code insgde HTML. This was originaly done to avoid the problem in CGI and Serviets that
the application code often contains HTML code. However in an embedded scripting language
the HTML code contains application code producing the same problem but the resulting
pages are generdly shorter than the script versons, so these languages do lend themselves to
fadter dte development. In addition, early embedded scripting languages suffered from being
page-centric. Because code is embedded on a page, it is hard to share code or resources
between pages. For example in ASP, it is common to have to open a database connectionona
per-page basis that is inefficient. Newer versions of these languages have recognized this
problem and provide workarounds.

Examples of embedded scripting languages include Java Server Pages, Active Server Pages,
Professonal Home Pages and EmbPerl. EXtensible Server Pages, to be discussed later, is an
XML variation on Java Server Pages.

Java Server Pages (JSP)® are based on Java Pages are transformed into Java Servlets
and compiled which makes them very efficient but aso means they generate rather
confusing error messages. Recent versions of JSP dlow JSP pages to call objects known as
JavaBeans, which provides better support for separating presentetion from logic.

Active Server Pages (ASP)® has been developed by Microsoft and can use JScript, Perl
or VBScript as a scripting language. On the Windows Platforms ASP is based on COM,
Microsoft's Component Object Modd, so scripts can cal COM components in asmilar
way to JSP cdling Java Beans. The COM architecture is acknowledged as being rather
complicated and dow. ASP aso supports easy construction of database applications via
Microsoft's Active Data Objects and SQL.

Professional Home Pages (PHP)¥ is an open-source embedded scripting language
based on C. Like ASP it provides support for SQL so it can be used with databases. Newer
rdeases of PHP provide functiondity like connection pooling in order to try to optimise
database access.

EmbPerl® is an open-source embedded scripting language based on Perl. It is newer
than the others s0 has less support. Compared to the other languages it has an idiosyncratic
syntax.

6.4 Template Languages

Template languages, like embedded scripting languages, teke a pagecentric approach,
dlowing the developer / page designer to access logic within HTML pages. In contrast to
embedded scripting languages they remove the ahility to put raw Java code in a page,
supposedly to improve the separation between presentation and logic. They dso provide
support for elements like common headers and footers or repeated elements. They are less
widely used than embedding scripting languages.

Current Technologies for Device |ndependence Page 15

WebMacra® is an open source scripting language that works with HTML and XML. It is
based on Perl s0 is powerful but uses a class andyser that has quite large runtime
overheads. The templates and the Java objects communicate using a shared area of code /
data known as a context.

Freemarker® is an openrsource scripting language. In Freemarker data objects are
pased to the template in tree form. This means that the logic part of a Freemarker
goplication is generdly more complicated than WebMacro as data needs to be converted
into a specia format but the resulting templates contain fewer programming constructs.

Tea™ is a template language developed by Disney's web divison and used in a number
of serious commercial portals. It deliberately adopts a very restricted set of programming
congtructs in order to avoid errors and alow designers to edit pages. Tea dso has an
integrated development environment caled Kettle. Because Tea has been used for serious
commercia development it is stable and has good documentetion.

Otemba® has some of the features of an embedded scripting language as you can place
SQL queries directly into templates. Otembo has very little documentation compared to the
other template languages.

Velocity (VTL)® is an open source template language developed by Apache based on
Java. VTL can be used both as a standalone utility for generating text or mark-up as well as
an integrated component of a web application. It provides a wide range of common
programming language and macro constructs.

TextGenerator® is a generd language for generating text or mark-up. The output
language can be HTML, WML, XML or Latex. Like Veocity, it has a wide range of
common programming language congtructs. Unfortunately there is little example code.

TRiX®, * % is atemplate language developed by Hewlett Packard Laboratories.

6.5 Session Based Languages

CGI and Servlets teke a script-centric gpproach to developing web applications. Embedded
scripting languages and template languages on the other hand use a page centric approach. As
we have dready noted, sesson saquence control can be difficult with pagecentric
approaches. There are currently two examples of session-centric languages that have been
developed to try to overcome these problems. In these languages, the application logic
controls the display of presertation rather than the client requesting a page. This can smplify
the congtruction of web applications:

MAWL* sands for "the Mother of al web languages'. It is a research language
developed by ATT around 1995. MAWL programs are organized as a set of sessons that
define entry points to a service. The sessions represent the logic of the application, and
control the rendering of templates that form the presentation layer of the gpplication. The
sessions are described in a programming language smilar to C and presentation is
described in a language derived from HTML cdled MHTML. Separating logic and
presentation in this way alows document templates to be syntax-checked which helps
ensure content can be rendered correctly. It also heps support device independence and
early MAWL demongtration gpplications were implemented for both graphicd and voice
browsers.

<Bigwig>® is an academic project that takes inspiration from MAWL based at the
Universty of Aarhus, Denmark. As well as being a session-centric language, <Bigwig>
incorporates a number of nove idess including the idea of client-sde form vaidation using
alanguage called PowerForms.

6.6 Form Based Languages

Another area of complexity in web gpplications is the way that data is submitted to the server
via forms. The vaidity of the form must be checked on the server; this can be dow but also
adds complexity to the gpplication. If the information entered was invaid somehow the fam
needs to be returned to the client or the user will have to type everything in again. This has to

Current Technologies for Device |ndependence Page 16

be done via query grings or hidden form variables that adds complexity as they were not
redly designed for this purpose. Checking form validity can be sdved using client-sde
JavaScript. However JavaScript was not designed with this application in mind so in some
ways it is too low-levd for this kind of tak. Some early suggestions for a XML form
language are described in . Recently a number of speciaist languages have been devel oped:

PowerForms® is an XML form description language developed as part of <BigWig>.
Powerforms provides support for validating user input but not device independence. A
form can specify data vdidation rules both for individud input fieds and for
interdependencies between those fields alowing very precise specifications to be created.
PowerForms descriptions are compiled to produce HTML [/ JavaScript code that
implements the form.

Form Markup-Language (FML)* is a commercia language that has been developed by
Mozquito Technologies as a precursor to XForms, A form in FML can consist of a number
of pages in a single file, just as a deck in WML can consist of a number of cards. FML
provides more limited input validation than PowerForms via severd predefined input types
such as number, date, URL, domain, email address and expire data. It aso provides support
for the caculaion ad display of fidd vaues a runtime, for example providing a tota in
an expense gpplication. It provides constructs called toggles that alow the programmer to
activate and deactivate objects within a document. This can be used to hide fields that are
not relevant. It aso provides a mechanism to declare event handlers to process specific
form events.

XForms® is a sandard being developed by the W3C that aims to replace the current
XHTML form controls. An XForms description conggts of a device independent modd,
device independent user interface details and device specific user interface details. It dso
defines limits and restrictions that apply to the mode items when the form is being filled
and rddionships and dependencies, to support input vaidation in a smilar way to
PowerForms and FML. It is anticipated that XForms will become dominant if eventualy it
becomes supported natively in web browsers.

6.7 User Interface Based Languages

As wdl as forms, there are also a number of languages for creating more complex event based
user interfaces in web browsers:

UIML® is an XML compliant declarative language that E)Srovid&s cross platform user
interfaces. It is a commercial product developed by Harmonia™. It tries to achieve platform
independence by separdting user-interface code from nontuser interface code so that
common festures of interface code for different devices can be factored out. This is done
by splitting the user interface description into five sections: description, structure, data,
dyle and events. In addition, it supports locd events as wel as externd events tha
propagate outside the interface description. Interna events can be used to perform tasks
like red-time updating found in FML. UIML descriptions can ether be written in generd
UIML or device-specific UIML where the vocabulary is closdy aigned with a specific
device. Devicespecific UIML can then be mapped to generd UIML using a transform
language. At the moment only beta versons of a Javaand WML renderer exist.

Hammock™ is a commercia product developed by a company caled OOP. It tries to
tackle the problem of crossplaform Ul's like UIML, but instead of usng a declarative
language it provides a Java library that is very smilar in structure to Swing. At runtime, the
library calls a renderer that converts output into a target form such as HTML. At the
moment only a HTML renderer exists dthough the intention is to support a WML renderer
as wel. Hammock uses four types of object: an application object, which corresponds to a
Java serviet, a page object, which corresponds to a viewport or a deck of pages, a form
object, which is where the bulk of the coding is done and GUI objects that St in form
objects.

XPToolkit> has been developed as part of the Mozilla browser as a collection of loosdy
related facilities which am to provide a platform independent API for user interfaces. The

Current Technologies for Device |ndependence Page 17

XPToolkit specification describes various objects that are wrapped in a package described
by an XML compliant language cdled XUL®. For example the Mozilla browser is a
package described in XUL hence it is possble to cusomize the browser by editing the
XUL description. Mozilla take the view that a XUL description will not be truly cross
platform. Currently XPToolkit is aimed a PC's and there are no plans to extend it for
phonesor PDA's.

6.8 Componentisation

As noted in a previous section, one problem with JSPis the difficulty in separating logic from
presentation. Two technologies, custom tag libraries and using JSP's with Java Beans have
been developed to address this problem:

Java Taglibs® are collections of custom tags. The tags can be used to replace common
items of logic in JSP pages. A custom tag can cal eements called actions that can creete
and access programming language objects and change the output stream. There are a
number of preexisting tag libraries such as the Jekarta Taglib® containing a number of
tags for processing XML input and applying XSLT transformations as described later.

Java Beans™ are smply Java classes that adhere to the naming and design conventions
laid down in the Java Beans API. A Java Bean has a number of properties, which are
member variables accessed using get and set methods. The idea of defining objects in this
way is they then naturally form eusable components with a very clean and well-defined
interface. JSP pages can be smplified by inserting references to Java Beans rather than raw
Java using specid tags.

There have dso been two technologies developed aimed a separating presentation from logic
in Servlets

XMLC (XML compiler)®® is a part of a commercia application server called Enhydra™
produced by Luitris. It is an application that compiles HTML or XML documentsinto Java
objects usng DOM. The am of this is to overcome the problem of having to include
embedded HTML or XML in sarvlet code. Instead the serviet cdls to the object created by
XMLC. As with other auto-trandation utilities, problems can occur if it is necessary to
make dterations to the XMLC output as those changes need to be made every time the
object is recompiled.

The Element Construction Set (ECS® is a Java libray produced by Jekarta that
provides an interface for generating HTML or XML from a servlet without having to resort
to println commands. It can be used to export mark-up for a number of target languages. It
would be possible to use an gpproach smilar to ECS to implement programmatic device
independent interfaces, as used in HawHaw or DotNet that will be discussed later.

6.9 Architectures

Many applications are based on the three tier (also known as Modd 1) pattern which divides
the application into a data source (bottom), middle and dlient tier™. There is an dternaiive
patern though called the Mode-View -Controller™ (aso known as Modd 2) for separating
goplication presentation (the view) from gpplication logic (the modd) has been in use since
the early 1980's. It has recently been identified as a key patern for developing web
gpplicaions. In the MVC architecture housekeeping activities, such as maintaining database
connections, are typicaly peformed by the controller. A smplified modd of the MVC
architecture is shown in Figure 12. MV C architectures are primarily associated with the Java
2 Enterprise Edition (J2EE)® and hence JSP, Servlets and Java Beans dthough it is possble
to implement them using ASP or PHP. In order to smplify the process, a number of open-
source MV C architectures have been devel oped:
Sruts® is a JSP implementation of an MVC architecture. k provides flow control for
JSP based web agpplications, a controller servlet, JSP custom tag libraries, and various
utilities to support XML and internationdisation. In Struts, the controller consgts of a

Current Technologies for Device |ndependence Page 18

number of Servlets that are configured by defining a set of mappings againgt a request URI.
The Servlet is responsible for performing the desired business logic and then dispatching
the control to the appropriate view component to create the response. Struts provides
support for different presentation techniques including application specific custom tags,
page composition with includes and imagerendering components for dynamicaly
generated images.

Server Web Layer Clients
Data Model View > Browser
source (Java Bean) (JSP) "
A
Controller
(Servlet)

Figurel2- Mode View Controller Architecture

Turbing® is similar to Struts but offers a richer feature set. It is intentionaly not tied to
JSP but can dso be used with Cocoon, ECS, WebMacro, Freemarker or Veocity. It
contains a collection of reusable components aimed at essing server side development.
Turbine provides MVC flow control, integration with Object Relationd Mapping todls, a
job scheduler, locaization services, caching services, security and many other features. It
also has support for XML. Typicd applications of Turbine include shopping carts, link
directories, project bug tracking systems and portals like JetSpeed.

Expresso™ is a layered controller architecture. It separates the controller into a database
layer, a framework layer and an application components layer. The framework layer
provides security, job control, logging, database connection poding and caching, event
notification, configuration values and database objects. The gpplication components layer
provides functions such as ePortal content management, discussion forums, search engines,
data warehousing toolkit and online forms. Expresso is open source dthough it is
commercialy funded. There is an Expresso-XML object that provides support for XML /
XSLT.

6.10 XML Transformation

XML, the EXtensible Markup Language has evolved from both SGML (Standard Generalized
Markup Language) and HTML (HyperText Mark-up Language). XML is a data definition
language designed to structure data and describe information. The author of an XML
document is able to create their own tags and is therefore freed from constraints of the
predefined tags found in HTML. A DTD (Document Type Definition) is used to define the
vocabulary and syntax of the user-defined tags. There are a number of device independent
solutions based on the idea that a page can be marked up using XML and then transformed to
a number of different output formats. There are severa tools available to perform this
transformation:

XSLT? the EXtensble Stylesheet Language Transformations is an XML compliant
language created to solve the problems of how to transform XML documents into another
type of document. XSLT is a recursive declarative language that describes rules that can
transform XML documents. An XSLT processor reads in the XML and XSLT stylesheet
and based on the ingtructions in the stylesheet outputs a new document (eg. in XML,

Current Technologies for Device |ndependence Page 19

HTML or WML). XSLT is a powerful and fast way of manipulating data. However there is
a generd feding that it is a complicated language”™ to use <o in particular designers may
not want to write XSLT unless it is done automatically in a manner similar to WY SIWY G
HTML editors. XSLT and XML can support device independence allowing the creation of
a site where each page of content is described by a single source document in XML. XSLT
stylesheets are then used to transform this document for multiple target devices. In practice
though, defining the tags and transforms in such a way that there is a single stylesheet per
device has been found to be difficult. Prototype stes often end up having a stylesheet per
device per pagethat is clearly not ided.

SAX (Smple API for XML) is away of making XML data accessible in Java It is an
event based XML parser that processes the document sequentidly. This is very memory
efficient, as the parser does not need to keep a copy of the complete document in memory.
SAX is useful because it may be smpler to specify certain types of transformations in a
procedurd language like Java than in a declarative language like XSLT.

DOM (Document Object Modédl) is a way of accessng XML and HTML documents. A
DOM parser uses a tree-based representation of an XML document and can interface to a
number of languages such as Java or C++. Unlike SAX, it usualy keeps the entire
document in memory but it can support more complex transformations. DOM can be very
expensve in terms of the memory required to hold the documents and hence the speed it
can then process those documents.

There are two Perl-like languages for XML transformation that use XPath. XMLScript™
has been developed by a company called DecisionSoft. XPathScript™ has been developed
as pat of AxKit. Both these languages are non-side effect free, unlike XSLT. This has
advantages and disadvantages but this alows the languages to use conventiona varigbles
and functions.

6.11 XML / XSLT Architectures

Sun has suggested there are three approaches for using JSP with XML / XSLT in web
applications. single pipeing multiple pipeline and combination. In the single pipeine
approach shown in Figure 13, the JSP page generates XML that is transformed to multiple
output languages via multiple XSLT gylesheets. By contrast in the multiple pipeline approach
shown in Figure 14, there is a different JSP page per device but backend logic can be shared
between pages using Java Beans and custom tag libraries.

Server Web Layer Clients
> HTML
Parse and
XML " JSP transform " WML
XSL (HTML)
XSL (WML) .
XSL (HDML) T HDML

Figure 13 - Single Pipeline

In a combination architecture, you can use a mixture of these gpproaches e.g. one pipeline per
language but styling for different didects of languages. Clearly the multiple pipeline approach

Current Technologies for Device |ndependence Page 20

requires a lot of reauthoring, but if we have separaed logic from presentation effectively it
may be less complicated than the single pipeline case if we have one stylesheet per page per
device. In addition the multiple pipeline approach may be more peformance efficient
paticularly if the pages being generated are highly dynamic so there is no advantage in
caching them - for example displaying users bank accounts.

Server Web Layer Clients
View R
l—v (JSP) HTML
Model View
XML) "\ (Java Bean) (JsSP) WML
Custom Tag
Library View -
(JSP) HDML

Figure 14 - Multiple Pipeline

Three architectures, Cocoon, AxKit and Infozone have been developed as implementations of
the single pipdine approach.

Cocoon’” was developed by Apache for publishing XML to multiple target devices. It
provides caching in order to speed up document delivery. It uses XSP, the EXtensible
Server Pages Language, an XML compliant version of Java Server Pages in order to
dynamically generate XML on the fly. XSP dlows static XML data with Java fragments.
Like other embedded scripting languages, XSP suffers as content and logic are placed in
the same file. Cocoon users have suggested that stylesheets could be used to separate data
from logic in XSP pages but this seems unnecessarily complicated.

Axkit”™ is similar to Cocoon but written in Perl rather than Java. It uses Perl and has
support for XML, XSLT and X SP as well as a new language called X PathScript” that isa
XML transformation language based on Perl and XPath. The Axkit project dso intends to
develop stylesheet languages based on SAX rather than XSLT. Such languages would be
very efficient in terms of processing and memory usage. This means they woud have
potential for being used for client-side styling on mobile devices as well as on servers.

Infozone® is smilar to Cocoon. It provides some additional festures compared to
Cocoon and Axkit such as a content management system that claims to provide hierarchica
document storage, document versioning support and user management and workflow. As
wdl as XSLT Infozone dso provides Lexus, an implementation of the XML query-update
language. From the documentation it seems the XML query-update language is very
smilar to XSLT except that you do not have to copy the source document; instead you
ather add, dter or delete nodes from the source document. Currently the Infozone project
ismuch less advanced than Cocoon or Axkit.

Serif® is part of a commercia application server caled Resin produced by a company
Caucho. Like Cocoon it dlows pages to call an XSLT processor but uses a proprigtary
language caled XTP rather than XSP.

Usng XML and XSLT for device specific ddivery has some advantages. Firstly, different
WAP devices vary in the way they implement the WAP standard. For example Nokia and
Phone.Com WAP browsers implement selection lists in different ways. Using XML / XSLT,

Current Technologies for Device |ndependence Page 21

it is possible to style documents for different types of phones. However targeting content at
specific phones increases the number of transforms required, and the process is difficult
because there are no forma specifications of how individual phones interpret the WML
gstandard. Another advantage of XML / XSLT is they dlow the amount of text delivered to
different devices to be controlled, assuming the origind content has been marked up
correctly. For example mobile devices may just want to receive the abgtract of a paper
whereas PC clients might want to receive the whole paper. Similar mechanisms can be used
to specify which images should be displayed on which devices.

However there are aso possible disadvantages with XML / XSLT. Firstly when creating
content it is possible that people will just sit down and start tagging up arbitrary XML and
writing stylesheets to style XML for different devices. This leads to a Stuation where there
are individual stylesheets for each device viewing each page. Of course then it is possible for
authors to go through the stylesheets and try to find common transforms and then place them
in centrd indude files. Idedly though, the darting point would be defining an XML
compliant device independent authoring language. If this language was designed using a top
down approach (rather than the bottom-up approach just described), it would minimize the
number of transforms needed it would be possible to vdidate the content of documents. This
is the same approach as has been taken with Docbook. In addition XSLT might find more
acceptance if there was some kind of WY SIWY G authoring tool for transforms athough how
this would work is not clear.

7 Other Approaches

7.1 Transcoding

Currently one common approach to the problem of displaying Internet content on multiple
devices is transcoding™ Here servers or proxies retrieve HTML content from the Internet and
convert it to a form suitable for the device eg. WML. Some companies have made these
transcoding portals available to users over the Internet® and produce results as shown in
Figure 15 and Figure 16. Transcoding has the advantage that there is no need to re-author any
content. However it tends to be an unreliable solution as there is no guarantee the transcoded
content will be usable on the target device. This is due to a number of reasons. Firgly the
origind HTML may not meet accesshility guiddines so for example site navigation may be
impossible without displaying images. Alternaively the site may be dependent on frames or
the dite may use tables to organize its fysica layout. Secondly web agpplications are unlikely
to work as most WAP gateways do not support the use of cookies and most transcoding
proxies cannot cope with form interaction. Thirdly there is a 1.4Kbyte limit on the size of
compressed pages on WAP phones. This means the transcoding proxy must split up pages so
they meet this criterion. As this is done automatically, this may degrade the sites navigability
or understandability.

Unfortunately there are no open source implementations of transcoding proxies but some
implementations of inteligent proxies such as Muffin® or Proxomitron® do exigt. It might be
possible to implement a transcoding proxy based on one of these architectures. There are a
number of commercia transcoding proxies. IBM has done research on an architecture caled
Web Basd Intermediaries® and produced a product caled WebSphere transcoding
publisher®. This provides standard HTML to WML transcoding as well as XML with XSLT
styling. The IBM product can also style pages based on externa annotations™.

Current Technologies for Device |ndependence Page 22

£ hp. Hewbebt—Pack, —
| by, Bewlett—Packard:
ilndlr in computing
jand im2ging sabutions
land sepyace:

Oplions Back

=

Figure 15- XIFT transcoding
applied to HP.com

Figure 16 - Decklt transcoding applied to
invent.hpl.hp.com

Another company caled PyWeb® have taken an dternaive approach in their Deckit®
transcoding proxy. PyWeb provide a transcoding service with a difference: the proxy can
style the content for WML devices using specid tags that are embedded as HTML comments.
Using Decklt, website authors can create WML pages by adding some extra tags to existing
web pages. This is much smpler than learning new complex languages such as XML and
XSLT but this solution does not scale well for multiple device types so whereas this may be
okay just to provide WML support that <ill means the website does not support interactive
TV, E-Book readers, etc.

7.2 AvantGo

AvantGo™ is a very popular solution for making Web content available on Pdm OS,
Windows CE and WAP devices. A sample AvantGo page is shown in Figure 17. Currently
there are over 2 million users registered AvantGo users in 8 different countries with access to
over 600 different content providers. AvantGo uses a chane mode where the user
subscribes to a number of web sites. Pages from those sites are then retrieved when the user
performs a synchronisation operation between the handheld device and their PC. Retrieva
occurs via the AvantGo proxy that performs a transcoding operation dripping out any
unnecessary HTML eements. The web pages are then cached on the handheld, avoiding the
latency problem inherent in wirdess communication. Instead of using a new mark-up
language like WAP, AvantGo uses a subset of HTML i.e. no frames, no layout using tables
and no JavaScript. This means that it has been very easy for existing web dtes to provide
AvantGo content. In addition because AvantGo caches pages it does not have any of the
ddays that WAP has. Solving the latency problem in this way has adso increased
compatibility with existing web content. The WAP version of AvantGo is less successful than
the PDA verson as it suffers from the same delay in content refrieva inherent in WAP
devices.

AvantGo dso provides support for forms adthough they are only submitted to the server on
synchronisation. Despite this limitation it is till possible to creste some useful web services.
AvantGo can provide automatic form completion for persona details in a secure manner.
Although there is varidion between the capabilities of Pdm devices and Windows CE
devices, the AvantGo style guide” suggests that content authors aim content at the lowest
device in order to make sure content is available on dl devices.

Current Technologies for Device |ndependence Page 23

Figure 17- AvantGoin useon a Palm OS handheld

7.3 Web Clipping

Web dipping® is PAm Computing's own proprietary mobile access technology. Palm was
one of the first companies to release a wirdess enabled handheld in the form of the Pam VII
and web clipping was initialy developed for this device. To build a web clipping application
authors create a PQA file in a language smilar to HTML that specifies how to extract
information from an existing page on the Internet and how to create a new page based on that
information. The page is then compiled to produce an gpplication that can be used on the
Pdm device. When the user invokes the application, the device sends out a request to a proxy
server. The proxy server then retrieves the requested web page from the Internet and discards
as much unnecessary information as possible. This is because charges on the Pam VII packet
wireless network are on a packet usage basis, so it is desirable to try to minimize the amount
of information sent to the client. Compared to AvantGo, this gpproach seems dightly more
complicated but it does dlow the customisation of wirdess gpplications and is particularly
suited to dynamic content gpplications e.g. retrieving stock quotes, maps, news etc as shown
in Figure 18 As PAm VII's are only available in the US, web clipping does not yet have
much regionaized content.

Pnn ple Search ’ w Fstary

VREOOS

TELEFHDME - EMAIL
Hork M Smith

20Z2 Yan Ress fee
San Frarcisce, R 3469
{415)EE5-5TT%

Maoark Smith
179 %an Ness Ave
San Francisco, CA 94160
{415)E55-5386

Figure 18 - Palm Web Clipping Application

Oracle has developed a smilar approach to web clipping for its Portal-To-Go and Application
Server Wirdless edition platforms’. Here when a dlient requests a document, the server
produces an XML document containing query descriptions. The server takes the queries and
uses them to retrieve web pages. The web pages are converted to XML, and then integrated
into the origind document. This document is then styled using XSLT for the client. There is

dso an opensource Perl Library, News Clipper™, which can perform similar conversions
athough not aimed specificaly at mobile clients.

Current Technologies for Device |ndependence Page 24

7.4 ASP+ DotNet

DotNet® is the name given to Microsoft's new EServices initiative. Microsoft is proposing
two methods for supporting mobile devices in DotNet”. Firstly they are going to provide an
implementation of XSLT that can be caled from ASP called XSLISAPI®. This is aimed
primarily at static content. Aswell as XSLT, XSLISAPI dso provides support for caching the
converted pages ad identifying the capabilities of the browser. Secondly DotNet will provide
anew verson of ASP caled ASP+. ASP+ provides a new, event driven approach to writing
web applications caled WebForms”®. This means ASP+ has some similarities to Hammock
and UIML, as well as providing a level of abstraction to hide some of the details of managing
sessons. There is a mobile device variant of WebForms called MobileForms™ amed
specificaly a PDA and WAP devices. Developers wanting to target both PCs and mobile
devices will need to produce both WebForm and MobileForm views, but it should be possible
to share the logic component of these applications.

7.5 PHP HawHaw Library

The HawHaw '™ library is an open-source library for developing websites in PHP that can be
viewed on WAP phones, iMode phones, HDML phones, Palm and Windows CE PC's running
AvantGo and PC's using standard web browsers. It works by supplying a set of methods to
cregte content. When a device requests a page, HawHaw looks at the User Agent string and
converts the methods into the correct tags for the device. The resulting Sites do not look ideal
on a PC as they look styled for WAP as shown in Figure 19. However the library code is short
and concise and it supports a lot of devices without the need to write any additiond
stylesheets. BT Ignite has used Hawhaw to create a network monitoring application. HawHaw
uses a programming approach <o it is not redly suitable for web designers, but it is smpler
than other programming solutions such as XML / XSLT or J2EE. An example HawHaw page
is shown on a PC browser in Figure 19 and on a WAP browser are shown in Figure 20.

Status
23 Feb 2001 14:00
ig@ite
HealthNetT
e Knewen =servrice Bortal
There ara no known Statis
proflems.
Perfarmance
Latest News
igite
gm ar Figure 20- WAPClient viewing HawHaw page

WA optimized by ELAWHAW V3 06 (2

&

Chick harm for mon i

Figure 19 - PC Client viewing HawHaw page

There is a commercid product smilar to HawHaw but based on Java cdled
AVIDRapidTools'®. This supports a wide range of devices such as WAP, iMode, Palm,
Windows CE and PCs.

7.6 XHTML / CSS

The original solution proposed by the W3C to device independence was for al devices to
support XHTML and cascading stylesheets. Then it was redised that XHTML is too
complicated for some devices, so the XHTML specification was divided up into modules'®.
Devices must support XHMTL-base but have the option of choosing which other XHTML

Current Technologies for Device |ndependence Page 25

modules to support. Using XHTML for delivery to a number of devices has a number of
advantages. Firdly it means that al devices are using a common language so content only has
to be authored once. Secondly the language is based on HTML, so existing HTML authors
will be able to convert to the new language much more quickly (athough they need to get rid
of some bad habits). Thirdly XHTML and CSS separate presentation from content, so if a
page is being displayed on a different device it can either chose to use the default styleshest,
use a stylesheet specificaly for that device or use no stylesheet at dl. Fourthly unlike XML /
XSLT, dyling is done a the client rather than the server so there is less loading on the server.
Fifthly al clients receive an identicd XHTML file, so that files can be exchanged between
devices rather than having b re-request files from the server so they can be styled for the
target device.

8 Conclusions

Hopefully this report has given an indght into the advantages and disadvantages of present
technologies for ddivering datic and dynamic content to a variety of devices. As a result of
this survey it is possble to make a number of observations. Firstly none of the currently
available technologies is a perfect solution as they dl have advantages and disadvanteges.
Secondly true device independence will not just require changes by the dient device
manufacturers but also satic content authors, dynamic content programmers, satic and
dynamic content authoring tool creators as well as the software companies providing the
server environment and associated tools. Thirdly technical superiority is not the only measure
of asuccessful solution; for solutions to be successful they must also be widely adopted.

Current Technologies for Device |ndependence

9 Index

<Bigwig>, 16

accessihility, 9, 12, 22

ASP, 14, 15, 18, 25

AvantGo, 4, 23, 24, 25

AVIDRapidTools, 26

Axkit, 4, 21

CC/PP, 4,5,6, 7

Cal, 13, 14, 16

Cocoon, 4, 19, 21, 22

CSsS, 4, 10, 26

Decklt, 23

DOM, 18, 20

DotNet, 18, 25

DTD, 10, 19

ECS, 18, 19

EmbPerl, 14, 15

Expresso, 19

FML, 16, 17

Freemarker, 15, 19

Hammock, 17, 25

HawHaw, 18, 25, 26

HTML, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 22, 23, 24, 26

Infozone, 21

Java Beans, 15, 17, 18, 20

JSP, 14, 15, 17, 18, 19, 20

LareX, 7,11

MAWL, 16

multiple pipeling, 20

MVC, 18, 19

OEB, 9, 10

Otembo, 15

Palm Web Clipping, 4, 24

PDF, 8, 9 10

10 References

Page 26

PHP, 15, 18, 25

PowerForms, 16, 17

RDF, 5

SAX, 20, 21

Servlets, 14, 16, 18

SGML, 9, 19

single pipeling, 20, 21

Struts, 18, 19

SyncML, 4, 6,7

Taglibs, 17

Tea, 15

TextGenerator, 15

transcoding, 22, 23

TRiX, 15

Turbine, 19

UAPROF, 4, 5, 6

UIML, 17, 25

UPnP, 4, 7

Veocity, 15, 19

WAP, 1, 4,5, 6, 22, 23, 25, 26

Web clipping, 24

WebMacro, 15, 19

WYSIWYG, 8§, 9, 10, 19, 22

XForms, 16

XHTML, 4,9, 1

XML, 1,6, 7,9, 10, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26

XMLC, 18

XML Script, 20

XPathScript, 20, 21

XPToolkit, 17

XSLT, 9, 17, 19, 20, 21, 22, 23, 24, 25, 26

XSP, 21, 22

2, 16, 26

1 User Agent Strings, http://www.mozilla.org/buil d/user -agert -strings.html

2 CC/PP, http://www.w3.0rg/M obil e/ CCPP/
8 RDF, http://www.w3.org/RDF/

4 UAProf, http://www.wapforum.com/what/technical .htm

5 SyncML, http://www.syncml.org
® Universal Plug and Play, http:/Avww.upnp.org/

’ CD-Player sample device template, hitp://www.upnp.org/downl oad/CDPlayer-1-2001Feb.doc

8 Axis Web-Enabled Camera, http://www.axis.com/products/documentation/UPnP.doc

® Troff, http:/ww.gnu.org/software/groff/groff.html

10 TeX, http:/Aww.tug.org/
| aTeX, http://www.l atex-project.org/

L Lout, http://snark.ptc.spbu.rw/~uwel/lout/

13| aTeX2HTML, http://chl leeds.ac.uk/nikos/tex2htmi/doc/latex2htmi/latex2html.htm
¥ physical versuslogical markup, http:/ww.dantobias.com/webtips/logical.html and

http://mww.cs.williams.edu/~cs105500/outlines/CS105 _44.html

Current Technologies for Device |ndependence Page 27

The Myth of 800x600, http://www.webreview.com/2001/03 _16/webauthors/index01.shmtl
16 Cascading Style Sheets, http://www.w3.0rg/Style/CSY
7 Accessibility, http:/www.w3.org/WAL/
BYHTML, http://ww.w3.org/MarkUp/
9 .- DocBook, hitp/www.docbook.org
L|nux Documentation Project, http://www.linuxdoc.org/
LaIte http://www.|atte.org/
ZpDF, http://www.adobe.com/epaper/main.html
Open Electronic Book Forum, http:/www.openebook.org/
2 %ML and PDF, http://www.impressions.com/resources pg/SGML_pgs/XML_PDF.pdf
® Mob| Pocket, http://www.mobipocket.com/en/HomePage/default.asp
Constrant Based Layout, http://www.cswashington.edu/research/congtraints/web/mmdJournal .htm
Constra nt Based Web Browser, http://www.csse.monash.edu.aw/~in/CBN/index.html
B HTML Writer's Guild AWARE, http:/awvare hwg.org/
» Us ng ALT tags, http:/ppewww.ph.alaac.uk/~flavell/at/alt-text.html
0 CGls versus Java Savl ets, hitp://rain.vidab.olemiss.edu/~ww1/homepage/project/mypaper.ht
%! Surveying the landscape,
http://xmic.enhydra.org/software/documentation/competing_frameworks/competing_frameworks.html
% Javaand XML publishing Frameworks, http://www.runtime-collective.com/static/runtime-
new/JavaXML .html
FastCGl, http://www.fastcai.com/
3 Sarvlets, hitp://java.sun.com/products/serviet/index.html
% JvaSaver Pages, http://java.sun.com/products/j o/ Arontpage-javaplatform
36 Actlve Searver Pages, http://msdn.microsoft.com/workshop/server/asp/asptutoria .asp
Prof-ond HomePages, http://www.php.net/
3 EmbPerl http://perl.apache.org/embperl/
\WebM acro, http://webmacro.org/tutorial/intro.html
“O Freemarker, http:/freemarker.sourceforge.net/
4 1€ hitp://opensource.go.com/
“2 Otembo, hitp:/Avww.meangene.com/otembo/
VeI ocity, hitp://jakartaapache.org/vel ocity/
“ TextGenerator, hitp://www.textgenerator.com
“* The TRIX Template Resolution Framework, http://www.hpl.hp.com/techreports/98/HPL-98-04.html
a6 Templ ate Resolution in XML / HTML, http://www.hpl.hp.com/techreports/1999/HPL-1999-42.html
TRlX download, http://www-uk.hpl.hp.com/people/sthitrix/
MAWL, http://www.bell -labs.com/project/ MAWL /tutorial .html
49 ~ BigWig hitp/fwww.brics didbiqnig/
TheXML Form language, http://www.hpl.hp.com/techreports/1999/HPL -1999-41.htm
5! powerForms, http://www.brics.dk/bigwic/powerforms/
%2 Form Markup Language, http:/svww.mozquito.org/index.html
%8 % Forms, http://www.w3.org/MarkUp/Forms/
> UIML, http:/Avww.uiml.org/
% Harmonia, http://www.harmonia.com/
% Hammock, http://www.oop.com/Technol ogiesHammock.jsp
> MozillaXPToolkit Architecture, http://www.mozilla.org/xpfe/aom/AOM.html
%8 X UL, http:/Avww.mozilla.org/xpfe/xptoolkit/xulintro.html
% JavaTaglibs, http://java.sun.com/products/jsp/taglibrarieshtml
80 Jakarta Tag Library, http://jakartagpache.org/taglibslindex.html
61 Java Beans, http://java.sun.com/productsjavabeans/ Zrontpage-javaplatform
62 X ML C, http://xmlc.enhydra.org/software/documentation/index.html

Eff|c| ent Wirdess Design, http://mww.webtechni ques.com/archives’2001/02/young/
Enhydra, http://mww.enhydra.org/

EI ement Constructor Set, http://jakartagpache.org/ecs
% Understandi ng Java Server PagesModd 2 architecture, http://www.javaworld.com/javaworl d/jw-12-
1999/|w-12 -ssj-jspmvce.html
MVC Architecturesin 2EE, http:/bishop.ics.hawaii.edu/shenyan/patterns/ 2EE patterns/MV C.html
JZEE http://java.sun.comvj2ee/
O gruts, http://jakarta.apache.org/struts/userGuide/introduction.html
™ Turbine, http://java.apache org/turbine

Current Technologies for Device |ndependence Page 28

™ Expresso, http://www javacorporate.com

2 X SLT, http:/Aww.w3.org/Style/XSL/

" XSLT considered harmful, http://www .xml.comvpt/al1999/05/xd/xs considered_Lhtm
™ X ML Script, http://www.xmlscript.org/

" X PathScript, http:/www.axkit.org/docs/xpathscript/quide.dkb

" Java, JSP and XML, http://java.sun.com/products/jsp/html/ISPXML .htm

7" Cocoon, http://xmi .apache org/cocoon/

8 AxKit, http://axkit.org/

™ X PathScript, http:/www.axkit.org/docs/xpathscript/quide.dkb

8 nfozone, http://www.infozone-group.org/

8 Serif,, hitp://www.caticho.com/products/resin/ref/xtpixtp

8 | nternet Transcodi ng for Universal Access,

http://www.research.ibm.com/networked _data_systems/transcoding/

% Xift transcoding portal, http://www.xift.com/

8 Muffin proxy server, http://muffin.doit.orcy/

& proxomitron proxy server, http://members tripod.com/Proxomitron/features htm

8 \Web Basad | ntermedaries, http://www.almaden.ibm.com/cs/'whi/doc/index.html

87 |BM Transcoding publisher, hitp://www -4.ibm.com/softwarelwebserversitranscoding/

8 A nnotation-Based Web Content Transcoding, http:/www9.org/w9cdrom/169/169.html

% py\Web, http://www.pyweb.com/docs/index.shtml.en

% Deckit, http://www.pyweb.com/php/test_adapt.php3

91 AvantGo, http:/Mww.avantgo.com/

92 AvantGo style guide, http://avantgo.com/devel oper/web/documentation.html

% Web Clipping, http://www.pal m.com/devzone/webdlipping/poatak/pga-talk.htm

% OradleWirdess Server, hitp://technet.oracle.com/productsiiaswe/

% N ewsClipper, http:/newsclipper.sourceforge.net/

% .Net, http://msdn.microsoft.com/net/

% Microsoft Presentation on Mobile Web Applications,

hittp://www.mi crosoft.com/winme/000ct/101900fi n/Financia SrvsSumitt_DevToolsForM obileWebApp
SChory/default.htm

% X MLISAPI, http://msdn.microsoft.com/xml/general/xdlisapifilter.asp

% WebForms, http://msdn.microsoft.comylibrary/dotnet /cpguide/cpconintroductiontowebforms.htm

100\ 1 oboil eForms, http://msdn.microsoft.com/vstudi o/nextgen/technol ogy/mobilewebforms.asp

101 fawHaw http://www.hawhaw.de/

102 A \/| DWireless, http://www.avidwireless.com/

18X HTML Basic, http:/www.w3.0rg/TR/2000/REC-xhtml-basic-20001219/

