

Current Technologies for Device Independence

Mark H. Butler
Publishing Systems and Solutions Laboratory
HP Laboratories Bristol
HPL-2001-83
April 4th , 2001*

world-wide web,
mobile, XML,
device
independent,
adaptation

Increasing numbers of users want to access web content from
devices such as WAP phones or PDA's. Creating content for
each device would be expensive and time consuming. This
report provides a survey of current technologies related to the
creation of device independent web content and web
applications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Current Technologies for Device Independence Page 2

1 Introduction .. 3
2 Devices... 3
3 Specifying Device Capabilities ... 4

3.1 HTTP Request Header Fields .. 4
3.2 CC/PP Composite Capability Preferences Profile... 5
3.3 WAP UAPROF ... 5
3.4 SyncML................................ 6
3.5 Universal Plug and Play ... 7

4 Document Description ... 7
4.1 Printed Media Languages ... 7
4.2 WYSIWYG Document Preparation... 8
4.3 Web Oriented Languages ... 8
4.4 Electronic Publications ... 9

4.4.1 Docbook 9
4.4.2 PDF... 9
4.4.3 Open Electronic Book Forum .. 9

4.5 Constraint-Based Layout 10
5 Accessibility... 11
6 Web Applications .. 12

6.1 CGI... 13
6.2 Servlets... 13
6.3 Embedded Scripting Languages .. 14
6.4 Template Languages .. 14
6.5 Session Based Languages ... 15
6.6 Form Based Languages .. 15
6.7 User Interface Based Languages ... 16
6.8 Componentisation .. 17
6.9 Architectures ... 17
6.10 XML Transformation... 18
6.11 XML / XSLT Architectures 19

7 Other Approaches .. 21
7.1 Transcoding ... 21
7.2 AvantGo ... 22
7.3 Web Clipping................................ 23
7.4 ASP+ DotNet 24
7.5 PHP HawHaw Library ... 24
7.6 XHTML / CSS .. 24

8 Conclusions .. 25
9 Index 26
10 References 26

Current Technologies for Device Independence Page 3

1 Introduction
Due to device proliferation, content providers can no longer deliver one version of their
content to the user as they need to deliver an appropriate form of content depending on the
capabilities of the viewing device. Re-authoring content, in order to support different markup
languages or the different capabilities of each device, is clearly impractical whereas providing
content for a single device or browser excludes large numbers of users. This report
investigates how we can address these problems by providing device independent content. It
provides a comprehensive survey of existing technologies organized in the Framework shown
in Figure 1.

Devices

Device capabilities

Document descriptionWeb applications

Other approaches

AccessibilityTechnologies
03/04/2001 - v36

Figure 1 - Existing technology for device independence

2 Devices
Users want to view Internet content and use web applications on a variety of devices
including PCs, electronic book readers, PDAs, phones, interactive TVs, voice browsers,
printers and embedded devices such as cameras. A useful summary of typical variations in
device capabilities is shown in Figure 2.

Application language

Output

Input

Browser language

Processor

Memory

Multimedia objects

Devices
08/03/2001 - v23

Native code

Intermediate Code
Java

DotNet

Screen

Size / Resolution

Colour / Monochrome

distance of viewer

relative size of fonts

aspect ratio

SoundSynthesized Speech

Paper output

Braille

Touchscreen

Mouse

Keyboard

Keypad

Voice Input

Joystick

Content Markup

HTML

WML

HDML

VOXML

SVG

Flash

Client Side Scripting JavaScript

Applets
Java

ActiveX

Styling CSS

GIFs

JPGs

WBMPs

WAVs

MP3s

QuickTime

Figure 2 - Variations in Device Capabilities

When the device uses content it receives it in the form of multimedia objects, application
languages or browser languages (shown on the right hand of Figure 2). Current devices
support a variety of different content types partly determined by their underlying hardware

Current Technologies for Device Independence Page 4

capabilities (shown on the left hand side of Figure 2). In order to support device independence
we must be able to deliver content in a format compatible with a device. For example if a
handheld device can read GIF images but not JPEG images it is necessary to convert one
format to another. In addition the content must reflect the underlying hardware capabilities of
the device so we may need to do some additional image processing if the target device can
only display four level grey scale output.

3 Specifying Device Capabilities
Currently there are three different places adaptation can take place as shown in Figure 3: the
server, the proxy and the client browser. There are examples of all three architectures: server
based (Cocoon, Axkit), proxy based (AvantGo, Palm Web Clipping) and client based
(XHTML / CSS). These examples will be discussed in later sections. If adaptation occurs at
the server or the proxy, these entities will need to know something about the capabilities of
the client. They will either need a unique identifier for the client device so they can retrieve a
capability specification from a repository or they will need the capability specification itself.

Server Client

Adapted
content

Capability
specification,

requests

Server Proxy Capability
specification,

requests

Server Client

Client

content

Adapted
content

content

Server Based
Adaptation

Proxy Based
Adaptation

Client Based
Adaptation

requests

requests
Figure 3 - Adaptation Types

Currently, servers and proxies can determine the identity of a particular device using the
request header field in the HTTP protocol. In addition there are four alternative proposed
capability specification schemes: the W3C composite capability / preferences profile
(CC/PP), the WAP User Agent Profile (UAPROF) standard, the SyncML Device Information
standard (DevInf) and the Universal Plug and Play Standard (UPnP).

3.1 HTTP Request Header Fields
User agents (web clients) identify themselves when they send requests to web servers1. This is
done primarily for statistical purposes and the tracing of protocol violations but does support
the automated recognition of user agents. For example early Netscape products generate User-
Agent strings that look like this:

Mozilla/4.04 (X11; I; SunOS 5.4 sun4m)

Where the user agent string has the following syntax:

Browser / version(platform ; security-level; OS-or-CPU description)

Ideally, devices should reveal more information about their capabilities and preferences than
this. There have been attempts to extend the request header format but this has not occurred in

Current Technologies for Device Independence Page 5

a standardized way. For example Netscape request headers contain a proprietary language
specification; certain proxies append proprietary information to the request header.

Using the user-agent string to perform content adaptation has caused problems. Early on in
the development of the web, webmasters used the user-agent string to determine whether to
send frames to a browser. These sites would only send frames to browsers that identified
themselves as "Mozilla" as this was the first browser with frames support. Consequently
Microsoft made their browser claim to be Mozilla because that was the only way to let their
users view framed web pages. Clearly if we do provide specific content for a device, we need
to make sure the device or browser can override that if necessary.

3.2 CC/PP Composite Capability Preferences Profile
The Composite Capability / Preferences Profile (CC/PP) standard2 is being created by the
W3C. CC/PP is a comprehensive method for communicating the capabilities of devices such
as clients, proxies, gateways and caches as well as resources such as documents. CC/PP is
based on the Resource Description Framework (RDF)3, another standard created by the W3C.
RDF was originally intended for describing web pages so that they are more easily indexed
and understood by search engines. In RDF all entities are described as resources and consist
of a resource name, a resource property and an attribute. These resources are organized in
components to form a schema. CC/PP is not a specific vocabulary for specifying device
capabilities. Rather it is a generic language for constructing such vocabularies. Example
vocabularies have been demonstrated for:

• Print and display devices describing the device identifier, the screen size in characters
and pixels, the MIME types, the character set and the colour palette available.

• User agent headers describing, the terminal hardware e.g. CPU, screen size, the terminal
software e.g. OS Name, OS Version, OS Vendor and the browser e.g. type, name, version
and the MIME types it accepts.

• Proxy servers describing the MIME types it accepts on behalf of the client, the MIME
types it transforms on behalf of the client and the MIME types it rejects on behalf of the
client.

Currently CC/PP fails to address two of the key problems concerning device independence:
firstly it does not provide a standard vocabulary for web clients to communicate their
capabilities to servers. Secondly it does not describe the type of transformations and
customisations that servers are expected to perform on the behalf of devices based on their
capabilities. These problems are beyond the scope of the CC/PP working group but they must
be addressed in order for CC/PP to be of practical use.

3.3 WAP UAPROF
The WAP User Agent Profile (UAPROF)4 is a standard being developed by the WAP Forum.
It is intended that future WAP devices will use it to communicate their capabilities to a server.
It is a CC/PP application so it addresses the first problem highlighted in the previous section
i.e. provides a standard vocabulary for WAP clients to communicate their capabilities to
servers. However it is not ideal as it would be preferable to have a single vocabulary for all
web clients rather than just WAP devices. The current UAPROF specification does not
address the second problem highlighted in the previous section mainly how servers or proxies
should use the information supplied by clients using the UAPROF.

Interestingly WAP UAPROF considers five different categories of device capability as shown
in Figure 3: software, hardware, browser, network and WAP. This means the server can adapt
to the capabilities of the network as well as the capabilities of the device

Current Technologies for Device Independence Page 6

Hardware

Software

Browser

Network

WAP

UAProf
26/02/2001 - v12

BitsPerPixel

ColorCapable

CPU

Image Capable

InputCharSet

Keyboard

MaxScreenChar

Model

OutputCharSet

PointingResolution

ScreenSize

ScreenSizeChar

SoftKeysCapable

SoundOutputCapable

TextInputCapable

Vendor

VoiceInputCapable

AcceptDownloadableSoftware

AudioInputEncoder

DownloadableSoftwareSupport

JVMversion

Mexe Classmark

MexeSpec

OSName

OSVendor
OSVersion

RecipientAppAgent

SoftwareNumber

VideoInputEncoder

BrowserName

BrowserVersion
CCPPaccept

CCPPaccept-charset

CCPPaccept-encoding

CCPPaccept-language

DownloadableBrowserApps

FramesCapable

HTMLVersion

JavaScriptVersion

PreferenceForFrames

TablesCapable

XHTMLversion

XHTMLModules

CurrentBearerService

SecuritySupport

SupportedBearers

MapDeviceClass

WAPPushMsgPriority

WAPPushMsgSize

WAPVersion

WMLDeckSize

WMLScriptLibraries

WMLScriptVersion

WMLVersion

WTAILibraries

WTAVersion

Figure 4 - The WAP UAPROF Specification

3.4 SyncML
The SyncML initiative5 aims to develop a common synchronisation protocol for data between
mobile devices such as phones, PDAs, desktop PCs and servers. Devices such as phones only
support a limited number of applications: for example most have an address book and some
have diaries. SyncML can be used to synchronise entries used in these applications, but could
be used for potentially any file type. The intention is to make SyncML interoperable across a
wide variety of transport protocols such as HTTP, WSP (the WAP session protocol) and
OBEX (the Bluetooth / IrDA / USB transmission protocol).

When two devices undergo a synchronisation, if they have not synchronised before they have
to exchange a description of their capabilities. This is done using the SyncML Device
Information (DevInf) standard. Instead of implementing DevInf as a CC/PP vocabulary it has
been implemented directly using XML. This choice is unfortunate as CC/PP has been
developed expressly to implement standards like DevInf. The DevInf device description
comes in a four parts as shown in Figure 5: the device, the content types it can accept, its
datastore and any extensions it supports. Like CC/PP, it uses MIME types in order to express
the content types that can be transmitted and received by a device.

Current Technologies for Device Independence Page 7

device
datastore

content capabilities

extensions

DevInf
02/03/2001 - v35

version identifier of DTD

device manufacturer

device Model Name

original equipment manufacturer

firmware version

software version

hardware version

device identifier

device type

reference URI for local datastore

display name

maximum global identifier size

preferred content type received by device

content type transmitted by device

preferred content type received by device

content type received by device

data store memory

synchronisation capabilities

content type

property

enumerated value of property

parameters

size of a property or parameter

display name

data type

name of extension element

value of extension
element

Figure 5 - SyncML DevInf Specification

DevInf is purely concerned with the logical structure of application data. This is fine for
phone book or diary entries, but the SyncML requirements do describe use cases involving
the exchange of documents such as presentations. This would require exchange of
information about the presentation capabilities of a device.

3.5 Universal Plug and Play
Universal Plug and Play6 is an interconnectivity standard being proposed by Microsoft. It is
aimed at device independent interconnection rather than device independent content but does
overlap with CC/PP. Like CC/PP, UPnP uses XML in order to provide a general way of
describing device capabilities rather than specifying vocabularies as it is expected that this
will be done by device manufacturers. There are a number of example device descriptions
such as a CD-Player7 and a Web-enabled camera8. Interestingly, UPnP proposes that XSL as
well as XML can be used so that the parent device can manipulate the device description in
different ways, for example displaying device capability information as well as controlling
device parameters.

4 Document Description

4.1 Printed Media Languages
Document language processors like Troff9, TeX10, LaTeX11, and Lout12 are designed to
produce paginated, hard copy documents. Some of them describe the logical structure of a
document e.g. headings, sections, paragraphs, figures etc. In documents the logical structure
is distinct from the physical structure i.e. the size of text, the width of margins. Document
processors convert logical structure to physical structure automatically during document
processing. For example LaTeX uses algorithms to try to determine the optimum breaking of
sentences in order to form paragraphs, the optimum placement and breaking of paragraphs in
relation to pages and the optimum placement of floating objects in relation to where they are
referenced. Parameters controlling the physical structure of the document can be inherited
from templates for document styles or from specific instructions in the document. Document
style templates are created for a specific type of media i.e. A4, letter or slides. Therefore in
theory reformatting the document for a different media type should just require changing the
document style template. However because authors typically add instructions controlling the
physical structure directly to the document, changing the media will also generally requires
changes to the document. Although these languages try primarily to capture logical structure,

Current Technologies for Device Independence Page 8

the resulting documents often fail to separate the logical and physical structures of the
document so are tied to specific output media.

Documents written in these languages can be distributed electronically by taking the output of
the language processor and converting it to an electronic distribution format e.g. PDF or
HTML via a different document processor such as Latex2HTML13. This takes the logical
structure of the document and converts it to HTML so web browsers can read it. Often though
HTML converters do not render the document exactly as the author envisioned so it may be
necessary to alter either the input document or the output HTML in order to obtain the
required results.

4.2 WYSIWYG Document Preparation
As computers have increased in performance, users have moved away from using document
description languages to using WYSIWYG (What You See Is What You Get) document
preparation systems such as Microsoft Word. These systems are simpler for naive users as
they do not require the user to learn the syntax of the language. Also, the user can see what
the final document will look like as they edit it. Unfortunately they allow users to edit both
the logical and physical structure of the document. As users may be unsure of the difference,
they often add physical structure information when really they mean to add logical structure
information e.g. changing a font size as opposed to selecting some text as being a header. This
means that compared to document description languages, documents are hard to reformat for
other media types. Converters do exist for turning documents to PDF or HTML, although the
HTML conversion is less than ideal.

4.3 Web Oriented Languages
The World Wide Web was originally envisioned as being a means of allowing multiple,
heterogeneous clients to retrieve and display documents in a common language. HTML
concentrates on logical document layout e.g. headers, titles and paragraphs for this reason.
Increasingly though, many HTML pages contain physical document layout information
meaning that pages are not compatible with all web clients. This has occurred for a number of
reasons. Firstly designers who use the web were frustrated with the amount of physical
document layout control available in HTML so they found ways of "subverting" HTML
elements in order to perform tasks they were never intended to. For example tables are often
used to achieve effects such as multiple column page layout. Secondly HTML browsers
added support for physical layout tags such as the font tag to HTML in order to increase the
variety of layout available on their browser. HTML authors have then adopted these tags and
HTML has been forced to adopt physical layout as well as logical layout tags14. Thirdly
WYSIWYG editors have become available for HTML which allow HTML authors to make
the same mistake as with WYSIWYG documents i.e. specifying physical document layout
when they should be specifying logical document layout and vice-versa. In some cases the
editing tools themselves use physical layout in preference to logical layout. Some pages are so
browser dependent it is not uncommon to see them displaying a "best viewed in browser x"
logo or "best displayed at resolution x" logo15.

The W3C is aware of these problems so has several activit ies aimed at resolving them. Firstly
they have proposed that the physical structure description of pages should be separated from
the page and placed in a stylesheet16. In this way different devices and media can be
accommodated using different stylesheets, in a similar way to different document templates
for printed media languages. The W3C also has an accessibility activity17 which recognizes
that content authors, browser creators and editing tool creators all have a part to play in
ensuring the web is device independent. This accessibility activity will be discussed in more
depth in a later section. Finally they have created a revised version of HTML called
XHTML18.

Current Technologies for Device Independence Page 9

4.4 Electronic Publications
Currently there are three major standard formats for electronic publications: Docbook, PDF
and the Open E-Book (OEB) Forum specification.

4.4.1 Docbook
Although it is possible to convert document layout languages or WYSIWYG documents in to
HTML, or HTML documents into a form suitable for printing, the converted document is
never as good as if the document had been produced for that media from scratch. It is possible
to modify the results of translation programs by hand but this means the changes have to be
applied every time the document is updated in the master format. Therefore there is a need for
a document layout language aimed at text only electronic, web and hard copy media.
Docbook19 is a popular set of tags for describing books, articles and other prose documents,
particularly technical documentation. It can annotate documents in quite a rich way; for
example it can distinguish between screen shots and diagrams. It is defined using SGML and
XML and has been used in the Linux Documentation project20. There are transformations for
producing HTML or PDF from the XML version of Docbook using XSLT.

The original LinuxDoc format and another language called Latte21 also allows the creation of
documents targeted at text, HTML and PDF output. Docbook has now replaced LinuxDoc.
Latte is less well known than Docbook and has a TeX like syntax rather than an XML syntax.

4.4.2 PDF
PDF22 is an electronic document distribution format developed by Adobe to replace
Postscript. Whereas Postscript was a full programming language, PDF is a page description
format. This means PDF code is generally simpler, more consistent and predictable than
Postscript. PDF also has the advantage that it is page independent meaning individual pages
can be rendered without having to interpret the whole document specification. It uses vectors
as opposed to bit maps, which means it scales well and can render high quality documents.

PDF is aimed primarily at capturing the documents appearance rather that its structure. This
has a number of advantages. PDF is easy to create. It is better at typography and presentation
than OEB, as it can render documents so they are identical to printed media. It is effective for
technical publishing and foreign languages as it is possible to include non-standard characters
in the document, therefore ensuring the reader can render them correctly. PDF also has a
number of disadvantages. The format is controlled by Adobe and is proprietary. It only works
well if the document is formatted for the device it is displayed on so if you have a PDA
device, you are going to have difficulty reading documents formatted for A4 without
excessive scrolling and zooming. It is not possible to extract the document structure and text
from the PDF document, which means certain processing and searching operations are
difficult. Finally PDF files also contain little structural information that can make searching or
navigating them difficult.

4.4.3 Open Electronic Book Forum
The Open Electronic Book Forum23 tries to set devices for electronic book readers and
electronic book content. The OEB standard tries to capture document structure rather than
appearance. OEB is based on XML and comes in two flavours: basic OEB is based on an
XML compliant version of HTML 4.0 and can use CSS stylesheets (with some restrictions).
Extended OEB is based on XML and requires the use of CSS in order to render unfamiliar
mark-up. OEB also supports JPEG and PNG images as core media types and can optionally
support other media types using a "fallback" file in case readers cannot process them.

OEB has some advantages compared to PDF. Firstly it should be better at coping with a wide
range of devices than PDF as it separates the logical and physical structures of documents.

Current Technologies for Device Independence Page 10

However this will depend on how authors mark up their publications just as it does in HTML.
OEB should provide better backward compatibility than PDF does, and there is always the
possibility of upgrading files by adding additional mark-up. It should also be possible to
provide alternative renderings of OEB documents - for example Braille or audio - which is
not possible with PDF. Finally, unlike HTML, there are DTD's for the basic and extended
OEB formats enabling documents to be validated.

OEB does have some disadvantages. Firstly many publishers use proprietary formats like
Quark for storing publications. Converting from these proprietary formats to XML is hard
although tools are becoming available to help with the process. However, as noted in the
section on WYSIWYG editors, tools can be used incorrectly so authors or editors must
properly understand logical and physical document structure and the need to separate the two.
Secondly although OEB is based on Unicode, there is no guarantee that readers will have the
correct character set for displaying symbols or international Unicode characters. Thirdly there
is no guarantee of the graphics capability of readers and as OEB uses a bitmap graphics
format it degrades badly on less capable devices.

As PDF and OEB both have disadvantages and advantages, it is expected that publishers will
need to use both PDF and OEB publication formats24. PDF is aimed at distributing documents
electronically - for example journal papers - so they may be printed out or read on the screen
of a PC. OEB on the other hand is targeted at electronic book readers that are aimed at
replacing conventional books by allowing users to download E-publications electronically to
the reader. In addition to dedicated E-Book readers, OEB reader software is also available for
PDA's. For example MobiPocket25 has produced reader software for Palm OS, EPOC32 and
Windows CE devices.

4.5 Constraint-Based Layout
We have discussed how documents may be stored in document description languages,
proprietary formats aimed at editing packages, web-oriented languages and electronic
document formats. All these formats are currently in use today by different publishing and
reading communities. In addition to these descriptions, there has also been research into an
alternative way of specifying document physical structure so that it adapts more easily to
different devices. This method is called constraint-based layout26 and is related to work on
constraint-based user interfaces that has been conducted since the early eighties. Here the
document author describes aspects of the physical structure of the document as a series of
mathematical constraints e.g.

page_height=header_height+text_area_height+footer_height

It is then the responsibility of software that is rendering the document to try to come up with a
feasible solution that meets the document layout constraints, the constraints inherent in the
device (e.g. screen size) and those specified by the user (e.g. preferred font size). Document
layout languages such as LaTeX use similar optimisation methods in order to decide on the
optimum breaking of lines or the optimum positioning of paragraphs on pages. However in
LaTeX the optimisation algorithms are hard-coded into the document processor and use
heuristics to solve the constraints efficiently.

A prototype web page browser for viewing documents using constraint-based layout is
available on-line27 and typical output from the browser for different screen configurations are
shown in Figure 6, Figure 7, Figure 8 and Figure 9. The solvers used in this prototype use
both local propagation methods (for continuous constraints) and finite domain solvers (for
discrete constraints such as font size). Constraint satisfaction is computationally expensive
compared to rendering a HTML document but can be achieved at a reasonable speed on a PC.

Current Technologies for Device Independence Page 11

There are a number of problems with constraint-based layout. Firstly it is necessary for
designers or editors to specify document layout as mathematical formulae that may be
difficult. Secondly it is necessary for the browser to support constraint-based layout. Thirdly
typically these methods use hierarchical constraints meaning different constraints have
different "weights" of importance. This can lead to unexpected results from the solver.
Therefore for the moment it is not clear whether constraint based layout offers a viable
solution to the problem of device independence.

Figure 6 - Alternative Layout 1

Figure 7 - Alternative Layout 2

Figure 8 - Alternative Layout 3

Figure 9 - Alternative Layout 4

5 Accessibility
As previously noted the original intention of HTML was to make documents available on a
number of devices. Due to the way HTML has been used and the way the language has
developed HTML has not really lived up to this original design goal. Therefore the W3C has
an accessibility activity17 that aims to ensure that content, browsers and authoring tools all
make the web accessible as possible to users with different needs and different browsing
clients. The HTML Writer's Guild is also trying to promote web accessibility28. The term
accessibility is often used to refer to users with special needs e.g. those requiring Braille or
speech output but the methods do support device independence. However it is worth stressing
that accessibility in reality covers any web browser other than the one used by the designer
when they designed the page. The accessibility activity has produced a number of guidelines
and these are summarised in Figure 10.

The guidelines are based on the idea that the only truly device independent form of content is
text. Therefore any element essential to a page that is not text must have a text equivalent.
Careful thought needs to be given to providing an equivalent with the same meaning for all

Current Technologies for Device Independence Page 12

users29. Secondly they recognise that the physical structure of documents is device specific so
should be separated from the document using a stylesheet. This allows the document to be
rendered on multiple devices using different stylesheets. Finally they emphasise that content,
authoring tools and browsing software must all obey the W3C standards in order to achieve
accessibility.

content

authoring tools

user agents

Accessibility
26/02/2001 - v16

general

provide equivalent alternatives

don't relay on color alone

use markup and stylesheets properly

clarify natural language usage

create tables that transform gracefully

ensure that pages featuring new technologies
transform gracefully

ensure user control of time-sensitive content
changes

ensure direct accessibility of embedded user
interfaces

design for device independence

use interim solutions

use W3C technologies and guidelines

provide content and orientation information

provide clear navigation mechanisms

ensure documents are clear and simple

support accessible authoring practices

generate standard markup

support the creation of accessible content

provide ways of checking and correcting
inaccessible content

integrate accessibility solutions into the
overall look and feel

promote accessibility in help and
documentation

ensure the authoring tool is accessible to
authors with disabilities

support input and output device
independence

ensure user access to all content

allow the user to configure the user agent not
to render some content that may reduce
accessibility

ensure user control of styles

observe system conventions and standard
interfaces

implement specifications that promote
accessibility

provide navigation mechanisms

orient the user

allow configuration and customisation

provide accessible product documentation
and help

Figure 10 - W3C Guidelines for accessibility

Early on in the history of the web, improving web site accessibility would have solved the
problem of device independence. Unfortunately as new web markup languages such as WML
and HDML have arrived, this is no longer the case. One way around this may be to replace
WML and HTML with a single language such as XHTML and this will be discussed later.

6 Web Applications
CGI

Servlets

Embedded Scripting

Template Languages

Session Based Languages

MVC Architectures
XML Transformation

GUI Languages

Form Languages

Web Applications
23/02/2001 - v4

Element Construction Set

ASP

JSP

Java Taglibs

Java Beans

Enterprise Java Beans

XMLC PROPRIETARY

PHP

EmbPerl

XSP

WebMacro

FreeMarker

Tea

Velocity

Otembo

TextGenerator

MAWL

<BigWig>

Struts

Turbine

Expresso

XSLT

Serif (Resin) PROPRIETARY

SAX

DOM

Architectures

AxKit

Cocoon

Infozone

XML

UIML PROPRIETARY

Hammock PROPRIETARY

XPToolkit XUL

XForms

PowerForms

Mozquito Form Markup Language
PROPRIETARY

Figure 11 - Existing technology for web applications

Current Technologies for Device Independence Page 13

Although the World-Wide Web was first created as a means for accessing documents,
increasingly the web is used to access applications. Even when users are using documents
they often obtain those documents via applications known as portals. Therefore in order to
understand how to achieve device independence we also need to consider how applications
are built as well as how documents are written. Figure 11 shows a framework for categorising
different technologies involved in the creation of web applications. These technologies will be
discussed in subsequent sections but there are also a number of surveys available on the web
such as 30, 31 and 32. One problem common in web application technologies is how to separate
application logic from presentation. This is a very similar problem to the device independence
problem of separating document content from document presentation.

6.1 CGI
CGI, the common gateway interface, was one of the first methods for creating web
applications. It defines a communication standard between a CGI application and the web
server. As it is a communication protocol rather than a language, CGI applications can be
written with a variety of languages including C, C++, Java, Perl or Visual Basic. Perl in
particular is a popular choice as it is simple, high-level and has many freely available
extension libraries.

In its most basic form, CGI is inefficient at handling concurrent client requests. A CGI
program needs to create a separate process for each user request. Each process terminates as
soon as the data transfer is complete. Spawning a separate program instance for each client
request takes extra time so CGI programs are not really suitable for high-traffic applications
that need to process a large number of client requests. Recently FastCGI33 and the Apache
mod_perl module have addressed these inefficiencies.

CGI, along with many other approaches, also has two other problems: the difficulty of
separating presentation from logic and the way that HTTP, which is a stateless protocol,
makes it difficult to control the sequence of pages in a session. It is hard to separate
presentation from logic because CGI code often contains embedded HTML markup. This is
not ideal as changes to the presentation of the application, ideally done by a designer, requires
changes to code which must be done by a programmer.

In order to understand the problem about controlling the sequence of pages in a session,
consider an example where we may need to make sure that a user has supplied their details
before they are allowed to use a web application. In a conventional program this could be
achieved simply by flow of control. In a web application the flow of control is determined by
the order the user retrieves pages so it is necessary to use other approaches. Netscape realised
this problem early on and proposed cookies as a mechanism to give the client a state that
could be set by the server. Typically programmers solve this problem using a mixture of
hidden form input values, query parameters and cookies to store the state of the web client.
This is necessary because not all browsers support cookies or users may turn them off. In
order to provide security or control of session sequence, pages have to call code to interrogate
the client's state before it is allowed to access that page as well as generate the page
accordingly. This is not an ideal solution as it leads to unnecessary code complication or if it
is neglected can lead to possible access control issues.

6.2 Servlets
Servlets34 were developed by Sun to address the efficiency problems of CGI. A servlet is a
piece of server side Java code run in a server application to answer client requests normally
using HTTP. When a servlet is called for the first time, it is loaded into memory. After the
request is processed, the servlet remains in memory and will not be unloaded until the server
is shut down. This means that Servlets can be called efficiently many times without the

Current Technologies for Device Independence Page 14

overheads of creating new processes as in CGI. The Java servlet API is threaded so that each
instance of a servlet can handle multiple requests simultaneously.

However, just like CGI, Servlets typically contain embedded HTML. They have request and
response API's for dealing with form variables, query strings or cookies but as in CGI
programmers have to work at quite a low level in order to control the session sequence of a
web application.

Servlets are not necessarily page-centric i.e. there does not have to be a one-to-one
correspondence between pages and Servlets. This means that pages can potentially share
common code or resources, such as keeping database connections persistent via a connection
pool.

6.3 Embedded Scripting Languages
As well as CGI and Servlets, a number of embedded scripting languages have been developed
for creating web applications. Embedded scripting languages allow you to put snippets of
code inside HTML. This was originally done to avoid the problem in CGI and Servlets that
the application code often contains HTML code. However in an embedded scripting language
the HTML code contains application code producing the same problem but the resulting
pages are generally shorter than the script versions, so these languages do lend themselves to
faster site development. In addition, early embedded scripting languages suffered from being
page-centric. Because code is embedded on a page, it is hard to share code or resources
between pages. For example in ASP, it is common to have to open a database connection on a
per-page basis that is inefficient. Newer versions of these languages have recognized this
problem and provide workarounds.

Examples of embedded scripting languages include Java Server Pages, Active Server Pages,
Professional Home Pages and EmbPerl. EXtensible Server Pages, to be discussed later, is an
XML variation on Java Server Pages.

• Java Server Pages (JSP)35 are based on Java. Pages are transformed into Java Servlets
and compiled w hich makes them very efficient but also means they generate rather
confusing error messages. Recent versions of JSP allow JSP pages to call objects known as
Java Beans, which provides better support for separating presentation from logic.

• Active Server Pages (ASP)36 has been developed by Microsoft and can use JScript, Perl
or VBScript as a scripting language. On the Windows Platforms ASP is based on COM,
Microsoft's Component Object Model, so scripts can call COM components in a similar
way to JSP calling Java Beans. The COM architecture is acknowledged as being rather
complicated and slow. ASP also supports easy construction of database applications via
Microsoft's Active Data Objects and SQL.

• Professional Home Pages (PHP)37 is an open-source embedded scripting language
based on C. Like ASP it provides support for SQL so it can be used with databases. Newer
releases of PHP provide functionality like connection pooling in order to try to optimise
database access.

• EmbPerl38 is an open-source embedded scripting language based on Perl. It is newer
than the others so has less support. Compared to the other languages it has an idiosyncratic
syntax.

6.4 Template Languages
Template languages, like embedded scripting languages, take a page-centric approach,
allowing the developer / page designer to access logic within HTML pages. In contrast to
embedded scripting languages they remove the ability to put raw Java code in a page,
supposedly to improve the separation between presentation and logic. They also provide
support for elements like common headers and footers or repeated elements. They are less
widely used than embedding scripting languages:

Current Technologies for Device Independence Page 15

• WebMacro39 is an open source scripting language that works with HTML and XML. It is
based on Perl so is powerful but uses a class analyser that has quite large runtime
overheads. The templates and the Java objects communicate using a shared area of code /
data known as a context.

• Freemarker40 is an open-source scripting language. In Freemarker data objects are
passed to the template in tree form. This means that the logic part of a Freemarker
application is generally more complicated than WebMacro as data needs to be converted
into a special format but the resulting templates contain fewer programming constructs.

• Tea41 is a template language developed by Disney's web division and used in a number
of serious commercial portals. It deliberately adopts a very restricted set of programming
constructs in order to avoid errors and allow designers to edit pages. Tea also has an
integrated development environment called Kettle. Because Tea has been used for serious
commercial development it is stable and has good documentation.

• Otembo42 has some of the features of an embedded scripting language as you can place
SQL queries directly into templates. Otembo has very little documentation compared to the
other template languages.

• Velocity (VTL)43 is an open source template language developed by Apache based on
Java. VTL can be used both as a standalone utility for generating text or mark-up as well as
an integrated component of a web application. It provides a wide range of common
programming language and macro constructs.

• TextGenerator44 is a general language for generating text or mark-up. The output
language can be HTML, WML, XML or Latex. Like Velocity, it has a wide range of
common programming language constructs. Unfortunately there is little example code.

• TRiX45, 46,47 is a template language developed by Hewlett Packard Laboratories.

6.5 Session Based Languages
CGI and Servlets take a script-centric approach to developing web applications. Embedded
scripting languages and template languages on the other hand use a page-centric approach. As
we have already noted, session sequence control can be difficult with page-centric
approaches. There are currently two examples of session-centric languages that have been
developed to try to overcome these problems. In these languages, the application logic
controls the display of presentation rather than the client requesting a page. This can simplify
the construction of web applications:

• MAWL48 stands for "the Mother of all web languages". It is a research language
developed by ATT around 1995. MAWL programs are organized as a set of sessions that
define entry points to a service. The sessions represent the logic of the application, and
control the rendering of templates that form the presentation layer of the application. The
sessions are described in a programming language similar to C and presentation is
described in a language derived from HTML called MHTML. Separating logic and
presentation in this way allows document templates to be syntax-checked which helps
ensure content can be rendered correctly. It also helps support device independence and
early MAWL demonstration applications were implemented for both graphical and voice
browsers.

• <Bigwig>49 is an academic project that takes inspiration from MAWL based at the
University of Aarhus, Denmark. As well as being a session-centric language, <Bigwig>
incorporates a number of novel ideas including the idea of client-side form validation using
a language called PowerForms.

6.6 Form Based Languages
Another area of complexity in web applications is the way that data is submitted to the server
via forms. The validity of the form must be checked on the server; this can be slow but also
adds complexity to the application. If the information entered was invalid somehow the form
needs to be returned to the client or the user will have to type everything in again. This has to

Current Technologies for Device Independence Page 16

be done via query strings or hidden form variables that adds complexity as they were not
really designed for this purpose. Checking form validity can be solved using client-side
JavaScript. However JavaScript was not designed with this application in mind so in some
ways it is too low -level for this kind of task. Some early suggestions for a XML form
language are described in 50. Recently a number of specialist languages have been developed:

• PowerForms51 is an XML form description language developed as part of <BigWig>.
Powerforms provides support for validating user input but not device independence. A
form can specify data validation rules both for individual input fields and for
interdependencies between those fields allowing very precise specifications to be created.
PowerForms descriptions are compiled to produce HTML / JavaScript code that
implements the form.

• Form Markup-Language (FML)52 is a commercial language that has been developed by
Mozquito Technologies as a precursor to XForms. A form in FML can consist of a number
of pages in a single file, just as a deck in WML can consist of a number of cards. FML
provides more limited input validation than PowerForms via several predefined input types
such as number, date, URL, domain, email address and expire data. It also provides support
for the calculation and display of field values at run-time, for example providing a total in
an expense application. It provides constructs called toggles that allow the programmer to
activate and deactivate objects within a document. This can be used to hide fields that are
not relevant. It also provides a mechanism to declare event handlers to process specific
form events.

• XForms53 is a standard being developed by the W3C that aims to replace the current
XHTML form controls. An XForms description consists of a device independent model,
device independent user interface details and device specific user interface details. It also
defines limits and restrictions that apply to the model items when the form is being filled
and relationships and dependencies, to support input validation in a similar way to
PowerForms and FML. It is anticipated that XForms will become dominant if eventually it
becomes supported natively in web browsers.

6.7 User Interface Based Languages
As well as forms, there are also a number of languages for creating more complex event based
user interfaces in web browsers:

• UIML54 is an XML compliant declarative language that provides cross platform user
interfaces. It is a commercial product developed by Harmonia55. It tries to achieve platform
independence by separating user-interface code from non-user interface code so that
common features of interface code for different devices can be factored out. This is done
by splitting the user interface description into five sections: description, structure, data,
style and events. In addition, it supports local events as well as external events that
propagate outside the interface description. Internal events can be used to perform tasks
like real-time updating found in FML. UIML descriptions can either be written in general
UIML or device-specific UIML where the vocabulary is closely aligned with a specific
device. Device-specific UIML can then be mapped to general UIML using a transform
language. At the moment only beta versions of a Java and WML renderer exist.

• Hammock56 is a commercial product developed by a company called OOP. It tries to
tackle the problem of cross-platform UI's like UIML, but instead of using a declarative
language it provides a Java library that is very similar in structure to Swing. At runtime, the
library calls a renderer that converts output into a target form such as HTML. At the
moment only a HTML renderer exists although the intention is to support a WML renderer
as well. Hammock uses four types of object: an application object, which corresponds to a
Java servlet, a page object, which corresponds to a viewport or a deck of pages, a form
object, which is where the bulk of the coding is done and GUI objects that sit in form
objects.

• XPToolkit57 has been developed as part of the Mozilla browser as a collection of loosely
related facilities which aim to provide a platform independent API for user interfaces. The

Current Technologies for Device Independence Page 17

XPToolkit specification describes various objects that are wrapped in a package described
by an XML compliant language called XUL 58. For example the Mozilla browser is a
package described in XUL hence it is possible to customize the browser by editing the
XUL description. Mozilla take the view that a XUL description will not be truly cross-
platform. Currently XPToolkit is aimed at PC's and there are no plans to extend it for
phones or PDA's.

6.8 Componentisation
As noted in a previous section, one problem with JSP is the difficulty in separating logic from
presentation. Two technologies, custom tag libraries and using JSP's with Java Beans have
been developed to address this problem:

• Java Taglibs59 are collections of custom tags. The tags can be used to replace common
items of logic in JSP pages. A custom tag can call elements called actions that can create
and access programming language objects and change the output stream. There are a
number of pre-existing tag libraries such as the Jakarta Taglib60 containing a number of
tags for processing XML input and applying XSLT transformations as described later.

• Java Beans61 are simply Java classes that adhere to the naming and design conventions
laid down in the Java Beans API. A Java Bean has a number of properties, which are
member variables accessed using get and set methods. The idea of defining objects in this
way is they then naturally form reusable components with a very clean and well-defined
interface. JSP pages can be simplified by inserting references to Java Beans rather than raw
Java using special tags.

There have also been two technologies developed aimed at separating presentation from logic
in Servlets:

• XMLC (XML compiler) 62,63 is a part of a commercial application server called Enhydra64
produced by Lutris. It is an application that compiles HTML or XML documents into Java
objects using DOM. The aim of this is to overcome the problem of having to include
embedded HTML or XML in servlet code. Instead the servlet calls to the object created by
XMLC. As with other auto-translation utilities, problems can occur if it is necessary to
make alterations to the XMLC output as those changes need to be made every time the
object is recompiled.

• The Element Construction Set (ECS)65 is a Java library produced by Jakarta that
provides an interface for generating HTML or XML from a servlet without having to resort
to println commands. It can be used to export mark-up for a number of target languages. It
would be possible to use an approach similar to ECS to implement programmatic device
independent interfaces, as used in HawHaw or DotNet that will be discussed later.

6.9 Architectures
Many applications are based on the three tier (also known as Model 1) pattern which divides
the application into a data source (bottom), middle and client tier 66. There is an alternative
pattern though called the Model-View -Controller67 (also known as Model 2) for separating
application presentation (the view) from application logic (the model) has been in use since
the early 1980's. It has recently been identified as a key pattern for developing web
applications. In the MVC architecture housekeeping activities, such as maintaining database
connections, are typically performed by the controller. A simplified model of the MVC
architecture is shown in Figure 12. MVC architectures are primarily associated with the Java
2 Enterprise Edition (J2EE)68 and hence JSP, Servlets and Java Beans although it is possib le
to implement them using ASP or PHP. In order to simplify the process, a number of open-
source MVC architectures have been developed:

• Struts69 is a JSP implementation of an MVC architecture. It provides flow control for
JSP based web applications, a controller servlet, JSP custom tag libraries, and various
utilities to support XML and internationalisation. In Struts, the controller consists of a

Current Technologies for Device Independence Page 18

number of Servlets that are configured by defining a set of mappings against a request URI.
The Servlet is responsible for performing the desired business logic and then dispatching
the control to the appropriate view component to create the response. Struts provides
support for different presentation techniques including application specific custom tags,
page composition with includes and image-rendering components for dynamically
generated images.

Data
source

Model
(Java Bean)

View
(JSP)

Controller
(Servlet)

Browser

Web Layer ClientsServer

Figure 12 - Model View Controller Architecture

• Turbine70 is similar to Struts but offers a richer feature set. It is intentionally not tied to
JSP but can also be used with Cocoon, ECS, WebMacro, Freemarker or Velocity. It
contains a collection of reusable components aimed at easing server side development.
Turbine provides MVC flow control, integration with Object Relational Mapping tools, a
job scheduler, localization services, caching services, security and many other features. It
also has support for XML. Typical applications of Turbine include shopping carts, link
directories, project bug tracking systems and portals like JetSpeed.

• Expresso71 is a layered controller architecture. It separates the controller into a database
layer, a framework layer and an application components layer. The framework layer
provides security, job control, logging, database connection pooling and caching, event
notification, configuration values and database objects. The application components layer
provides functions such as ePortal content management, discussion forums, search engines,
data warehousing toolkit and online forms. Expresso is open source although it is
commercially funded. There is an Expresso-XML object that provides support for XML /
XSLT .

6.10 XML Transformation
XML, the EXtensible Markup Language has evolved from both SGML (Standard Generalized
Markup Language) and HTML (HyperText Mark-up Language). XML is a data definition
language designed to structure data and describe information. The author of an XML
document is able to create their own tags and is therefore freed from constraints of the
predefined tags found in HTML. A DTD (Document Type Definition) is used to define the
vocabulary and syntax of the user -defined tags. There are a number of device independent
solutions based on the idea that a page can be marked up using XML and then transformed to
a number of different output formats. There are several tools available to perform this
transformation:

• XSLT72, the EXtensible Stylesheet Language Transformations is an XML compliant
language created to solve the problems of how to transform XML documents into another
type of document. XSLT is a recursive declarative language that describes rules that can
transform XML documents. An XSLT processor reads in the XML and XSLT stylesheet
and based on the instructions in the stylesheet outputs a new document (e.g. in XML,

Current Technologies for Device Independence Page 19

HTML or WML). XSLT is a powerful and fast way of manipulating data. However there is
a general feeling that it is a complicated language73 to use so in particular designers may
not want to write XSLT unless it is done automatically in a manner similar to WYSIWYG
HTML editors. XSLT and XML can support device independence allowing the creation of
a site where each page of content is described by a single source document in XML. XSLT
stylesheets are then used to transform this document for multiple target devices. In practice
though, defining the tags and transforms in such a way that there is a single stylesheet per
device has been found to be difficult. Prototype sites often end up having a stylesheet per
device per page that is clearly not ideal.

• SAX (Simple API for XML) is a way of making XML data accessible in Java. It is an
event based XML parser that processes the document sequentially. This is very memory
efficient, as the parser does not need to keep a copy of the complete document in memory.
SAX is useful because it may be simpler to specify certain types of transformations in a
procedural language like Java than in a declarative language like XSLT.

• DOM (Document Object Model) is a way of accessing XML and HTML documents. A
DOM parser uses a tree-based representation of an XML document and can interface to a
number of languages such as Java or C++. Unlike SAX, it usually keeps the entire
document in memory but it can support more complex transformations. DOM can be very
expensive in terms of the memory required to hold the documents and hence the speed it
can then process those documents.

• There are two Perl-like languages for XML transformation that use XPath. XMLScript74
has been developed by a company called DecisionSoft. XPathScript75 has been developed
as part of AxKit. Both these languages are non-side effect free, unlike XSLT. This has
advantages and disadvantages but this allows the languages to use conventional variables
and functions.

6.11 XML / XSLT Architectures
Sun has suggested there are three approaches for using JSP with XML / XSLT in web
applications: single pipeline, multiple pipeline and combination76. In the single pipeline
approach shown in Figure 13, the JSP page generates XML that is transformed to multiple
output languages via multiple XSLT stylesheets. By contrast in the multiple pipeline approach
shown in Figure 14, there is a different JSP page per device but backend logic can be shared
between pages using Java Beans and custom tag libraries.

HTML

WML

HDML

Parse and
transformJSPXML

XSL (HTML)
XSL (WML)
XSL (HDML)

Web Layer ClientsServer

Figure 13 - Single Pipeline

In a combination architecture, you can use a mixture of these approaches e.g. one pipeline per
language but styling for different dialects of languages. Clearly the multiple pipeline approach

Current Technologies for Device Independence Page 20

requires a lot of re-authoring, but if we have separated logic from presentation effectively it
may be less complicated than the single pipeline case if we have one stylesheet per page per
device. In addition the multiple pipeline approach may be more performance efficient
particularly if the pages being generated are highly dynamic so there is no advantage in
caching them - for example displaying users bank accounts.

HTML

WML

HDML

XML

Web Layer ClientsServer

Model
(Java Bean)

View
(JSP)

View
(JSP)

View
(JSP)

Custom Tag
Library

Figure 14 - Multiple Pipeline

Three architectures, Cocoon, AxKit and Infozone have been developed as implementations of
the single pipeline approach.

• Cocoon77 was developed by Apache for publishing XML to multiple target devices. It
provides caching in order to speed up document delivery. It uses XSP, the EXtensible
Server Pages Language, an XML compliant version of Java Server Pages in order to
dynamically generate XML on the fly. XSP allows static XML data with Java fragments.
Like other embedded scripting languages, XSP suffers as content and logic are placed in
the same file. Cocoon users have suggested that stylesheets could be used to separate data
from logic in XSP pages but this seems unnecessarily complicated.

• Axkit78 is similar to Cocoon but written in Perl rather than Java. It uses Perl and has
support for XML, XSLT and XSP as well as a new language called XPathScript79 that is a
XML transformation language based on Perl and XPath. The Axkit project also intends to
develop stylesheet languages based on SAX rather than XSLT. Such languages would be
very efficient in terms of processing and memory usage. This means they would have
potential for being used for client-side styling on mobile devices as well as on servers.

• Infozone80 is similar to Cocoon. It provides some additional features compared to
Cocoon and Axkit such as a content management system that claims to provide hierarchical
document storage, document versioning support and user management and workflow. As
well as XSLT Infozone also provides Lexus, an implementation of the XML query-update
language. From the documentation it seems the XML query-update language is very
similar to XSLT except that you do not have to copy the source document; instead you
either add, alter or delete nodes from the source document. Currently the Infozone project
is much less advanced than Cocoon or Axkit.

• Serif81 is part of a commercial application server called Resin produced by a company
Caucho. Like Cocoon it allows pages to call an XSLT processor but uses a proprietary
language called XTP rather than XSP.

Using XML and XSLT for device specific delivery has some advantages. Firstly, different
WAP devices vary in the way they implement the WAP standard. For example Nokia and
Phone.Com WAP browsers implement selection lists in different ways. Using XML / XSLT,

Current Technologies for Device Independence Page 21

it is possible to style documents for different types of phones. However targeting content at
specific phones increases the number of transforms required, and the process is difficult
because there are no formal specifications of how individual phones interpret the WML
standard. Another advantage of XML / XSLT is they allow the amount of text delivered to
different devices to be controlled, assuming the original content has been marked up
correctly. For example mobile devices may just want to receive the abstract of a paper
whereas PC clients might want to receive the whole paper. Similar mechanisms can be used
to specify which images should be displayed on which devices.

However there are also possible disadvantages with XML / XSLT. Firstly when creating
content it is possible that people will just sit down and start tagging up arbitrary XML and
writing stylesheets to style XML for different devices. This leads to a situation where there
are individual stylesheets for each device viewing each page. Of course then it is possible for
authors to go through the stylesheets and try to find common transforms and then place them
in central include files. Ideally though, the starting point would be defining an XML
compliant device independent authoring language. If this language was designed using a top
down approach (rather than the bottom-up approach just described), it would minimize the
number of transforms needed it would be possible to validate the content of documents. This
is the same approach as has been taken with Docbook. In addition XSLT might find more
acceptance if there was some kind of WYSIWYG authoring tool for transforms although how
this would work is not clear.

7 Other Approaches

7.1 Transcoding
Currently one common approach to the problem of displaying Internet content on multiple
devices is transcoding82. Here servers or proxies retrieve HTML content from the Internet and
convert it to a form suitable for the device e.g. WML. Some companies have made these
transcoding portals available to users over the Internet83 and produce results as shown in
Figure 15 and Figure 16. Transcoding has the advantage that there is no need to re-author any
content. However it tends to be an unreliable solution as there is no guarantee the transcoded
content will be usable on the target device. This is due to a number of reasons. Firstly the
original HTML may not meet accessibility guidelines so for example site navigation may be
impossible without displaying images. Alternatively the site may be dependent on frames or
the site may use tables to organize its physical layout. Secondly web applications are unlikely
to work as most WAP gateways do not support the use of cookies and most transcoding
proxies cannot cope with form interaction. Thirdly there is a 1.4Kbyte limit on the size of
compressed pages on WAP phones. This means the transcoding proxy must split up pages so
they meet this criterion. As this is done automatically, this may degrade the sites navigability
or understandability.

Unfortunately there are no open source implementations of transcoding proxies but some
implementations of intelligent proxies such as Muffin84 or Proxomitron85 do exist. It might be
possible to implement a transcoding proxy based on one of these architectures. There are a
number of commercial transcoding proxies. IBM has done research on an architecture called
Web Based Intermediaries86 and produced a product called WebSphere transcoding
publisher 87. This provides standard HTML to WML transcoding as well as XML with XSLT
styling. The IBM product can also style pages based on external annotations 88.

Current Technologies for Device Independence Page 22

Figure 15 - XIFT transcoding

applied to HP.com

Figure 16 - DeckIt transcoding applied to

invent.hpl.hp.com

Another company called PyWeb89 have taken an alternative approach in their DeckIt90
transcoding proxy. PyWeb provide a transcoding service with a difference: the proxy can
style the content for WML devices using special tags that are embedded as HTML comments.
Using DeckIt, website authors can create WML pages by adding some extra tags to existing
web pages. This is much simpler than learning new complex languages such as XML and
XSLT but this solution does not scale well for multiple device types so whereas this may be
okay just to provide WML support that still means the website does not support interactive
TV, E-Book readers, etc.

7.2 AvantGo
AvantGo91 is a very popular solution for making Web content available on Palm OS,
Windows CE and WAP devices. A sample AvantGo page is shown in Figure 17. Currently
there are over 2 million users registered AvantGo users in 8 different countries with access to
over 600 different content providers. AvantGo uses a channel model where the user
subscribes to a number of web sites. Pages from those sites are then retrieved when the user
performs a synchronisation operation between the handheld device and their PC. Retrieval
occurs via the AvantGo proxy that performs a transcoding operation stripping out any
unnecessary HTML elements. The web pages are then cached on the handheld, avoiding the
latency problem inherent in wireless communication. Instead of using a new mark-up
language like WAP, AvantGo uses a subset of HTML i.e. no frames, no layout using tables
and no JavaScript. This means that it has been very easy for existing web sites to provide
AvantGo content. In addition because AvantGo caches pages it does not have any of the
delays that WAP has. Solving the latency problem in this way has also increased
compatibility with existing web content. The WAP version of AvantGo is less successful than
the PDA version as it suffers from the same delay in content retrieval inherent in WAP
devices.

AvantGo also provides support for forms although they are only submitted to the server on
synchronisation. Despite this limitation it is still possible to create some useful web services.
AvantGo can provide automatic form completion for personal details in a secure manner.
Although there is variation between the capabilities of Palm devices and Windows CE
devices, the AvantGo style guide92 suggests that content authors aim content at the lowest
device in order to make sure content is available on all devices.

Current Technologies for Device Independence Page 23

Figure 17 - AvantGo in use on a Palm OS handheld

7.3 Web Clipping
Web clipping93 is Palm Computing's own proprietary mobile access technology. Palm was
one of the first companies to release a wireless enabled handheld in the form of the Palm VII
and web clipping was initially developed for this device. To build a web clipping application
authors create a PQA file in a language similar to HTML that specifies how to extract
information from an existing page on the Internet and how to create a new page based on that
information. The page is then compiled to produce an application that can be used on the
Palm device. When the user invokes the application, the device sends out a request to a proxy
server. The proxy server then retrieves the requested web page from the Internet and discards
as much unnecessary information as possible. This is because charges on the Palm VII packet
wireless network are on a packet usage basis, so it is desirable to try to minimize the amount
of information sent to the client. Compared to AvantGo, this approach seems slightly more
complicated but it does allow the customisation of wireless applications and is particularly
suited to dynamic content applications e.g. retrieving stock quotes, maps, news etc as shown
in Figure 18. As Palm VII's are only available in the US, web clipping does not yet have
much regionalized content.

Figure 18 - Palm Web Clipping Application

Oracle has developed a similar approach to web clipping for its Portal-To-Go and Application
Server Wireless edition platforms94. Here when a client requests a document, the server
produces an XML document containing query descriptions. The server takes the queries and
uses them to retrieve web pages. The web pages are converted to XML, and then integrated
into the original document. This document is then styled using XSLT for the client. There is
also an open-source Perl Library, News Clipper95, which can perform similar conversions
although not aimed specifically at mobile clients.

Current Technologies for Device Independence Page 24

7.4 ASP+ DotNet
DotNet96 is the name given to Microsoft's new E-Services initiative. Microsoft is proposing
two methods for supporting mobile devices in DotNet97. Firstly they are going to provide an
implementation of XSLT that can be called from ASP called XSLISAPI98. This is aimed
primarily at static content. As well as XSLT, XSLISAPI also provides support for caching the
converted pages and identifying the capabilities of the browser. Secondly DotNet will provide
a new version of ASP called ASP+. ASP+ provides a new, event driven approach to writing
web applications called WebForms99. This means ASP+ has some similarities to Hammock
and UIML, as well as providing a level of abstraction to hide some of the details of managing
sessions. There is a mobile device variant of WebForms called MobileForms100 aimed
specifically at PDA and WAP devices. Developers wanting to target both PCs and mobile
devices will need to produce both WebForm and MobileForm views, but it should be possible
to share the logic component of these applications.

7.5 PHP HawHaw Library
The HawHaw 101 library is an open-source library for developing websites in PHP that can be
viewed on WAP phones, iMode phones, HDML phones, Palm and Windows CE PC's running
AvantGo and PC's using standard web browsers. It works by supplying a set of methods to
create content. When a device requests a page, HawHaw looks at the User Agent string and
converts the methods into the correct tags for the device. The resulting sites do not look ideal
on a PC as they look styled for WAP as shown in Figure 19. However the library code is short
and concise and it supports a lot of devices without the need to write any additional
stylesheets. BT Ignite has used Hawhaw to create a network monitoring application. HawHaw
uses a programming approach so it is not really suitable for web designers, but it is simpler
than other programming solutions such as XML / XSLT or J2EE. An example HawHaw page
is shown on a PC browser in Figure 19 and on a WAP browser are shown in Figure 20.

Figure 19 - PC Client viewing HawHaw page

Figure 20 - WAP Client viewing HawHaw page

There is a commercial product similar to HawHaw but based on Java called
AVIDRapidTools102. This supports a wide range of devices such as WAP, iMode, Palm,
Windows CE and PCs.

7.6 XHTML / CSS
The original solution proposed by the W3C to device independence was for all devices to
support XHTML and cascading stylesheets. Then it was realised that XHTML is too
complicated for some devices, so the XHTML specification was divided up into modules103.
Devices must support XHMTL-base but have the option of choosing which other XHTML

Current Technologies for Device Independence Page 25

modules to support. Using XHTML for delivery to a number of devices has a number of
advantages. Firstly it means that all devices are using a common language so content only has
to be authored once. Secondly the language is based on HTML, so existing HTML authors
will be able to convert to the new language much more quickly (although they need to get rid
of some bad habits). Thirdly XHTML and CSS separate presentation from content, so if a
page is being displayed on a different device it can either chose to use the default stylesheet,
use a stylesheet specifically for that device or use no stylesheet at all. Fourthly unlike XML /
XSLT , styling is done at the client rather than the server so there is less loading on the server.
Fifthly all clients receive an identical XHTML file, so that files can be exchanged between
devices rather than having to re-request files from the server so they can be styled for the
target device.

8 Conclusions
Hopefully this report has given an insight into the advantages and disadvantages of present
technologies for delivering static and dynamic content to a variety of devices. As a result of
this survey it is possible to make a number of observations. Firstly none of the currently
available technologies is a perfect solution as they all have advantages and disadvantages.
Secondly true device independence will not just require changes by the client device
manufacturers but also static content authors, dynamic content programmers, static and
dynamic content authoring tool creators as well as the software companies providing the
server environment and associated tools. Thirdly technical superiority is not the only measure
of a successful solution; for solutions to be successful they must also be widely adopted.

Current Technologies for Device Independence Page 26

9 Index
<Bigwig>, 16
accessibility, 9, 12, 22
ASP, 14, 15, 18, 25
AvantGo, 4, 23, 24, 25
AVIDRapidTools, 26
Axkit, 4, 21
CC/PP, 4, 5, 6, 7
CGI, 13, 14, 16
Cocoon, 4, 19, 21, 22
CSS, 4, 10, 26
DeckIt, 23
DOM, 18, 20
DotNet, 18, 25
DTD, 10, 19
ECS, 18, 19
EmbPerl, 14, 15
Expresso, 19
FML, 16, 17
Freemarker, 15, 19
Hammock, 17, 25
HawHaw, 18, 25, 26
HTML, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 22, 23, 24, 26
Infozone, 21
Java Beans, 15, 17, 18, 20
JSP, 14, 15, 17, 18, 19, 20
LaTeX, 7, 11
MAWL, 16
multiple pipeline, 20
MVC, 18, 19
OEB, 9, 10
Otembo, 15
Palm Web Clipping, 4, 24
PDF, 8, 9, 10

PHP, 15, 18, 25
PowerForms, 16, 17
RDF, 5
SAX, 20, 21
Servlets, 14, 16, 18
SGML, 9, 19
single pipeline, 20, 21
Struts, 18, 19
SyncML, 4, 6, 7
Taglibs, 17
Tea, 15
TextGenerator, 15
transcoding, 22, 23
TRiX, 15
Turbine, 19
UAPROF, 4, 5, 6
UIML, 17, 25
UPnP, 4, 7
Velocity, 15, 19
WAP, 1, 4, 5, 6, 22, 23, 25, 26
Web clipping, 24
WebMacro, 15, 19
WYSIWYG, 8, 9, 10, 19, 22
XForms, 16
XHTML, 4, 9, 12, 16, 26
XML, 1, 6, 7, 9, 10, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26
XMLC, 18
XMLScript, 20
XPathScript, 20, 21
XPToolkit, 17
XSLT, 9, 17, 19, 20, 21, 22, 23, 24, 25, 26
XSP, 21, 22

10 References

1 User Agent Strings, http://www.mozilla.org/build/user-agent-strings.html
2 CC/PP, http://www.w3.org/Mobile/CCPP/
3 RDF, http://www.w3.org/RDF/
4 UAProf, http://www.wapforum.com/what/technical.htm
5 SyncML, http://www.syncml.org
6 Universal Plug and Play, http://www.upnp.org/
7 CD-Player sample device template, http://www.upnp.org/download/CDPlayer-1-2001Feb.doc
8 Axis Web-Enabled Camera, http://www.axis.com/products/documentation/UPnP.doc
9 Troff, http://www.gnu.org/software/groff/groff.html
10 TeX, http://www.tug.org/
11 LaTeX, http://www.latex-project.org/
12 Lout, http://snark.ptc.spbu.ru/~uwe/lout/
13 LaTeX2HTML, http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html
14 Physical versus logical markup, http://www.dantobias.com/webtips/logical.html and
http://www.cs.williams.edu/~cs105s00/outlines/CS105_44.html

Current Technologies for Device Independence Page 27

15 The Myth of 800x600, http://www.webreview.com/2001/03_16/webauthors/index01.shmtl
16 Cascading Style Sheets, http://www.w3.org/Style/CSS/
17 Accessibility, http://www.w3.org/WAI/
18 XHTML, http://www.w3.org/MarkUp/
19 DocBook, http://www.docbook.org/
20 Linux Documentation Project, http://www.linuxdoc.org/
21 Latte, http://www.latte.org/
22 PDF, http://www.adobe.com/epaper/main.html
23 Open Electronic Book Forum, http://www.openebook.org/
24 XML and PDF, http://www.impressions.com/resources_pgs/SGML_pgs/XML_PDF.pdf
25 MobiPocket, http://www.mobipocket.com/en/HomePage/default.asp
26 Constraint Based Layout, http://www.cs.washington.edu/research/constraints/web/mmJournal.html
27 Constraint Based Web Browser, http://www.csse.monash.edu.au/~rlin/CBN/index.html
28 HTML Writer's Guild AWARE, http://aware.hwg.org/
29 Using ALT tags, http://ppewww.ph.gla.ac.uk/~flavell/alt/alt-text.html
30 CGIs versus Java Servlets, http://rain.vislab.olemiss.edu/~ww1/homepage/project/mypaper.htm
31 Surveying the landscape,
http://xmlc.enhydra.org/software/documentation/competing_frameworks/competing_frameworks.html
32 Java and XML publishing Frameworks, http://www.runtime-collective.com/static/runtime-
new/JavaXML.html
33 FastCGI, http://www.fastcgi.com/
34 Servlets, http://java.sun.com/products/servlet/index.html
35 Java Server Pages, http://java.sun.com/products/jsp/?frontpage-javaplatform
36 Active Server Pages, http://msdn.microsoft.com/workshop/server/asp/asptutorial.asp
37 Professional Home Pages, http://www.php.net/
38 EmbPerl http://perl.apache.org/embperl/
39 WebMacro, http://webmacro.org/tutorial/intro.html
40 Freemarker, http://freemarker.sourceforge.net/
41 Tea, http://opensource.go.com/
42 Otembo, http://www.meangene.com/otembo/
43 Velocity, http://jakarta.apache.org/velocity/
44 TextGenerator, http://www.textgenerator.com
45 The TRiX Template Resolution Framework, http://www.hpl.hp.com/techreports/98/HPL-98-04.html
46 Template Resolution in XML / HTML, http://www.hpl.hp.com/techreports/1999/HPL-1999-42.html
47 TRiX download, http://www-uk.hpl.hp.com/people/sth/trix/
48 MAWL, http://www.bell-labs.com/project/MAWL/tutorial.html
49 BigWig http://www.brics.dk/bigwig/
50 The XML Form language, http://www.hpl.hp.com/techreports/1999/HPL-1999-41.html
51 PowerForms, http://www.brics.dk/bigwig/powerforms/
52 Form Markup Language, http://www.mozquito.org/index.html
53 XForms, http://www.w3.org/MarkUp/Forms/
54 UIML, http://www.uiml.org/
55 Harmonia, http://www.harmonia.com/
56 Hammock, http://www.oop.com/TechnologiesHammock.jsp
57 Mozilla XPToolkit Architecture, http://www.mozilla.org/xpfe/aom/AOM.html
58 XUL, http://www.mozilla.org/xpfe/xptoolkit/xulintro.html
59 Java Taglibs, http://java.sun.com/products/jsp/taglibraries.html
60 Jakarta Tag Library, http://jakarta.apache.org/taglibs/index.html
61 Java Beans, http://java.sun.com/products/javabeans/?frontpage-javaplatform
62 XMLC, http://xmlc.enhydra.org/software/documentation/index.html
63 Efficient Wireless Design, http://www.webtechniques.com/archives/2001/02/young/
64 Enhydra, http://www.enhydra.org/
65 Element Constructor Set, http://jakarta.apache.org/ecs
66 Understanding Java Server Pages Model 2 architecture, http://www.javaworld.com/javaworld/jw-12-
1999/jw-12-ssj-jspmvc.html
67 MVC Architectures in J2EE, http://bishop.ics.hawaii.edu/shenyan/patterns/J2EE_patterns/MVC.html
68 J2EE, http://java.sun.com/j2ee/
69 Struts, http://jakarta.apache.org/struts/userGuide/introduction.html
70 Turbine, http://java.apache.org/turbine

Current Technologies for Device Independence Page 28

71 Expresso, http://www.javacorporate.com
72 XSLT, http://www.w3.org/Style/XSL/
73 XSLT considered harmful, http://www.xml.com/lpt/a/1999/05/xsl/xslconsidered_1.html
74 XMLScript, http://www.xmlscript.org/
75 XPathScript, http://www.axkit.org/docs/xpathscript/guide.dkb
76 Java, JSP and XML, http://java.sun.com/products/jsp/html/JSPXML.html
77 Cocoon, http://xml.apache.org/cocoon/
78 AxKit, http://axkit.org/
79 XPathScript, http://www.axkit.org/docs/xpathscript/guide.dkb
80 Infozone, http://www.infozone-group.org/
81 Serif, http://www.caucho.com/products/resin/ref/xtp/xtp
82 Internet Transcoding for Universal Access,
http://www.research.ibm.com/networked_data_systems/transcoding/
83 Xift transcoding portal, http://www.xift.com/
84 Muffin proxy server, http://muffin.doit.org//
85 Proxomitron proxy server, http://members.tripod.com/Proxomitron/features.html
86 Web Based Intermedaries, http://www.almaden.ibm.com/cs/wbi/doc/index.html
87 IBM Transcoding publisher, http://www-4.ibm.com/software/webservers/transcoding/
88 Annotation-Based Web Content Transcoding, http://www9.org/w9cdrom/169/169.html
89 PyWeb, http://www.pyweb.com/docs/index.shtml.en
90 DeckIt, http://www.pyweb.com/php/test_adapt.php3
91 AvantGo, http://www.avantgo.com/
92 AvantGo style guide, http://avantgo.com/developer/web/documentation.html
93 Web Clipping, http://www.palm.com/devzone/webclipping/pqa-talk/pqa-talk.htm
94 Oracle Wireless Server, http://technet.oracle.com/products/iaswe/
95 News Clipper, http://newsclipper.sourceforge.net/
96 .Net, http://msdn.microsoft.com/net/
97 Microsoft Presentation on Mobile Web Applications,
http://www.microsoft.com/winme/00oct/101900fin/FinancialSrvsSumitt_DevToolsForMobileWebApp
_SChory/default.htm
98 XMLISAPI, http://msdn.microsoft.com/xml/general/xslisapifilter.asp
99 WebForms, http://msdn.microsoft.com/library/dotnet /cpguide/cpconintroductiontowebforms.htm
100 MobileForms, http://msdn.microsoft.com/vstudio/nextgen/technology/mobilewebforms.asp
101 HawHaw http://www.hawhaw.de/
102 AVIDWireless, http://www.avidwireless.com/
103 XHTML Basic, http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/

