
 

An Evaluation of an Atte m pt at Offloading 
TCP/IP Protocol Proce ssing onto an  
i9 60RN-based  iNIC 
 
Boon S. Ang 
Com pute r Syste m s and Te ch nology Laboratory  
H P Laboratorie s Palo Alto 
H PL-2001-8 
January 9 th  , 2001* 
 
TCP/IP 
n e tw ork ing, 
Inte llige n t 
Ne tw ork  
Inte rface  

 

Th is re port pre s e nts an  e valuation  of a TCP/IP offload im ple m e n tation  th at 
utiliz e s  a 100Base T inte llige n t Ne tw ork  Inte rface  Card (iNIC) equipped w ith  
a 100 M H z  i9 60RN processor. Th e  e n tire  Fre e BSD-de rived  n etw ork ing stack  
from  sock e t dow nw ard is im ple m e n ted  on  th e  iNIC w ith  th e  goal of reducing 
h ost processor w ork load. For large  m e ssages  th at result in MTU pack e ts, th e  
offload im ple m e n tation  can sustain  w ire -spe e d on  re ce ive  but only about 
80% of w ire -spe e d on  transm it. Utiliz ing h ardw are -based profiling of  TTCP 
b ench m ark  runs, our e valuation pie ced  toge th e r a com pre h ensive  picture  of 
transm it b e h avior on  th e  iNIC. Our first surprise  w as th e  num b e r of i9 60RN 
processor cycles  consum e d in transm itting large  m e ssages --around 17 
th ousand processor cycles  pe r 1.5k byte  (Eth e rn e t M TU) pack e t. Furth e r 
investigation  re ve als th at th is h igh  cost is due  to a com bination  of i9 60RN 
arch ite ctural sh ortcom ings, poor buffe ring strate gy in th e  TCP/IP code  
running on  th e  iNIC, and lim itations im posed by th e  I20-based  h ost-iNIC 
inte rface . W e  also found room  for im prove m e n ts in th e  im ple m e n tation  of 
th e  sock e t buffe r data-structure . Th is re port pre s e nts profiling statistics, as 
w e ll as code -path  analysis th at back  up th e s e  conclusions. Our results call 
into question  th e  h ypoth esis th at a spe cializ e d  n etw ork ing softw are  
e n vironm e nt coupled w ith  ch e ap e m bedded processors is a cost e ffe ctive  w ay 
of im proving syste m  pe rform ance . At le ast in th e  case  of th e  offload 
im ple m e n tation  on  th e  i9 60RN-based iNIC, n e ith e r w as th e  pe rform ance  
adequate  n or th e syste m  ch e ap. Th is conclusion, h ow e ve r, doe s  not im ply 
th at offload is a bad ide a. In  fact, m e asure m e n ts w e  m ade  w ith  Alacrite ch 's 
SLIC NIC, w h ich  partially offloads TCP/IP protocol processing to an ASIC, 
suggests th at offloading can confe r advantages in a cost e ffe ctive  w ay.  
Tak ing th e  righ t im ple m e n tation  approach  is critical. 

 

 

* Inte rnal Accession Date  Only    Approved  for Exte rnal Publication   
  Copyrigh t H e w le tt-Pack ard Com pany 2001 



 2

 
1 Introduction .................................................................................................................. 3 

1.1 Summary of Results............................................................................................... 3 
1.2 Organization of this Report.................................................................................... 5 

2 TCP/IP Offload Implementation Overview.................................................................. 6 
2.1 Cyclone PCI-981 iNIC hardware........................................................................... 6 
2.2 Offload Software.................................................................................................... 7 

2.2.1 Execution Environment................................................................................... 7 
2.2.2 Networking code ............................................................................................. 8 

3 iNIC Side Behavior .................................................................................................... 11 
3.1 General Performance Statistics ............................................................................ 12 
3.2 Hardware bottleneck ............................................................................................ 14 
3.3 tcp_output cost breakdown .................................................................................. 17 
3.4 Buffering… and the resulting copy...................................................................... 18 

3.4.1 Buffer usage for large message transmit ....................................................... 20 
3.4.2 Buffer usage for small message transmit ...................................................... 21 

3.5 Host-iNIC interface behavior............................................................................... 21 
3.6 Miscellaneous Inefficiencies................................................................................ 23 

4 Host-side Behavior ..................................................................................................... 24 
5 Related Work.............................................................................................................. 26 

5.1 Studies on TCP/IP implementation issues ........................................................... 26 
5.2 Other networking protocol offload work ............................................................. 29 

6 Conclusion.................................................................................................................. 30 
6.1 Limitations of this Study...................................................................................... 30 
6.2 Summary of Results from this Evalution............................................................. 30 
6.3 Implications of our Findings................................................................................ 31 
6.4 Recommendation for Future Work ...................................................................... 32 

Bibliography...................................................................................................................... 33 
 



 3

1  Introduction 

This report presents an evaluation of a TCP/IP implementation that performs network 
protocol stack processing on a 100BaseT intelligent network interface card (iNIC) 
equiped with an i960RN embedded processor.  Offloading TCP/IP protocol processing 
from the host processors to a specialized environment was proposed as a means to reduce 
the workload on the host processors.  The initial arguments profered were that network 
protocol processing is consuming an increasingly larger portion of processor cycles and 
that a specialized software envrionment on an iNIC can perform the same task more 
efficiently using cheaper processors.   
 
Since the inception of the project, alternate motivations for offloading protocol stack 
processing to an iNIC have been proposed.  One was the iNIC offers a point of network 
traffic control  independent of the host -- a useful capability in the Distributed Service 
Utility (DSU) architecture [9] for Internet data-centers, where the host system is not 
necessarily trusted.  More generally, the iNIC is viewed as a point where additional 
specialized functions, such as firewall and web caching, can be added in a way that scales 
performance with the number of iNIC’s in a system. 
 
The primary motivation of this evaluation is to understand the behavior of a specific 
TCP/IP offload design implemented in the Platform System Software department of  HP 
Laboratories’ Computer Systems and Technology Laboratory. Despite initial optimism, 
this implementation using Cyclone’s PCI-981 iNIC, while able to reduce host processor 
cycles spent on networking, is unable to deliver the same networking performance as 
Windows NT’s native protocol stack for 100BaseT Ethernet.  Furthermore, transmit 
performance lags behind receive performance for reasons that were not well understood.1   
 
Another goal of this work is to arrive at a  good understanding of the processing 
requirements, implementation issues and hardware and software architectural needs of 
TCP/IP processing.  This understanding will feed into future iNIC projects targetting very 
high bandwidth networking in highly distributed data center architectures. At a higher 
level, information from this project provides concrete data-points for understanding the 
merits, if any, of offloading TCP/IP processing from the host processors to an iNIC. 

1.1 Summary of Results 
Utilizing hardware-assisted profiling of TTCP benchmark runs, our evaluation pieced 
together a comprehensive picture of transmit behavior on the iNIC.  All our 
measurements assume that checksum computation, an expensive operation on generic 
microprocessors, is done by specialized hardware in Ethernet MAC/Phy devices, as is the 
case with commodity devices appearing in late 2000.2 
                                                           
1 The team that implemented the TCP/IP offload recently informed us that they found some software 
problem that was causing the transmit and receive performance disparity and had worked around it.  
Unfortunately, we were unable to obtain further detail in time for inclusion in this report. 
2 The Cyclone PCI-981 iNIC uses Ethernet devices that do not have checksum support.  To factor out the 
cost of checksum computation, our offload implementation simply does not compute checksum on both 
transmit and receive during our benchmark runs.  To accommodate this, machines receiving packets from 



 4

 
Our first surprise was the number of i960RN processor cycles consumed in transmitting 
large messages over TCP/IP -- around 17 thousand processor cycles per 1.5kbyte 
(Ethernet MTU) packet.  This cost increases very significantly for smaller messages 
because aggregation (Nagle Algorithm) is done on the iNIC, thus incurring the overhead 
of handshake between host processor and iNIC for every message.  In an extreme case, 
with host software sending 1-byte messages that are aggregated into approximately 
940byte packets3, each packet consumes 4.5 million i960RN processor cycles.  Even 
transmitting a pure acknowledgement packet costs over 10 thousand processor cycles. 
 
Further investigation reveals that this high cost is due to a combination of i960RN 
architectural shortcomings, poor buffering strategy in the TCP/IP code running on the 
iNIC, and limitations imposed by the I2O-based host-iNIC interface.  We also found 
room for improvements in the implementation of the socket buffer data-structure and 
some inefficiency due to the gcc960 compiler.  
 
Our study of the host-side behavior is done at a coarser level.  Using NT’s Performance 
Monitor tool, we quantified the processor utilization and the number of interrupts during 
each TTCP benchmark run.  We compare these metrics for our offload implementation 
with those of NT’s native TCP/IP networking code and another partially offloaded iNIC 
implementation from Alacritech.  To deal with the fact that different implementations 
achieve different networking bandwidth, the metrics are accumulated over the course of 
complete runs transferring the same amount of data.   
 
The measurements show that compared against native NT implementation, our offload 
implementation achieves significantly lower processor utilization for large messages, but 
much higher processor utilization for small messages, with crossover point at around 
1000byte messages.  The interrupt statistics shows similar trend, though with crossover at 
a smaller message size.  Furthermore, the number of interrupts is reduced by a much 
more significant percentage than the reduction in host processor utilization, suggesting 
that costs other than interrupt processing contributes quite significantly to the remaining 
host-side cost in our offload implementation.  Based on other researcher’s results [1], we 
believe that host processor copying data between user and system buffer is the major 
remaining cost.   
 
The Alacritech NIC is an interesting comparison because it represents a very lean and 
low cost approach.  Whereas the Cyclone board is a full-length PCI card that is 
essentially a complete computer system decked with a processor, memory and supporting 
logic chips, the Alacritech NIC looks just like another normal NIC card, except that its 
MAC/Phy ASIC has additional logic to process TCP/IP protocol for “fast path” cases.  A 

                                                                                                                                                                             
our offload implementation run specially doctored TCP/IP stacks that do not verify checksum.  Error rates 
on today’s networking hardware in a local switched network are low enough that running TTCP benchmark 
is not a problem.   
3 The aggregation is not controlled by a fixed size threshold, and thus the actual packet size varies 
dynamically,  subjected to an MTU of 1460 data bytes.   



 5

limitation of this approach is it does not allow any modification or additions to the 
offloaded functions once the hardware is designed.   
 
Our measurement shows that an Alacritech NIC is able to sustain network bandwidth 
comparable to that of Native NT for large messages, which is close to wire-speed.  Its 
accumulated host processor utilization, while lower than native NT’s, is higher than that 
with our offload implementation.   Its performance degrades when messages are smaller 
than 2k bytes because it has no means of aggregating out-going messages (i.e. no Nagel 
Algorithm).   
 
This study calls into question the hypothesis that a specialized software environment 
together with a cheap embedded processor can effectively offload TCP/IP protocol stack 
processing.  The i960RN-based implementation studied in this work is unable to 
adequately handle traffic even at the 100Mbit/s level, much less at 1 Gigabit/s or 10 
Gigabit/s levels that are the bandwidths of interest in the near future.  While bad 
buffering strategy is partly responsible for the less than satisfactory performance on our 
offload implementation, its BSD-derived TCP/IP protocol stack is in fact better than 
NT’s when executed on the same host platform.  Clearly, the “better” stack and the 
advantage from the specialized interrupt-handling environment are insufficient to make 
up for the loss of a good processor and the additional overhead of interactions between 
the host and the iNIC.  Ultimately, this approach is at best moving work from one place 
to another without conferring any advantage in efficiency, performance or price, and at 
worse, a performance limiter. 
 
This conclusion does not imply that offload is a bad idea.  In fact, the performance of the 
Alacritech NIC suggests that it can confer advantages.   What is critical is taking the right 
implementation approach.  We believe there is still unfinished research in this area, that a 
fixed hardware implementation, such as that from Alacritech, is not the solution.  From a 
functional perspective, having a flexible and extensible iNIC implementation not only 
enables tracking changes to protocol standards, but also allows additional functions to be 
added over time.  The key is a cost effective, programmable iNIC micro-architecture that 
pays attention to the interface between iNIC and host.  There are a number of promising 
alternate micro-architecture components, ranging from specialized queue management 
hardware, to field programmable hardware, to multi-threaded and/or multi-core, possibly 
Systolic-like, processors.  This is the research topic of our next project. 

1.2 Organization of this Report 
 The next section gives an overview of our i960RN-based TCP/IP offload 
implementation.  We briefly cover both the hardware and the software aspects of this 
implementation to pave the background for the rest of this report.   Section 3 examines 
the behavior on the iNIC. Detailed profiling statistics giving breakdowns for various 
steps of the processing, and utilization of the hardware resources is presented.  This is 
followed in Section 4 with an examination of the host side statistics.  Section 5 presents 
some related work covering both previous studies of TCP/IP implementations and other 
offload implementations.  Finally, we conclude in Section 6 with what we learned from 
this study and areas for future work. 



 6

 
 
2 TCP/IP Offload Implementation Overview 

Our TCP/IP offload implementation uses the Cyclone PCI-981 iNIC described in Section 
2.1.  The embedded processor on this iNIC runs a lean, HP custom designed run-
time/operating system called RTX described in Section 2.2.1.  The networking protocol 
stack code is derived from FreeBSD’s Reno version of the TCP/IP protocol code.  
Interaction between the host and the iNIC occurs through hardware implemented I2O 
messaging infrastructure. Section 2.2.2 presents saliant features of the networking code. 

2.1  Cyclone PCI-981 iNIC hardware 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Cyclone PCI-981 iNIC, illustrated in the above figure, supports four 10/100BaseT 
Ethernet ports on a private 32/64-bit, 33MHz PCI bus which will be referred to as the 
secondary PCI bus.  Although the bus is capable of 64-bit performance, each Ethernet 
devices only supports a 32-bit PCI interface, so that this bus is effectively 32-bit, 66-
MHz.  The iNIC presents a 32/64-bit, 33MHz PCI external interface which plugs into the 
host PCI bus, referred to as the primary PCI bus.  In our experiments, the host is only 
equipped with a 32-bit PCI bus, thus constraining the iNIC’s interface to operate at 32-
bit, 33MHz.  Located between the two PCI buses is an i960RN highly integrated 
embedded processor, marked by the dashed box in the above figure.  It contains a i960 
processor core running at 100MHz, a primary address translation unit (PATU) interfacing 
with the primary PCI bus, a secondary address translation unit (SATU) interfacing with 
the secondary PCI bus, and a memory controller (MC) used to control 66MHz SDRAM 
DIMMs.  (Our evaluation uses an iNIC equiped with 16Mbytes of 66MHz SDRAM.)  An 
internal 64-bit, 66MHz bus connects these four components together.   
 

Primary PCI
(host interface)

Secondary PCI
(Device interface)

i960
core

SD
R

A
M

SATU

PATU

M
C

Internal
Bus

Intel 
82558

MAC/Phy

10/100BaseT
EthernetPrimary PCI

(host interface)

Secondary PCI
(Device interface)

i960
core

SD
R

A
M

SATU

PATU

M
C

Internal
Bus

Intel 
82558

MAC/Phy

10/100BaseT
Ethernet



 7

The PATU is equiped with two DMA engines in addition to bridging the internal bus and 
the primary PCI bus.  It also implements I2O messaging and door bell facilities in 
hardware.  The SATU has one DMA engine and bridges the internal bus and the 
secondary PCI bus.  The i960 processor core implements a simple single-issue processing 
pipeline with none of the fancy superscalar, branch prediction, and out-of-order 
capabilities of today’s main stream processors.  Not shown in the above figure are a PCI-
to-PCI bus bridge and an application accelerator in the i960RN chip.  These are not used 
in our offload implementation.  Further details of the i960RN chip can be found in the 
i960 RM/RN I/O Processor Developer’s Manual [3]. 

2.2 Offload Software 
Two pieces of software running on the i960 processor are relevent to this study. One is a 
run-time system, called RTX, that defines the operating or execution environment.  This 
is described in the next section.  The other piece of software is the networking protocol 
code itself, which is described in Section 2.2.2. 

2.2.1   Execution Environment 
RTX is designed to be a specialized networking environment that avoids some well-
known system-imposed networking costs.  More specifically, interrupts are not structured 
into the layered, multiple invocation framework found in most general purpose operating 
systems.  Instead, interrupt handlers are allowed to run-to-completion.  The motivation is 
to avoid the cost of repeatedly storing aside information and subsequently re-invocaking 
processing code at a lower priority. RTX also only supports a single address space 
without a clear notion of system vs. user-level address spaces.   
 
RTX is a simple, ad hoc run-time system.  Although it provides basic threading and pre-
emptive multi-threading support, the lack of enforeable restrictions on interrupt handling 
makes it impossible to guarantee any fair share of processor cycles to each thread.  In 
fact, with the networking code studied in this report, interrupt handlers disable all forms 
of interrupts for the full duration of its execution, including timer interrupts4.  Coupled 
with the fact that interrupt handlers sometimes run for very very long periods (e.g., we 
routinely observer the Ethernet device driver running for tens of thousands of processor 
clocks), this forces processor scheduling to be hand coded into the Ethernet device 
interrupt handling code in the form of explicit software polls for events.  Without these, 
starvation is a real problem. 
 
Overall the execution of networking code is either invoked by interrupt when no other 
interrupt handler is running, or by software polling for the presence of masked interrupts. 
Our measurement shows that for TTCP runs, most invocations are through software 
polling -- for every hardware interrupt dispatched invocation, we saw several tens of 
software polling dispatched invocations. 
 

                                                           
4 This raises questions about how accurately timers are implemented on the offload design.  It is quite 
possible that software timer “ticks” occur less frequently than intended.  We did not look closely into this 
because it is beyond the scope of this study.   



 8

The RTX environment clearly presents challenges for addition of new code.  Without a 
strict discipline for time-sharing the processor, every piece of code is tangled with every 
other piece of code when it comes to avoiding starvation and ensuring timely handling of 
events.  Clearly, a better scheduling framework is needed, especially to support any kind 
of service quality provisions. 

2.2.2   Networking code 
The network protocol code is derived from the Reno version of BSD networking code 
and uses the fxp device driver.  The host interfaces to the iNIC at the socket level, using 
I2O messaging facility as the underlying means of communication.  On the iNIC side, 
glue code is added to splice into the protocol code at the socket level.  The following two 
sections briefly trace the transmit and receive paths. 

2.2.2.1   Transmit path 

 
The above diagram shows the transmit paths for large and small messages.  The paths are 
slightly different for different message sizes.  The green portions (lightly shaded in non-
color prints) occur on the host side while the blue portions (darkly shared in non-color 
prints) happen on the iNIC.  Unless otherwise stated, the host in this study is an HP 
Kayak XU 6/3000 with a 300MHz Pentium-II processor and 64Mbyte of memory, 
running Windows NT 4.0 service pack 5. (The amount of memory though small by 
today’s standards is adqeuate for TTCP runs, especially with the –s option that we used in 
our runs, which causes artificially generated data to be sourced at the transmit side, and 
incoming data to be discarded at the receive end.) 
 
When transmitting large messages, the message data is first copied on the host side from 
user space into pre-pinned system buffers.  Next, I2O messages are sent to the iNIC with 
references to the data residing in host-side main memory.  On the iNIC side, servicing of 
the I2O messages includes setting up DMA requests.  Hardware DMA engines in the 
PATU performs the actual data transfer from host main memory into iNIC SDRAM, 

User
Memory

I2O
msg

System
Buffer mbuf

Enqueue
At Socket

“Copied”
For Tx

Software
Copy

IOP Hdw DMA Only copy
Reference

No
Copy

La
rg

e 
M

sg

User
Memory mbuf

Enqueue
At Socket

“Copied”
For Tx

Software
Copy

IOP software
copy

Software
Copy

Copy to
Compress

Sm
al

l M
sg

I2O
msg

User
Memory

I2O
msg
I2O
msg

System
Buffer mbuf

Enqueue
At Socket

“Copied”
For Tx

“Copied”
For Tx

Software
Copy

IOP Hdw DMA Only copy
Reference

No
Copy

La
rg

e 
M

sg

User
Memory mbuf

Enqueue
At Socket

“Copied”
For Tx

Software
Copy

IOP software
copy

Software
Copy

Copy to
Compress

Sm
al

l M
sg

I2O
msg
I2O
msg



 9

where it is place in mbuf data structures.  (We will have a more detailed discussion of 
mbufs in Section 3.4.)   
 
When DMA completes, iNIC code is once again invoked, to queue the transferred data 
with the relevent socket data structure and push it down the protocol stack.  For large 
messages, the enqueuing simply involves linking the already allocated mbufs into a 
linked list.  Without interrupting this thread of execution, an attempt is next made to send 
this message out.  The main decision point is at the TCP level, where the tcp_output 
function will decide if any of the data should be sent at this time.  This decision is based 
on factors such as the amount of data that is ready to go (Nagel Algorithm will wait if 
there is too little data) and whether there is any transmit window space left (which is 
deteremind by the amount of buffer space advertised by the receiver and the dynamic 
actions of TCP’s congestion control protocol).  If tcp_output decides not to send any data 
at this point, the thread suspends. Transmission of data will be re-invoked by other 
events, such as the arrival of more data from the host side, expiration of a time-out timer 
to stop waiting for more data, or the arrival of acknowledgements that open up transmit 
window.  
 
Once tcp_output decides to send out data, a “copy” of the data is made.  The new “copy” 
is passed down the protocol stack through the IP layer and then to the Ethernet device 
driver.  This copy is deallocated once the packet is transmitted onto the wire.  The 
original copy is kept as a source copy until an acknowledgement send by the receiver is 
received.  To copy large messages, the mbuf-based BSD buffering strategy merely copies 
an “anchor” data structure with reference to the actual data. 
 
Another copy may occur at the IP layer if fragmentation occurs.  With proper setting of 
TCP segment size to match that of the underlying network’s MTU, no fragmentation 
occurs.  Execution may again be suspended at the IP layer if address lookup results in 
external query using ARP.  The IP layer caches the result of such a query so that in most 
cases during a bulk transfer over a TCP connection, no suspension occurs here. 
 
Transfer of data from iNIC SDRAM onto the wire is undertaken by DMA engines on the 
Ethernet devices.  When transmission completes, the i960 processor is notified via 
interrupts.   
 
The transmit path for small messages is very similar to that for large messages with a few 
differences.  One difference is data is passed from the host processor to the iNIC directly 
in the I2O messages.  (The specific instruction-level mechanism on IA32 platforms is 
PIO operations).  Thus, on the host side, data is copied from user memory directly into 
I2O message frames.  At the iNIC side, data is now available during servicing of a 
transmit request I2O message.  The iNIC software directly copies the data into mbufs  
instead of using DMA because for small messages, it is cheaper this way than using 
DMA.  The mbuf data structure behaves differently for small messages (< 208 bytes) 
than for large messages.  When small messages are enqueued into a socket, an attempt is 
made to conserve buffer usage by “compressing” data into partly used mbufs.  This may 
result in significant software copying.  Further down the protocol stack when a copy of 



 10

message data is made in the tcp_output function for passing further down the 
protocol stack, actual copy of data occurs for small messages.   
 
Clearly, many copies or pseudo-copies occur in the transmit path.  In Section 3.4, we will 
re-examine mbuf and this issue of copying.  Actual measurements of the cost involved 
will be presented.  

2.2.2.2   Receive path 
The following diagram illustrates the receive path.  Broadly speaking, it is the reverse of 
the transmit path.  (As before, the green or lightly shaded portions execute on the host 
side, while the blue or darkly shaded portions execute on the iNIC.)  Again, we will first 
consider the path for large packets.  The first action is taken by the Ethernet device.  Its 
device driver pre-queues empty mbufs that are filled by the device as data packets arrive.  
The i960 processor is notified of the presence of new packets via interrupts, which may 
be invoked either by hardware interrupt dispatch or software poll. 

 
The Ethernet device interrupt handler begins the walk up the network protocol stack.  The 
logical processing of data packets may involve reassembly at the IP layer and dealing 
with out-of-order segments at the TCP layer.  In practice, these are very infrequent, and 
the BSD TCP/IP code provides a “fast-path” optimization that reduces processing when 
packets arrive in order.  An incoming packet’s header is parsed to identify the protocol, 
and if TCP, the connection.  This enables the packet’s mbuf’s to be queued into the 
relevent socket’s sockbuf data structure.  Again for large messages, this simply links 
mbuf’s  into a singly linked list.   
 
Next, the data is handed over to the host.  As an optimization, our offload implementation 
attempts to aggregate more packets before interrupting the host to notify it of the arrived 
data.  The i960 processor is responsible for using hardware DMA engine in the PATU to 
move data from iNIC SDRAM into host memory before notifying the host about the 
newly arrived data through I2O messages.  Data is transferred into host side system 

User
Memory

I2O
msg

System
Buffer Aggregate

Enqueue
At Socket

mbuf

Software
Copy

IOP Hdw DMA Ethernet MAC 
hdw copy

No
Copy

La
rg

e 
M

sg

User
Memory

I2O
msg

System
Buffer Aggregate

Enqueue
At Socket

mbuf

Host Software
Copy

IOP software copy

Ethernet MAC 
hdw copyCopy to

compress

Sm
al

l M
sg

Host 
Software

Copy

User
Memory

I2O
msg
I2O
msg

System
Buffer
System
Buffer AggregateAggregate

Enqueue
At Socket
Enqueue
At Socket

mbufmbuf

Software
Copy

IOP Hdw DMA Ethernet MAC 
hdw copy

No
Copy

La
rg

e 
M

sg

User
Memory

I2O
msg
I2O
msg

System
Buffer
System
Buffer AggregateAggregate

Enqueue
At Socket
Enqueue
At Socket

mbufmbuf

Host Software
Copy

IOP software copy

Ethernet MAC 
hdw copyCopy to

compress

Sm
al

l M
sg

Host 
Software

Copy



 11

buffers that have been pinned and  handed to the iNIC ahead of time.  Eventually, when 
software does a receive on the host side, data is copied on the host side from system 
buffer into user memory. 
 
For small messages, similar differences as in the case of transmit apply.  Thus, queuing 
into sockbuf may involve copying to compress and conserve mbuf usage.  Just as in the 
case of transmit, small size data is passed between the iNIC and host in I2O messages.  
On the host side, this enables an optimization if the receiver has previously posted a 
receive -- data is copied by the host processor from the I2O messages (physically residing 
on the iNIC) into user memory directly.  If no receive has been posted yet, the data is first 
copied into system buffer.   
 
3 iNIC Side Behavior 

This section presents the profiling statistics we collected on the iNIC side.  Most 
measurements rely on a free running cycle counter on the i960 processor to provide 
timing information.  Timing code is added manually to the networking and RTX source 
code to measure durations of interest.  In most cases, this is straightforward because the 
code operates as interrupt handlers in a non-preemtable mode.  Timing a chunk of code 
simply involves noting the starting and ending times and accumulating that if aggregated 
data of multiple invocations is being collected.  The exception is the collection of 
statistics reported in Section 3.2 done using the i960RN processor’s hardware resource 
usage performance registers.  More will be said about this in that section. 
  
The commonly used TTCP benchmark is used for our studies.  This provides a 
convenient micro-benchmark for getting a detailed look of various aspects of the 
networking code during bulk transfer.   
 
In the next section, we begin with some general performance statistics that show the 
breakdown of processing time.  Our study emphasises transmit behavior as that has the 
bigger problem in our implementation.  Furthermore, for many server applications that 
are the targets of the offload technology, transmit performance is more important than 
receive performance.   
 
The general statistics first leads us to look for hardware bottleneck because the cost 
numbers look surprisingly large.  During close manual inspection of certain code 
fragments, we also came across cases where a relatively small number of instructions, say 
10’s of instructions in an inner loop, take hundreds of processor cycles per iteration.  Our 
investigation into hardware bottlenecks is reported in Section 3.2. 
 
Next, we shift our attention to the components responsible for the largest share of 
processing cost, as indicated by the processor usage breakdown reported in Section 3.1.  
We examine tcp_output, which has some of the largest share of the processing cycles, to 
get a better understanding of what happens in that function.  The results are reported in 
Section 3.3.  This took us onto the track of the overall buffering strategy, a closer look of 
which is reported in Section 3.4.  One other significant source of overhead is the host-



 12

iNIC interface.  We examine that in Section 3.5.  Finally, a number of miscellaneous 
inefficiencies that we came across during our study are reported in Section 3.6. 

3.1 General Performance Statistics 
 
Table 1 is a summary of iNIC processor usage breakdown, roughly categorized by 
network protocol layer.  We added a layer for the host-iNIC interface which includes the 
cost of moving data between the host and iNIC memories.  We report the numbers in 
100MHz processor clock cycles, label as “pclks”.  We use the term message (msg) to 
refer to the logical unit used by host software sending or receiving data, and the term 
packet (pkt) to refer to the Ethernet frame that actually goes on the wire.  For all our 
experiements, the TCP segment size and IP MTU are set to match the Ethernet frame 
MTU of 1.5kbyte so that a packet is also the unit handled by the IP and TCP layers.   
 
Table 1 contains the data for three transmit instances with representative message sizes -- 
8 kbyte as a large message, 200 byte as a small but common message size, and 1byte to 
highlight the behavior of the protocol stack.  We only report one instance of receive 
where TTCP is receiving with 8kbyte buffers.  In all cases, the machine on the other end 
of TTCP is a 500MHz Pentium-III FreeBSD box equiped with a normal NIC card.  This 
end is able to handle the work-load easily and is not a bottleneck. 
 
The row labeled “Per msg cost” and the corresponding cost breakdown in Table 1 
includes both transmit and receive costs and is the average derived by dividing the total 
processor usage by the number of messages.  While it gives total cost that is most readily 
correlated to host software transmit and receive actions, it bears few direct 
correspondance to actions on the iNIC, except in the cases of host-iNIC interface and 
socket layers for transmit.  For receive, even these layers’ numbers have marginal 
correspondance to the per-message cost number because action in all network layers is 
driven by incoming packets.   
 
Nevertheless, there are several interesting points about the per-message numbers.  One is 
that for 8kbyte messages, transmit costs 66% more than receive.  It was not immediately 
obvious why that should be the case.  While transmit and receive processing is obviously 
different, the per-packet costs do not indicate as big a cost difference.  Our investigation 
found that a different number of acknowledgement packets are involved in the two runs.  
When the iNIC transmits data, the FreeBSD box that is receiving sends a pure 
acknowledgement packet for every two data packets it receives.  In contrast, when the 
iNIC is data receiver, it only sends out a pure ack packet after every six data packets.  
This happens because incoming packets are aggregated before being sent to the host.  
Only when data is sent to the host is buffering space released and acknowledged to the 
sender.  With transmission of each pure ack packet costing about ten thousand pclks, this 
is a significant ”saving” that improves receive performance. 
 
The per-message cost breakdown in Table 1 highlights the layers that are most costly in 
terms of processor usage.  For the 8kbyte message transmit (large message transmit), 
TCP layer is responsible for the bulk of the iNIC processor cycles.  (See Section 3.3 for 



 13

further accounting.)  For small message transmit, however, the host-iNIC interface 
accounts for the bulk of the cost.  This is due to Nagel Algorithm aggregation which 
casuses the per-packet costs to be amortized over a number of messages, around a 
thousand in the case of 1-byte message.  In our offload implementation, the aggregation 
is done on the iNIC so that host-iNIC interaction cost remains a per- message occurance.  
The host-iNIC interface cost dominates receive as well, though with a less dominant 
percentage.  (See Section 3.5 for further accounting.) 
  
The host-iNIC interface cost is important because it constraints the frequency of host-
iNIC interaction, and the granularity of work that is worth offloading.  The per-message 
host-iNIC layer cost breakdown for transmit corresponds roughly to one host-iNIC 
interaction.  As can be seen in Table 1 (7th row from the top), this is quite high, at least 
three thousand pclks and goes up to seventeen thousand pclks.  Further accounting and 
breakdown of the interface cost is provided in  Section 3.5. 

 
iNIC Role Tx Rx 

Msg size (byte) 8k 200 1 8k 
Per msg cost (pclks) 121,020 14,243 5,135 72,812 
Per Tx pkt cost (pclks) 16,933 107,158 4,461,191 10,843 
Per Rx pkt cost (pclks) 9,078 14,878 13,220 12,168 

Per msg cost breakdown by protocol layer: 
Host-iNIC 17,396 14% 7,001 49% 3,034 59% 26,403 36%

Socket 5,211 4% 1,023 7% 1,666 32% 5,414 7% 
TCP 53,307 44% 4,742 33% 413 8% 13,244 18%
IP 17,965 15% 436 3% 8 0% 12,992 18%

Layer 

IF 27,141 22% 1,040 7% 14 0% 14,758 20%
Per Tx pkt cost breakdown by protocol layer: 

Host-iNIC 3,256 19% 58,260 54% 2,646,572 59% 0 0% 
Socket 975 6% 8,509 8% 1,453,387 33% 0 0% 
TCP 6,685 39% 31,224 29% 351,673 8% 4288 40%
IP 2,298 14% 2,554 2% 3,317 0% 3415 31%

Layer 

IF 3,719 22% 6,618 6% 6,242 0% 3139 29%
Per Rx pkt cost breakdown by protocol layer: 

Host-IOP 0 0% 0 0% 0 0% 5047 41%
Socket 0 0% 0 0% 0 0% 1035 9% 
TCP 4,165 46% 8,692 59% 6,733 51% 1840 15%
IP 2,156 24% 2,131 14% 2,495 19% 1932 16%

Layer 

IF 2,757 30% 4,041 27% 3,991 30% 2314 19%

Table 1: iNIC-side performance statistics overview 
 
Table 1 also separates the cost into transmit and receive components, reported as per-Tx 
packet and per-Rx packet costs.  In the case where the iNIC is transmitting, the received 
packets are pure acknowledgement packets.   Conversely, the iNIC sends out pure 
acknowledgement packets when it is the receiver of data in a TTCP run.   
 



 14

The numbers in Table 1 show that the per-packet processing cost is quite high.  Even for 
pure acknowledgements which are expected to have the lowest costs, per-packet cost, for 
both transmit and receive, starts around ten thousand pclks.  For 8-kbyte messages, the 
cost of receiving a packet rises to twelve thousand pclks while the cost of sending a 
packet is seventeen thousand pclks.  Table 1 also indicates that the per-packet transmit 
cost for small (< MTU size) messages can become very large.  This is due to aggregating  
multiple small message into a larger packet, resulting in multiple interactions between 
host and iNIC before a packet is transmitted.   
 
The overall high cost of protocol processing prompted us to look into systematic 
problems.  A cause of concern is that these numbers are much higher than previously 
reported instruction counts [2,6].  Clearly, since we are dealing with processor cycles 
instead of instruction counts, an immediate question is the CPI we are getting.  
Unfortunately, it is not easy to measure CPI on our platform.  There is some hardware 
support for measuring bus utilization, however, and using that, we found a bottleneck in 
the hardware as reported in the next section. 
 

3.2 Hardware bottleneck 
The i960RN processor has hardware performance registers for gathering utilization 
statistics of both the primary and secondary PCI buses, and the internal bus.  In any single 
run, only a subset of statistics can be collected.  Fortunately, our TTCP benchmark runs 
are highly reproducable.  We therefore made multiple runs and combined the statistics 
into a complete picture.  The picture that emerged was that neither PCI buses are used 
that heavily, never exceeding 12% on either PCI buses in any of our runs.  In contrast, the 
statistics show that the internal bus is clearly a point of contention. 



 15

 
iNIC’s role Tx Rx 
Msg size (bytes) 8k 1 8k 

 

Total bus clocks 165M 290M 105M 
Idle 38% 48% 35% 
Data usage 10% 9% 12% 

Utilization 

Non-data usage 52% 44% 54% 
i960 core 55% 45% 52% 
DMA engine 0 0% 0% 4.5% 
DMA engine 1 3% 0% 0% 
PATU 1% 7.2% 2.1% 

Ownership 

SATU 4% 0% 6.9% 
i960 core 3.42 3.07 3.99 
DMA engine 0 - - 9.57 
DMA engine 1 8.08 - - 
PATU 5.48 3.31 6.19 

Wait/grant 

SATU 5.79 7.30 7.14 
i960 core 6.11 5.63 5.95 
DMA engine 0 - - 16.49 
DMA engine 1 10.58 - - 
PATU 6.98 6.60 9.39 

Own/grant 

SATU 19.16 17.54 11.71 

Table 2: Internal bus utilization 
Table 2 reports various aspects of internal bus utilization for three different TTCP runs.  
All percentages are relative to total bus clocks.  DMA engines 0 and 1 are used for 
receive and transmit respectively.  The overall utilization number shows the internal bus 
used 50-65% of the time.  We further see that of the busy bus cycles, just over 80% are 
due to non-data usage.  These are the cycles when the bus is owned but idle, such as due 
to wait states in memory accesses.  The numbers suggest that the bus has a simple 
protocol that is incapable of pipelining usage of the bus.  The SDRAM and its controller 
are unlikely to be the cause of this rather inefficient bus utilization because according to 
the i960RN user’s manual [3], the memory controller is capable of handling multiple 
overlapping accesses. 
 
The ownership data in Table 2 identifies the i960 core as the main bus user.  The 
percentages shown are over all bus cycles and not just the non-idle cycles; as a 
percentage of the used bus cycles, the i960 core is responsible for 79-88% of overall 
usage.  Another way to view the numbers in the table is that the i960 core is using the bus 
around half the time over the duration of each TTCP run.  Of these 80% are non-data 
cycles.  This coupled with the fact that the i960 processor core is an in-order single issue 
processor suggests that the i960 processor could be stalled about 40% of the time.  In 
fact, further pipeline delay in conveying data back to the execution pipeline within the 
i960 core could bring that percentage even higher.  We will also see next that the wait 
time before a grant can further lenghten the processor core stall time. 
 



 16

The wait/grant numbers show the average number of bus cycles that each master waits 
before getting a grant.  Similarly, the own/grant numbers give the average number of bus 
cycles owned by each master once it gets a grant. One thing to note is the relatively high 
wait/grant numbers compared to own/grant numbers.  For example, in the case of 8kbyte 
message transmit, the i960 processor core waits on the average 3.4 cycles and only owns 
the bus for 6.1 cycles (of which only 20% or a 1.3 cycles is used for actual data transfer!).  
Its wait time is thus more than half its usage time.  It is quite likely that the wait time 
propagates back into the processor core as stall time.   This could stretch the 40% stall 
time identified in the previous paragraph by another half, bringing total processor stall 
time to 60%. 
 
The other bus masters also suffer similarly large wait to usage time ratios.  However, 
their absolute bus usage is much lower and none of the other statistics we gathered 
indicate that any of their bus usage is a bottleneck for the overall system. 
 
The pressing question coming out of these numbers is why the processor is using the 
internal bus so often.  We have several speculations all related to a poorly designed 
i960RN memory hierarchy.   It is most likely that a combination of these are responsible.  
Unfortunately without an accurate and modifiable simulator, we are unable to determine 
the relative contribution of each factor.   
 
The i960RN has very small caches by modern standards, 8-kbytes of instruction cache 
and 8-kbytes of data cache.  The data cache is write-through only (bad, but slighly 
ameliorated by write combining and two 16-byte write buffers).  Its fill policy on miss is 
very unconventional by modern standards – on cache miss, the data cache only fetches 
what is requested instead of an entire cache line.  This fill policy means that the data 
cache provides no temporal locality advantage.  Perhaps to make up, the i960 supports 
many different size load/store instructions, up to 16-bytes. 
 
Despite a write-through data-cache policy, the i960RN, with no snoopy cache coherence 
support, still suffers from cache coherency issues on read.  Thus data read by the i960 
core, but subsequently over-written by other devices such as DMA engines can become 
stale in the i960’s data cache.  The only mechanism for solving this problem is flushing 
the entire data cache, which our offload code invokes at the end of each DMA.  Flushing 
at the cache-line granularity, a mechanism found in many modern processor families (e.g. 
PowerPC) should have a much less devastating impact but is unavailable on the i960RN.   
 
Exasperated at the badly designed data-cache, we ran an experiment to find out if it is of 
any use at all.  Table 3 compares the internal bus utilization for 8kbyte transmit when 
data-cache is disabled.  Overall, without the data cache, execution time is 54% longer.  
Thus, there is value to the data cache.  Table 3 also shows that the i960 core has the 
biggest increase in bus ownership, and that the majority of the increased cycles actually 
go to non-data uses. 



 17

 

Table 3: Internal bus utilization for 8kbyte transmit. 
 
In summary, our investigation found that the i960RN processor’s memory system in 
general, and internal bus in particular are badly equiped for handling the TCP/IP protocol 
processing code that we are running.  While the numbers suggest that the i960 processor 
code could be stalled a very large part of the overall execution time, there is no easy 
means to extract the number which will yield the CPI.  One speculative guess is a CPI of 
about 3, based on the guess of 60% processor stall time.  Even when that is factored in, 
the cost of TCP/IP protocol processing still seems rather large.  The next section looks 
into the tcp_output function, which is responsible for a large fraction of processor cycles 
in the 8kByte transmit case, to understand where the cycles are going to. 

3.3    tcp_output cost breakdown 
Table 4 displays breakdown of tcp_output cost.  Processor usage under tcp_output is the 
domiant cost for large messages but important even for 200-byte message transmit where 
it is responsible for a quarter of each transmitted packet’s cost.  It is not a dominant cost 
of 1-byte message transmit because host-iNIC interface is so high in that case as to 
completely overwhelm other costs.   

iNIC’s role Tx 
Msg size (bytes) 8k 8k 

 

Data cache enabled disabled 

% increase 
when data 

cache disabled 
Total bus clocks 165M 253M 54% 
Idle 66M 38% 97M 38% 47% 
Data usage 18M 10% 22M 9% 25% 

Utilization 

Non-data usage 88M 52% 135M 53% 52% 
i960 core 94M 55% 145M 57% 54% 
DMA engine 0 - - - - - 
DMA engine 1 4.4M 3% 4.4M 1.7%  -1% 
PATU 1.0M 1% 0.9M 0.4%  -6% 

Ownership 

SATU 6.0M 4% 5.8M 2.3%  -3% 
i960 core 3.42 3.75 9.5% 
DMA engine 0 - - - 
DMA engine 1 8.08 8.37 3.6% 
PATU 5.48 5.79 5.5% 

Wait/grant 

SATU 5.79 5.31 -8.2% 
i960 core 6.11 7.13 16.7% 
DMA engine 0 - - - 
DMA engine 1 10.58 10.77 1.8% 
PATU 6.98 7.28 4.3% 

Own/grant 

SATU 19.16 20.99 9.6% 



 18

 
INIC’s role Tx Rx 
Msg size (bytes) 8k 200 1 Ack 
Per Tx pkt cost (pclks) 16,933 107,158 4,461,191 10,843 
Tcp_output’s share of Tx cost 5,452 32% 27k 25.5% 352k 8% 4,282 40%

Send? decision 16% 10% 94.6% 17% 
mbuf alloc 8% 2% 0.1% 16% 
Form header 15% 14% 0.6% 33% 
Data copy 43% 70% 4.2% 0% 

tcp_output 
component 

Stats & control 18% 3% 0.5% 34% 

Table 4: tcp_output processor usage breakdown. 
We break tcp_output into four components, reported as percentage of tcp_output 
cost.  The first is deciding whether to send a segment, reported in the row labeled “Send? 
Decision” in Table 4.  This is the first thing that happens when execution enters 
tcp_output.  In the case of 1-byte messages, execution ends here in most invocations of 
tcp_output as aggregation waits for around a thousand bytes before sending a segment.  
Execution may also terminate here if there is no more window space to transmit another 
segment under tcp’s flow-control scheme. 
 
The next component is mbuf allocation.  This is the cost of allocating message buffer data 
structure to contain tcp and ip headers.  Buffering strategy will be examined more 
carefully in the next section (Section 3.4).   
 
Next comes the cost of actually formatting a header.  As is evident from Table 4, this 
component is very significant in the case of the transmission of an acknowledgement 
packet.   
 
For data packets, some form of data copy occurs in tcp_output.  This may be just 
copying the anchoring data structure that contains references to the actual data, as 
happens for large messages such as the 8-kbyte transmit, or actual copying of data as 
happens for smaller messages such as the 200-byte and 1-byte messages.   
 
Finally, tcp_output updates some statistics registers and sets up flow-control related 
timers.  Again, this is significant for ack packets that do not have any data to copy.   
 
The cost of copying data for data packets stands out in Table 4.  For 8-kbyte message, it 
accounts for 43%*32%=14% of total transmit cost, for 200-byte message, it accounts for 
18%.  In fact, most of the cost incurred in the socket layer, as reported in Table 1 is also 
related to the way buffering is done, and the socket layer accounts for a hefty third of the 
total cost of 1-byte message transmit.  Clearly, the buffering strategy in the protocol stack 
warrants an examination; we report our findings of such an investigation in the next 
section. 

3.4  Buffering… and the resulting copy 
The BSD derived TCP/IP protocol stack on our offload implementation uses the 
venerable mbuf data structure which dates back to the VAX-11/780 era [9].  The mbuf 



 19

mbuf

Mcl[uster]

mbuf

Mcl[uster]

mbuf

data

data
data

mbuf

Mcl[uster]

mbuf

Mcl[uster]

mbuf

data

data
data

data structure is used throughout the BSD derived protocol stack, from buffering within a 
socket to holding Ethernet frames that are about to go onto the wire.  In several situations, 
it is also used as a general memory region that is “cast” (C type cast) into some other data 
structure.   
 
The mbuf data structure uses a two-tier buffering strategy.  A basic mbuf is a 128-byte 
memory region that can contain up to about 100-bytes of data with the balance of the 
128-bytes used for storing control information.  Several of these can be chained together 
to provide larger buffering space.  When allocating buffer space larger than will fit within 
two such basic mbuf’s, larger buffers, called external mbufs, clusters or mcl’s are used.  
On most platforms, these are two kilobytes.  Each cluster still has to be anchored to a 
basic mbuf data structure which stores appropriate control information.  The design does 
not permit simultaneously using the data space in the basic mbuf while using the same 
mbuf to point to a cluster.  The following figure illustrates a possible mbuf chain. 
 

 
The mbuf data structure is cleverly designed to facilitate pre or post-pending and 
corresponding removal of information without copying existing data -- common 
operations on message buffers as they move down or up network protocol stacks.  Aside 
from the flexibility from the linked list structure, the mbuf design leaves the start and end 
of data in any particular mbuf data structure flexible through using a “begin of data” 
pointer together with information on the length of contiguous data.    Copying cost is 
reduced in the case of clusters by allowing references to be made.  For example, if a 
message is buffered with the use of a cluster, copying involves allocating another basic 
mbuf for storing control information but this new mbuf will simply point at data in the 
existing cluster.  A reference count strategy is employed to track when cluster buffers can 
be reclaimed.   
 
Since the mbuf data structure was designed at a time when memory was expensive, the 
designed was skewed towards conserving memory space.  So for instance, when data 
resides in a socket, at attempt is made to compact data that are within basic mbufs to 
reduce fragmentation, possibly freeing up mbuf’s in the process. (Compacting is not done 
to data in clusters.) 



 20

 

Table 5: mbuf allocation and deallocation costs. 
The mbuf data structure is a cleverly designed, highly flexible data strcuture.  However, it 
incurs considerable cost for each allocation and deallocation as listed in Table 5.  
Furthermore, there is a tendency in the BSD TCP/IP protocol code to allocated multiple 
data structures as a message goes through the network protocol layers, particularly on 
transmit.  Table 6  shows the cost of mbuf allocation and deallocation in several TTCP 
runs.  Clearly, it is a very significant cost component in the case of 8kbyte message 
transmit. 
 

iNIC’s Role Tx Rx 
Msg size (bytes) 8k 200 1 8k 
mbuf management as % of total 22% 9% 0% 1.6% 

mbuf managemenet in Tx as % of Tx costs 25% 9% 0% 2.5% 
mbuf managemenet in Rx as % of Rx costs 10% 2% 0% 1.5% 

Table 6: mbuf management costs. 

3.4.1 Buffer usage for large message transmit  
Our investigation shows that roughly five mbuf-type data structure is allocated for each 
transmitted packet of a large message (e.g. 8-kbyte message).  This seems a lot.  The 
actual cost of using so many buffers is actually higher than indicated in Table 6 because 
of associated data copying cost.  Why are so many instances of mbuf-type data structure 
used?  The following list accounts for each one. 
 
• Fraction of one mbuf, cast into data structure for storing DMA context information.  

One is allocated in the function dma_send_data_from_host for each message.  
Therefore, depending on the size of the message relative to packet (MTU) size, the 
per packet amortized cost varies.  This is deallocated in the dma completion interrupt 
handler. 

• An mbuf and a cluster, allocated in the function dma_send_data_from_host as 
buffer space to DMA data into.  This is deallocated only when an acknowledgement 
is received from the other end of the tcp connection. 

• One mbuf for tcp/ip header, allocated in tcp_output.  This is deallocated by the 
Ethernet device interrupt handler once a packet is transmitted. 

• One to two anchoring mbuf’s, allocated in an mbuf copying function called from 
tcp_output, for “copying” cluster data by reference to send down the protocol 
stack.  One anchoring mbuf is sufficient if the data within the packet is contained 
within one cluster.  More often than not, the data straddles two clusters, resulting in 

Function Comment Average cost (pclks)
MGET Allocate a basic mbuf 290-380 
MGETHDR Allocate a basic mbuf used at head of a message 300-400 
MCLGET Allocate a cluster 400 
MFREE Free either a basic mbuf or a cluster 360 



 21

the need for two anchoring mbufs per transmitted packet.  These are deallocated in 
the Ethernet device interrupt handler once a packet is transmitted. 

 
With memory no longer as costly a resource as it used to be, the buffering strategy 
should be modified to minimize the number of data structure allocations and 
deallocations.  One possible scheme allocates a large data buffer with each socket so that 
each packet incurs very small amortized data buffer allocation and deallocation costs.  
As processing passes down the protocol stack, only one anchoring mbuf-like data 
structure is allocated for each packet to contain its header information and identify its 
data by reference into the socket data buffer.  Linux uses a similar scheme: a large 
contiguous buffer, but leaves space for header in the buffer when copying message data 
into it. 

3.4.2 Buffer usage for small message transmit 
Buffer usage behavior for small message transmit is different from that for large message 
transmit.  Only two mbuf data structures are allocated for sub 104-byte messages, and 
twice that for messages larger than 104-bytes but smaller than 208-bytes.  More 
significant, however, is the data copy that happens.  The iNIC software literally copies 
small message data up to three times during transmision.  These happen in the following 
situations: 
 
• copy from I2O message frame into mbuf 
• copy to compress buffer usage when queuing mbuf into sockbuf  
• copy for sending down the protocol stack after the tcp layer 
 
To get an idea of data copying cost on the iNIC, we instrumented the memcpy function.  
As shown in Table 7, this cost is very significant for 200 byte messages.  Data copying is 
closely tied to the buffering strategy.   From an efficiency point of view, it will be best if 
the host can directly place data into the large socket buffer that we suggested at the end 
of last section.  By using only reference throughout the protocol stack on the iNIC, no 
data copy is needed. 
 

 Memcpy cost as 
% of total cost 

Memcpy cost per 
messasge (pclks) 

200byte message transmit 35% 4721 
8kbyte message transmit 2% 2640 

Table 7: memcpy cost incurred on iNIC during TTCP runs. 

3.5 Host-iNIC interface behavior 
The cost of host-iNIC interface is very significant for small message transmit, as is 
evident from the numbers in Table 1 for transmission of 200-byte and 1-byte messages.  
This is partly due to Nagel Algorithm aggregation, and the fact that for the offload 
implementation, this aggregation happens on the iNIC.  As a result, while the host-iNIC 
interface and socket layers are invoked for every message, the other layers are only 
invoked once after a number of messages accumulate enough data to trigger transmission.  



 22

Independent of the effects of aggregation, the host-iNIC cost is high on a per-instance 
basis.  Table 1 shows that this ranges from over three thousand pclks for 1-byte transmit, 
to over seventeen thousand pclks for 8-kbyte transmit, to over twenty-six thousand pclks 
for 8-kbyte receives.  To understand what accounts for these costs, we divided the host-
iNIC interface into several components and measured the cost of each component.  The 
results are summarized in Table 8. 
 
iNIC’s Role Tx Rx 
Msg size (bytes) 8k 200 1 8k 
Per msg cost (pclks) 121,020 14,243 5,135 72,812 
Host-iNIC interface share of per 
msg cost 

17,396 14% 7,001 49% 3,034 59% 26,403 36%

Msg unit interrupt 9976 57% 1573 22% 1742 57% 3597 14%
Software copy from 
I2O buffer 

0 0% 5429 78% 1292 43% 0 0% 

DMA interrupt 3703 21% 0 0% 0 0% 3781 14%
DMA “call back” fn 3718 21% 0 0% 0 0% 0 0% 

Component 

Recv DMA 0 0% 0 0% 0 0% 19026 72%

Table 8: Host-iNIC interface cost breakdown 
In Table 8, the “Msg unit interrupt” component includes the tasks of handling I2O 
messages sent from host to iNIC and making DMA requests to DMA hardware.  Given 
that 200-byte and 1-byte messages do not involve any DMA, we can surmise that 
handling I2O message alone costs around 1.6 thousand pclks.  This also implies that for 
8-kbyte message transmit, setting up DMA requests, including allocating the mbuf data 
structures for DMA-ing data into, costs close to 8.5 thousand pclks.  Our profiling shows 
that roughly 6 sets of mbuf-cluster pairs and DMA request chain elements are allocated 
for each 8-kbyte message at an average cost of roughly 1.4 thousand pclks per set.  For 8-
kbyte message receive, “Msg unit interrupt” results in calls to the function 
sockism_release_buffer in which host side (receive) buffer are returned to iNIC.   

The “Software copy from I2O buffer” entry in Table 8 corresponds to the costs of 
allocating mbuf data structures and copying data from I2O buffers into these data 
structures.  This cost is incurred only for small message transmits, such as in the cases of 
200 byte and 1 byte messages.  In these cases, it accounts for a very significant share of 
host-iNIC interface cost. 

“DMA interrupt” entry in Table 8 is the initial interrupt handling at DMA completion, 
which may be invoked by hardware interrupt or via software polling.  It includes 
manipulating the DMA request data structures of newly completed DMA requests, 
calling the relevent DMA completed call-back functions, and eventually deallocating 
these data structures.  It also enables any pending DMA requests.  This applies to both 
transmit and receive. 

The “DMA call-back function” for transmit deallocates the I2O message frames of the 
messages sent by host to trigger TCP transmit.  It also includes a call to invalidate the 
data cache, because at the point, new data has been DMA-ed into iNIC memory, data that 
has to be made visible to the i960 processor.  This function also calls tcp_output to 



 23

attempt sending out tcp segments but the cost of this call is deducted from the numbers 
reported in Table 8. 

“Recv DMA”, which applies to receive only, corresponds to the function 
indicate_recv_using_dma.  This is where DMA requests are allocated and 
queued with DMA hardware to move received data from iNIC memory to host memory.  
An I2O message frame is allocated; this is sent to the host by another function when 
DMA completes.   Also allocated are message buffers on the host side used as 
destinations of DMA transfers.   
 
Overall Table 8 shows that the cost of moving data between host and iNIC dominates 
regardless of whether this is done with DMA hardware or via embedding the data within 
I2O message frame, with a lower bound cost in the thousands of processor clock cycles.   
Clearly, the cost makes it highly inefficient for Nagel Algorithm to occur on the iNIC.  
To move that back to the host, however, requires an efficient way for a TCP connection’s 
state to be shared dynamically between host and iNIC. 

3.6  Miscellaneous Inefficiencies 
Our evaluation found several other inefficiencies.  One is the implementation of the 
socket buffer (sockbuf) which is based on an mbuf linked list.  Many operations on 
socket buffer are implemented with linear traversals.  For example, the socket buffer data 
structure keeps the mbuf list in a singly linked list with no pointer to the end of the list.  
Enqueuing to the end of the sockbuf (sbappend) ends up requiring a linear traversal 
through the entire list.  Clearly the original implementors expected each sockbuf’s buffer 
space to be limited to a small amount so that the linear list traversal is not a problem.   
 
Another example is the m_copym function, which copies a number of bytes from a 
sockbuf starting at a certain offset.  The BSD TCP/IP stack keeps all unacknowledge data 
within a sockbuf.  Sending the next unsent byte typically involves sending data starting at 
a certain non-zero offset from the beginning of a sockbuf.  The m_copym 
implementation traverses the sockbuf’s linked list of mbuf from the beginning until the 
required offset is reached, at which point copying starts.  This is not efficient in the 
common case where no packet is lost during transit so that the offset is the end of the 
regioins copied by the last call to m_copym.  A slightly more complicated 
implementation that tracks this point can avoid the list traversal except when packet loss 
brings the offset backwards. 
 
We also came across several inefficient artifacts of the gcc960 compiler.   One is each 
struct assignment is implemented with a memcpy function call, even when the struct is as 
small as 16 bytes.  On the i960RN with its register windows, each procedure call costs  
between 30-40 processor clock cycles.  (We measured this with a fibonacci micro-
benchmark.)  Contrast this with i960RN’s single-instruction 16-byte load/store 
instructions.  A pair of 16-byte load/store instructions that hit in the data cache takes only 
19 cycles.  This goes up to around 50 cycles when they miss in the data cache.  Adding 
the overhead of procedure call is thus very significant for assignments of small structs, 
something common in the networking code.  The mbuf data structure has a 16-byte 



 24

control struct at its beginning for cluster related information.  Another example is the 
TCP/IP header.  The header template that is copied into each TCP segment before further 
customization for the specific segment is a 40-byte chunk of data.   
 
4 Host-side Behavior 

We turn our attention to host-side behavior in this section.  Our evaluation of host side 
behavior is at a “black box” level, focused on looking at host processor utilization and the 
number of host interrupts.  We did not do any breakdown profiling like those we did for 
iNIC-side behavior.  Instead, we contrast the host processor utilization under our offload 
implementation with that of native NT TCP/IP protocol stack, and that of an Alacritech 
NIC which offloads the common path processing of TCP/IP onto custom ASIC in a 
technology they call SLIC.  All measurements reported in this section are made with the 
Performance Monitor tool that comes with Windows NT.  The system has a 300MHz 
Pentium-II processor and 64Mbytes of SDRAM.   When quiescent, this system has 
around 64 interrupts/s and negligible processor utilization. 
 
Table 9 displays the raw bandwidth, interrupt rate, processor utilization, and privilege 
mode processor utilization statistics for the three platforms under comparison.  The 
bandwidth numbers show that our offload implementation delivers worse performance 
than native NT implementation in most cases.  We can further gather that except for the 
case of 1-byte message transmit, the iNIC is the bottleneck because the host processor 
usage rate is relatively low.  The Alacritech’s NIC delivers bandwdith comparable to that 
of native NT TCP/IP stack execpt for small messages, with the cross-over point 
somewhere between 2-4kbyte messages.   
 
Performance at the extreme case of 1-byte is uniformly bad across all implementations 
and rather odd in the NT case where something other than processor utilization is 
throttling performance.  In fact, if we look at processor utilization under NT’s native 
TCP/IP, it increases as the transmitted message size decreases all the way until 400-byte 
message.  But going down to 1-byte reverse this trend.  We do not know the reason for 
this.  Alacritech’s implementation exhibits a similar anomaly at 400-byte transmit, with a 
dip in bandwidth and processor utilization against an otherwise similar trend.  
 
While interesting in themselves, the raw numbers in Table 9  do not facilitate direct 
comparison because different platforms achieve different bandwidths.  In particular, our 
offload implementation delivers significantly lower transmit performance, due to 
throughput bottlenecks on the iNIC.  In an attempt to enable more intelligible direct 
comparison, we extrapolated the statistics from Table 9 to extract the total amount of 
interrupts and processor utilization over the coarse of an entire TTCP run.  This is 
displayed in Table 10 where we also dropped the privilege mode utilization numbers 
because they do not tell us much more than the overall processor utilization.  (The total 
processor usage numbers are derived by multiplying the usage percentage by the 
duration, and can be thought of as the total work done by the processor.) 
 
 



 25

Role Tx Rx 
Msg size (bytes) 16k 8k 4k 2k 1460 1000 400 1 8k 

Bandwidth(KB/s) 7358 6593 5519 3656 3728 2925 2491 14.5 10433 
Interrupts/s 525 900 1440 1290 1370 2030 2740 15000 1270 
Proc. usage 9.8% 12% 14.8% 18.4% 24% 31% 31% 100% 34% 

Offload 

Priv. proc usage 9.3% 11.2% 13.7% 16.4% 21% 28% 28% 90% 32% 
Bandwidth(KB/s) 11510 11516 11373 11228 11536 11134 9970 8.6 11567 
Interrupts/s 11700 11300 11500 12150 12100 13750 10200 85 8200 
Proc. usage 62% 78% 51% 82% 85% 90% 95% 17% 72% 

NT 

Priv. proc usage 61% 76% 49% 77% 79% 85.5% 87% 15% 67% 
Bandwidth(KB/s) 11523 11516 11523 6450 6456 5384 5.97 5.09 11561 
Interrupts/s 795 1500 2970 3280 4537 4435 101 5520 6150 
Proc. usage 30% 42% 41% 29% 24% 38% 0.3% 100% 42% 

Alacritech 

Priv. proc usage 29% 41% 37.7% 26.5% 22% 34.5% 0.2% 95.5% 38.5% 

Table 9: Host-side processor utilization and interrupts raw statistics. 
 
Table 10 shows that both our offload and Alacritech’s SLIC NIC achieve lower processor 
utilization than native NT’s TCP/IP protocol stack for transmission of large enough 
messages.  At messages larger than 2kbytes and again for messages smaller than 400 
bytes, our offload utilization has lower procesor utilization than Alacritech’s.   
For small messages, however, both our offload implementation and Alacritech’s NIC 
actually have higher processor utilization than NT’s native TCP/IP stack.  The cross over 
is around 1000 bytes for our offload implementation and a smaller size (larger than 400 
bytes) for Alacritech.   
 

Role Tx Rx 
Msg size (bytes) 16k 8k 4k 2k 1460 1000 400 1 8k 
Num messages 40960 40960 40960 160000 200000 240000 128000 640000 40960 

Duration (s) 89.06 49.70 29.69 28.5 76.5 80.1 35.1 43.2 31.4 
Total interrupts 46800 44700 42800 112k 105k 163k 96k 647k 39.9k 

Offload 

Total  proc usage 8.7 6.0 4.4 16.1 18.4 24.8 10.9 43.2 10.7 
Duration (s) 56.94 28.45 14.41 28.5 24.7 26.3 5.0* 72.7 28.3 
Total interrupts 666k 322k 166k 346k 299k 362k 51k ?? 232k 

NT 

Total  proc usage 35.3 22.2 7.4 23.4 20.9 23.7 4.8 12.4 20.3 
Duration (s) 56.88 28.47 14.22 49.61 44.17 43.53 8370* 122.89 28.34 
Total interrupts 45.2k 42.7k 42k 163k 200k 193k 684k 678k 174k 

Alacritech 

Total  proc usage 17.06 11.82 5.83 14.39 10.60 16.54 16.69 122.89 11.90 
Interrupt ratio (offload/NT) 7% 14% 26% 33% 35% 45% 188% 10k% 17% 
Interrupt ratio (Alacritech/NT) 7% 13% 25% 47% 67% 53% 1338% 11k% 75% 
Proc usage ratio(offload/NT) 25% 27% 60% 69% 88% 105% 229% 349% 53% 
Proc usage ratio(Alacritech/NT) 48% 54% 79% 62% 51% 70% 350% 995% 59% 

Table 10: Host-side processor utilization and interrupts normalized statistics. 
For our offload implementation, the problem with small messages is that Nagel algorithm 
aggregation is done on the iNIC, resulting in too much host-iNIC interaction overhead.  It 
would have been cheaper to do the aggregation on the host side if connection state can be 
efficiently and dynamically shared between host and iNIC. 
 
For Alacritech’s SLIC NIC, the problem is not aggregating outgoing message data at all.  
(We used tcpdump to snoop on packets coming out of the NIC and saw that.)  We looked 



 26

but found no software configuration switch for enabling/disabling Nagel algorithm for 
the Alacritech NIC.  As a result, it actually sends out Ethernet frames that are exactly the 
message sizes, resuting in performance that is even worse than our offload 
implementation for small messages.  
 
Overall, the host-side statistics shows that offloading can decrease processor utilization.  
However, it also clearly shows that the iNIC we are using is unable to achieve 
competitive throughput. Furthermore, handling of small messages needs improvements. 
 
The Alacritech number also raises challenging questions for our choice of 
implementation technology.  The Alacritech SLIC NIC uses a custom ASIC which does 
simple TCP/IP processing for non-exceptional cases (i.e. no out-of-order packet arrival, 
no resetting send window back for re-transmit, etc.).  All exceptional cases are handled 
back at the host, and tcp connection state will have to be flushed between the NIC and 
host when such events occur.  Such exceptional cases are rare, especially in a cluster 
environment.  From a silicon efficiency point of view, the Alacritech approach is 
definitely better than our offload, since our iNIC actually has a full computer system on 
it.  However, it does not offer the kind of control and ability for extensions to the 
common path that is possible in our offload implementation.   
  
5 Related Work 

This section discusses two types of related work.  In Section 5.1, we discuss some 
previous studies of TCP/IP implementations.  These, while not exactly contradict our 
findings, had led people to expect much lower processing costs.  Then in Section 5.2, we 
compare our offload implementation with other similar efforts. 

5.1  Studies on TCP/IP implementation issues  
In 1989, Clark et. al. [2] published a much cited analysis of TCP processing overhead 
which reported both (x86) instruction counts obtained by manually counting compiled 
code and latency times measured with a hardware logic analyzer.  One has to be very 
careful in interpreing their instruction counts, which suggest that TCP and IP with a 
simplified (non-mbuf) buffering scheme takes under 400 instructions as summarized in 
Table 11.  (We put together Table 11based on information extracted from their paper.) 
 

 Data sender Data receiver 
 Tx(data) Rx(ack) Tx(ack) Rx(data) 
TCP 235 191-213 235 186 
IP 61 57 61 57 
Buffering 40 30 ? 35 
TCB lookup - 25 (est.) - 25 (est.) 
Timer operation 35 17-41 - 0-35 
Total 371 320-366 296+? 303-338 

Table 11: Summary of TCP/IP processing cost instruction count from Clark et. al. 



 27

In particular, one should note that the counts do not include the cost of Ethernet device 
driver, checksum computation and at least one if not two data copies that are present in 
most systems.  While these are extraneous to the control portion of TCP which is the 
subject of their paper, the supporting infrastructure has to be there to make things work.  
Their reasoninng was that these costs are implementation dependent and hence left out.  
Due to these exclusions, which we did not separate out when profiling our offload 
implementation, it is not possible to directly compare our numbers with their instruction 
count.   
 
Clark et. al.’s hardware measured latency numbers for a 2MIPS (20MHz) Motorola 
68020 based Sun-3/60 workstation provide a more complete picture.  Table 12 
summarises their measurement, with the middle column taken directly from their paper 
and the right column derived based on the reasoning they used in their paper for 
extrapolating latency measurements into cycle counts.  If we take the very rough view 
that this is a 20MHz machines, Table 12 suggests that the entire protocol stack processing 
takes on the order of 24 thousand clock cycles on a CISC machine.  This is quite 
consistent with the roughly 26 thousand clock cycles we reported in Table 1 to handle an 
incoming and an outgoing packet under 8kbyte message transmit. 
 

 Measured overhead (us) Probably instruction count 
User-system copy 200 400 
TCP checksum 185 370 
Network-memory copy 386 772 
Ethernet driver 100 200 
TCP+IP+ARP protocols 100 200 
OS overhead 240 480 
Total 1211 2422 

Table 12: Summary of TCP/IP processing measured latency from Clark et. al. 
The more interesting aspect of Clark et. al.’s paper is their observation that memory 
system and data copying, buffer layer and OS infrastructure are the main challenges to 
efficient TCP/IP implementation.  In fact, the discussions at the end of the paper 
suggested that an offload approach may help overcome these problems.  Unfortuantely 
for us, our i960RN based offload implementation failed to address the buffering layer and 
“special high-performance memory architecture” that Clark et. al. expects of an 
“outboard” (equivalent to our offload) implementation.  Clark et. al. also expressed their 
opinion against hardwiring protocols in silicon as they believe that the protocols 
themselves will continue to evolve.   
 
In a workshop talk in 1993, Van Jacobson mentioned a TCP/IP implementation that does 
away with mbuf’s [4].  It was clear by then that mbuf’s were suboptimal for the relative 
cost of various components in a computer system.  Unfortunately, that implementation 
never made it into BSD networking code as far as we can tell, because today, the BSD 
TCP/IP networking code is still mbuf based.  Van Jacobson claimed a speed 
improvement of one to two orders of magnitude. 
 



 28

In 1996, Moseberger et. al. [6] reported tcp input timing for a 1-byte message on a DEC 
Unix v3.2c system with an alpha 21064 processor.  From IP input to TCP input, they 
measured 262 instructions and from TCP input to socket input, they measured 1188 
instructions, with a CPI of 4.26.  This suggests that from IP input to socket input takes 
6177 clock cycles.  This is not inconsistent with our numbers in Table 1 (consider per Rx 
packet cost for Rx for 8kbyte).   
 
Moseberger et. al.’s work actually focused on compilation techniques for improving 
network code performance.  The goal is to achieve better cache memory system behavior 
and take advantage of partial evaluation.  They rearrange basic blocks to achieve 
executing along mostly contiguously addressed instructions.  They also combine blocks 
across source-level functional and possibly module boundaries so that optimization can 
be done over a larger body of code.  This is similar to what is done in many VLIW 
compilers and more recently, in Just-in-Time/Code Morphing compilers.  In 
Moseberger’s work, the partial evaluation is done at a protocol level; they did not attempt 
to wait till a conneciton is set up to produce a per-connection specialized code for fear of 
code bloat.  They reported a latency improvements of about 13% for their system which 
has a slow Ethernet device.  If the Ethernet device latency is completely removed, leaving 
mostly latency due to processor execution, their modifications improve latency by 40%.  
None of the techniques they investigated are in the gcc960 compiler used in our offload 
implementation. 
 
A recent (June 2000) paper by Chase et. al. [1] studies the effect of various end-system 
optimizations on TCP/IP processing cost.  Part of the results they reported is a breakdown 
of host CPU utilization on a Compaq workstation with 500 MHz Alpha 21264 processor, 
which uses 95% of procssor cycles when handling 370Mbits/s network traffic consisting 
of 1.5 kbyte (Ethernet MTU) packets.  (It uses a Myrinet NIC.)  Table 13 is an 
approximation of the breakdown percentages extracted from a graph in their paper.  Other 
parts of the paper suggest that removing software checksum should reduce the copy and 
checksum cost by between a third and half.  That leaves very significant copy cost, in the 
15-20% range.  Interrupt cost, at 20% is very significant.  However, so is buffering cost, 
at 16%, which exceeds the 12% of TCP/IP processing, what people would consider as the 
“useful work “. 
 

 Processor usage %
Copy and checksum 30% 
Interrupt 20% 
VM 8.5% 
NIC driver 8.5% 
Buffering 16% 
TCP/IP 12% 
Idle 5% 

 Table 13: Processor utilization breakdown as reported by Chase et. al. for TCP/IP 
over Trapez/Myrinet. 

 



 29

The numbers from Chase et. al.’s paper broadly agree with what we measured on our 
offload implementation.  For example, our offload implementation drastically reduced  
the number of host interrupts (down by 93% for 16kbyte message transmit), removed all 
TCP/IP processing, checksum, NIC driver and part of buffer management from the host 
processor.  Based on Chase et. al.’s numbers, this leaves about 25-30% of the original 
processor usage, which is what we  saw for 8-kbyte and 16-kbyte message transmits. 

5.2 Other networking protocol offload work 
Over the years, many  attempts at offload, or outboard implementations have been made.  
We focus on a few recent ones. 
 
We examined the performance of the SLIC NIC from Alacritech back in Section 4.  SLIC 
performs TCP/IP protocol processing on their NIC’s ASIC for non-exceptional cases.  
One of the white papers on their web site claims that they achieve a single hardware copy 
between host and NIC memory (essentially what would classically be called zero-copy), 
interrupts reduction and reduced PCI bus traffic as there is less direct control of the NIC 
by the host processor.  However, our measurement does not quite support that claim.  
Their host processor utilization is higher than our offload implementation which we know 
does one copy in software on the host side.  It is still possible that they somehow 
introduce enough host-side processing to result in the observed host-side utilization, but 
we are unable to determine what that may be.  (Our TTCP runs on the Alacritech NIC’s 
did not encounter exceptional condition, as indicated by their own Perfmon extensions 
which showed that all traffic is handled by the ASIC.) 
 
At their web site, Alacritech publishes a third party performance testing done by ZD net.  
These are throughput, processor usage and latency numbers measured with ZD net’s 
NetBench benchmark.  The host is a Xenon P-III 500 MHz processor with 1-Gigabytes of 
RAM, and most tests use multiple Alacritech’s SLIC NIC’s as well as multiple ports on 
the NIC’s (we used only one port on a 4-port NIC).  Since the setup and benchmark are 
different from ours, we cannot do a direct comparison.   
 
Alteon’s Gigabit Ethernet NIC (also OEM by HP and sold as the A4929A Gigabit NIC) 
offers certain features to reduce host processor utilization.  These include checksum 
computation, interrupt coleascing under heavy traffic,  and (they claim) zero-copying.  
Our colleagues in Cupertino reported that on a J6000 system with 440MHz PA-RISC 
8600 processors, performance max-out at around 650-700Mbits/s when running Netperf.    
 
A company called Interprophet was working on and presumably selling NIC’s with 
TCP/IP implemented in FPGA hardware.  (Our latest attempt to access their web site – on 
Nov 2, 2000 – failed to open the web site.  The site was up about 5 weeks ago when we 
accessed it.  It looked very much a “garage” operation.)  We do not have much details or 
performance statistics for this NIC.  Some Korean acadamic researchers reported an 
FPGA implementation of TCP/IP over 155 Mbit/s ATM [5].  There was little concrete 
performance statistics in that case too, other than the claim that they achieved wire speed.  
We also heard rumours that Lucent is working on silicon implementation of TCP/IP 
protocol, but do not have any further information. 



 30

 
6 Conclusion 

We conclude this report by first listing in Section 6.1 the limitations of this study, which 
are possible subjects of future work.  In spite of these limitations, this study has shed light 
on our network protocol offload work.  Section 6.2 recapitulates these results.  Next, we 
consider the implications of these results, particularly with respect to the whole protocol 
offload and iNIC idea in Section 6.3 .  Finally, Section 6.4 wraps up the entire report with 
some suggestions for future work. 

6.1 Limitations of this Study 
A number of important issues were not addressed in this study.  Firstly, receive behavior 
has not been studied in any detail.  Secondly, connection setup and tear down 
performance has not been evaluated.  Thirdly, we did not study bulk transfer when a large 
number of connections are outstanding.  Fourthly, it will be good to move beyond micro-
benchmark like TTCP to an application level benchmark to get a better understanding of 
overall performance. 
 
On the iNIC side, it is unfortunate that we are unable to determine the CPI and cache 
miss rate on the i960RN processor.  Although we have a good approximate picture of 
what happens on the iNIC, a quantitatively more precise picture will be very useful.  The  
i960RN’s unusual data cache design also raises questions about how a more modern, 
superscalar processor and memory hierarchy would perform.  All these questions can be 
better answered in a new iNIC that we are jointly developing with Cyclone.  In addition 
to supporting Gigabit Ethernet, this new iNIC has a PowerPC 750 processor with 
performance registers for determining CPI and cache miss rates and a modern cache 
memory hierarchy and modern processor core.  In the long run, a flexible, accurate 
simulator is probably the best tool for investigating implementation isssues. 
 
On the host side, running the Windows NT OS makes for a bad comparison because NT 
is well known to have much higher TCP/IP networking cost than any of the many Unix 
flavors.  It will be interesting to use our offload iNIC with a Unix host and measure the 
host processor utilization.  Again, the new iNIC we are developing together with Cyclone 
will be an interesting candidate for study because its first target  host OS is HPUX.   

6.2 Summary of Results from this Evalution 
Despite the limitations listed in the previous section, we learned a number of useful 
things from this study.   
 
Firstly, this study quantified the cost of TCP/IP protocol processing on our i960RN based 
iNIC offload implementation.  It shows that the cost is much higher than was originally 
expected, running into tens of thousands of processor clock cycles for each packet. 
 
Next, several causes for the high processing cost were identified.  Hardware limitations is 
shown to be a big cause of the bad performance.  While the internal bus is the immediate 



 31

hardware bottleneck, the problem extends to the data cache and memory hierarchy 
design.   
 
Another major problem is bad buffering strategy which is a software decision.  The bad 
design probably aggravates the weak memory hierarchy design problem.  Of course even 
if the hardware were better, there is no point doing more work than necessary so the 
buffering strategy should be improved.  Our study clearly identifies more attractive 
alternate buffering strategies to try out.5 
  
Handshaking across the host-iNIC is found to be quite costly, and is responsible for the 
bad  performance of our offload implementation for small message transmits.  
Furthermore, regardless of message size, there seems to be no cheap way to move data 
between host memory and iNIC.  Both hardware DMA and direct embedding data in I2O 
message frames incur costs that have lower bounds in many thousands of cycles.  From a 
pure performance point of view, avoiding this cost altogether with some unified memory 
would be best.  Such an approach will have implications on how much control the iNIC 
retains apart from the host, a consideration that is important for some proposed usage of 
our offload approach. 
 
Finally, our study validated that host processor utilization is lower with our offload 
implementation but only for large messages.  Data copying, followed by system calls, are 
the next overheads to target.    

6.3  Implications of our Findings 
This work clearly calls into question the original hypothesis that offloading TCP/IP 
protocol processing to a specialized networking software environment coupled with 
cheap embedded processors is a cost effective way of improving system performance.  At 
least in the case of our offload implementation on the i960RN, neither was the 
performance adequate nor the system cheap.   
 
One could argue that the serious deficiencies in hardware and networking software we 
found makes it impossible to draw definitive conclusions.  Surely, another better attempt 
should be made, in which better buffering strategies are tried, and a better processor used 
on the iNIC.  Perhaps that will demonstrate much better or at least adequate performance. 
 
We believe that this approach is fundamentally flawed.  At the low bandwidth end, say 
100 Mbit/s, the cost of such an iNIC is simply too high for it to be a viable approach.  At 
the high bandwidth end, say 10 Gigabit/s, it is highly doubtful that any general purpose 
processor available in the next three years will be adequate to the task.    Fundamentally, 
the issue is with implementation approach, not the idea of offloading itself. 
 
One important question for us as we continue to explore iNIC implementations is the 
degree to which the offloaded functions need to be modified.  If modifications are rare, 
than a hardwired approach such as that taken by Alacritech is probably the most cost 
                                                           
5 We learned just before this report was completed that the offload implementation team had plans for 
better buffering strategy but didn’t get around to implementing it. 



 32

effective solution.  If changes are frequent, than one needs to examine alternate micro-
architectures, such as multi-threaded processors common in the new generation of 
network processors.  There is yet room for research in the network processor arena, 
where the specific architectures are far from “standardized” or well understood.   

6.4 Recommendation for Future Work 
We recommend three areas for future work.   
 
One is a follow-up of this evaluate to arrive at a more complete picture, particularly to 
address the limitations of this study and the short comings found in this study.  The 
following are some things to try out: 
• Use a different buffering strategy on the iNIC.  In particular, try replacing the BSD 

derived TCP/IP protocol stack with Linux’s. 
• Perform Nagel algorithm aggregation on the host side. 
• Eliminate host side copying; since TCP source buffering is done on the iNIC, it 

seems eminently possible to replace the host-side user space to system buffer copy 
with a hardware DMA from host-side user space into iNIC memory. 

• Use our new PowerPC 750 based iNIC to measure processing cost, CPI, and cache 
miss rate.  If necessary, use a simulator to get a better picture of the memory system 
behavior. 

• Evaluate the connection set-up and tear-down aspects of the implementation.  Also 
try out bi-directional transfers, and having multiple connections active at the same 
time.  This will exercise the protocol stack more broadly. 

 
The other area of work is to look at innovative micro-architectures that are better equiped 
for network protocol processing, for instance,  a better way of integrating the network 
interface into the host system so that the host-iNIC interface cost is lower than in our 
current implementation.  Another aspect of this work is finding cost effective ways to 
exploit a high degree of processing parallelism.  Interesting avenues include some form 
of multi-threaded processing, specialized hardware, and field programmable hardware.  
We need to clearly understand the kinds of parallelism that can be efficiently exploited 
and possible hardware structures that may be needed to make it efficient. 
 
Lastly, this networking work should be put in a concrete context so that attention can be 
directed to the dominating networking characteristics of the intended applications.  Work 
under this category includes having a clear grasp of the degree of separation of iNIC 
control from host, the degree of programmability and the level of computation power 
needed on an iNIC. Members of our research team had proposed putting things like web 
caches and fire-wall filters on an iNIC.  The implications of such ideas, such as on 
memory requirements -- web caches are memory intensive -- and access to message data 
-- fire-wall filters that want to examine all the message data will put demands on the 
iNIC’s memory system -- should be taken into account. 
 



 33

Bibliography 

[1] Jeff Chase, Andrew Gallatin and Ken Yocum.  End-System Optimizations for High-
Speed TCP.  June 2000. (submitted for publication but already available from web site at: 
http://www.cs.duke.edu/ari/publications/publications.html.) 
 
[2] David D. Clark, Van Jacobson, John Romkey and Howard Salwen. An Analysis of 
TCP Processing Overhead. IEEE Communications Magazine, 27(6):23-29, June 1989. 
 
[3] Intel Corporation.  i960 RM/RN I/O Processor Developer’s Manual.  July 1998.  
Order Number:273158-001. 
 
[4] Van Jacobson. Some Design Issues for High-Speed Networks. Networkshop’93, 
Melbourne, Australia, November 1993.  
 
[5] Killyeon Kim, Kuhwan Kim, Kyohong Jin and Jungtae Lee.  A Design and 
Implementation of High Speed TCP/IP Hardware. Proceedings of APCC ’97, 3rd Asia 
Pacific Conference on Communications, pp. 212-216, vol 1, 1997. 
 
[6] David Mosberger, Larry L. Peterson and Sean O’Malley. Analysis of Techniques to 
Improve Protocol Processing Latency. Proceedings of Conference on applications, 
technologies, architectures, and protocols for computer communications 
(SIGCOMM’96), Palo Alto, CA, pp. 73-64, August 28 - 30, 1996. 
 
[7] C Partridge. Jacobson on TCP in 30 Instructions. <Message-ID 
1993Sep8.213239.28992@sics.se> Usenet, comp.protocols.tcp-ip Newsgroup (Sept.). 
 
[8] Lance W. Russell and Bert Munoz. Distributed Services Utility System Software 
Architectural Specifications.  March, 2000.  
(http://web.hpl.hp.com/org/labs/csl/pss/dsu/docs/dsu-sa.pdf) 
 
[9] Gary R. Wright and W. Richard Stevens.  TCP/IP Illustrated, Volume 2 – The 
Implementation.  Addison-Wesley, 1995. 
 
 
 


	Introduction
	Summary of Results
	Organization of this Report

	TCP/IP Offload Implementation Overview
	Cyclone PCI-981 iNIC hardware
	Offload Software
	Execution Environment
	Networking code
	Transmit path
	Receive path



	iNIC Side Behavior
	General Performance Statistics
	Hardware bottleneck
	tcp_output cost breakdown
	Buffering… and the resulting copy
	Buffer usage for large message transmit
	Buffer usage for small message transmit

	Host-iNIC interface behavior
	Miscellaneous Inefficiencies

	Host-side Behavior
	Related Work
	Studies on TCP/IP implementation issues
	Other networking protocol offload work

	Conclusion
	Limitations of this Study
	Summary of Results from this Evalution
	Implications of our Findings
	Recommendation for Future Work

	Bibliography

