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This report documents a first-cut understanding of the HA
issues in DSM systems. We discuss the general HA strategy, 
advocate for minimizing fault propagation, system 
reconfiguration time and performance degradation as the 
distinctive goals for the three stages that the system goes 
through after the occurrence of a fault till full recovery. We 
show the possibility of estimating the impact of a fault through 
hierarchical component dependency analysis. We point out that 
coherent protocols should be extended and transactions
be made closed in order to detect the fault and maintain data 
integrity. In particular, we propose source-buffering to augment 
dirty data transfer protocol in preparing for possible data loss 
and corruption. N+1 stand-by system is suggested as the
ultimate HA solution. Further research opportunities are 
discussed. This report skims through a broad range of issues, 
but it does not attempt to treat each of  them in depth. 
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1. Introduction 
This report is a summary of several weeks’ study of the High Availability (HA) 
issues of DSM system. In this I am integrating relevant materials that I learn 
from various literature resources and many notes that I have taken during the 
period. The intent is to give a first-cut understanding of the issues and discuss 
some potential research opportunities. They are by no means final. The report 
is written only in the hope of getting my thoughts more organized and to wel-
come critiques and suggestions from my colleagues, who have already helped 
me a great deal to get me started. 

1.1 Windows of Opportunity 
It is highly desirable that an HA system  continues to provide correct services  
after faults have occurred, albeit with possibly degraded performance. Such 
fail-over property is currently easier to be reliazed in systems based on 
clustered-solutions. Examples of commercially available clustered-solutions 
are ReliantHA and ReliantDLM from SCO, Wolf Mountain  from Novell, and 
Wolfpack-NT from Microsoft. Clustered-solutions, however, deliver only 
limited  performance, especially for applications that demand response time as 
well as throughput. The fundamental reason behind the low performance of 
clustered-solution is its inefficiency of utilizing machine resources to match 

parallelisms of the applications. In addition, issues such as load-balancing 
poses challenges as well. 
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Clustered-solutionsClustered-solutions

High-End DSMHigh-End DSM
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Figure 1 The Space of Performance and High Availability 
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At the other end of the spectrum is the high-end, shared-memory based DSM 
systems. These systems are capable of much higher performance, but on the 
other hand their HA abilities may not be as robust as clustered-solutions. 
Boosting the HA of DSM systems relies on matured software technologies such 
as multi-kernel Operating Systems. In addition, the software-hardware 
interface regarding HA support is no longer as cleanly defined as in the case of 
clustered-solutions. In fact, we can think of multi-kernel Operating System in 
DSM is approximating this particular interface of clustered-solutions. 

This situation is depicted in Figure 1, with the target zone marked. Note that 
we have lower target performance, this is a direct result of using commodity 
components as building blocks for our DSM systems, not a necessary condition 
to achieve HA. Hopefully, the techniques that we research here will apply to 
high-end systems as well. What we are trying to provide, hopefully, is a much 
greater performance over clustered-solutions, with HA of the system as a whole 
approaching to that of clustered-solutions. 

1.2 New Cost/Performance Constraints 
The systems that we target at are low to mid-range DSM, and they are built on 
top of commodity boxes. It is for this reason that we will not expect them to 
compete at the same performance zone of those high-end DSM.  

Building DSM out of commodity parts also poses greater difficulties to boost 
the HA, mainly because the system-HA is bound to the HA of the commodity 
components, of which we have no control. 

The cost constraints also determine that many techniques employed in high-
end fault-tolerant machines to be inappropriate. For example, the high-end 
fault-tolerant machines often use double or triple redundancy to detect and/or 
correct errors. Besides the fact that these redundancies linearly increase the 
system cost, there are non-trivial performance penalties associated with fault 
detection using lock-step comparison. However, we will see that some of the 
principles of full fault-tolerant machines can indeed be borrowed. 

1.3 Challenge of Finding Research Opportunities 
Finding research opportunities in HA of DSM is very challenging because of 
two problems. The first is the difficulty of assessing implementation complex-
ity. Any HA optimization will likely to involve the software-hardware inter-
faces. If the interfaces are themselves fuzzily defined, it is hard to understand 
how many changes have to be made into the operating system in order to 
bring up the full benefit of the optimization.  
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The second reason is the difficulty of quantifying the result. In reality, system 
faults have long MTTF, running simulation as long is prohibitive. Many times 
one has to build a full-scale, event-driven simulator running operating system 
code as well as the applications, then inject faults and record system behavior. 
This characteristic makes the design/implementation overhead becomes the 
dominant portion of the research effort. Understandably, among the few inter-
esting academia research projects that have been published so far, quantifying 
results are either in essence a design verification report, or not directly to the 
point of high-availability. A lack of relevant metrics contribute to the problem 
further, we will propose a set of metrics in Section 2. 

Thus, it is one of the primary goals of this report to generate discussions of how 
to define adequate research opportunities. Whenever possible, potential re-
search projects will be highlighted in the remaining of the discussions. 

1.4 Organization of the Report 
Section 2 reviews the general strategy that we propose to take on the high 
availability issues in DSM. Section 3 proposes the methodology of understand-
ing the dependencies of system components in light of how a fault will affect 
the rest of the system. Following the foundation being laid out, Section 4 dis-
cusses how to improve HA within a node. Section 5 introduces the idea of how 
to enhance coherent protocol for better fault-detection capability, and then 
proceed to propose the N+1 stand-by HA DSM system, and the general algo-
rithm of its recovery in case of fault. We conclude by filling out a table of re-
search opportunities in Section 6. 

2. Strategy of High Availability in DSM 
In this report, we do not discuss HA issues in IO subsystem, and assume a ro-
bust and HA IO subsystem is already available. That is, disk accesses are in-
dependent of node failure. In the worst case, IO resources physically allocated 
at one node are available to other nodes via an IO interconnect. This assump-
tion is made because the HA in IO subsystem is critical enough to warrant a 
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Figure 3 Decomposition of System Operation Period 
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separate study, and that it is largely orthogonal to the remaining of the sys-
tem. In addition, an HA IO subsystem is already a essential requirements for 
all DSM and clustered-solutions alike. 

We decompose the period starting from a fault occurrence till the system backs 
to full functionality into three separate phases, as shown in Figure 3. 

Phase Goal 

Fault-to-Detected • Preserve data integrity 

• Fast detection to prevent further machine 
states pollution 

Detected-to-Reconfigure Fast reconfigure to minimize service perturbation 

Reconfigure-to-Full Re-
cover 

Graceful performance degradation 

Table 1 Goals for Different Phases after Fault Occurrence 

We define goals to be achieved in each of the three phases in Table 1. More de-
tails are given as follows: 

1. Phase 1: Fault-to-Detected 
this is the phase when a fault has occurred till it is finally detected. A fault 
can potentially corrupt data. Thus the primary goal at this stage is to mask 
the fault if at all possible, through, for example, advanced ECC code and 
parity bits. If, however, the fault can not be masked, we should minimize 
the possibility that this fault further pollute other data of the system. One 
issue to be understood here is how sensitive the fault-detection and recovery 
algorithm should be triggered. This is so because many faults can be tran-
sient, and thus if a fault has been found and is likely to be of transient type, 
one might want to retry a number of times before engaging the recovery 
algorithm, which is usually quite costly. If the fault is not transient and we 
still blindly retry a number of times, we simply enlarge the window of fur-
ther fault propagation and data pollution with no benefit in return. 

2. Phase 2: Detected-to-Reconfigured 
this is the phase in which fault-detection algorithm is ran to isolate the 
faulty component, and reconfigure algorithm subsequently re-integrates 
the system. The goal here is to make this stage being accomplished fast 
enough so as to minimize service perturbation, and yet to preserve recon-
figuration accuracy and maximize the utilization of surviving resources. 

3. Phase 3: Reconfigure-to-Full Recover 
this is the period that the system possibly operates under degraded per-
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formance. The goal is therefore to provide graceful performance degrada-
tion.  

These three guidelines are the main principles that drive the rest of the inves-
tigation in this report. Although there have been a number of studies on HA in 
the DSM systems, none of them are proceeded by defining a set of goals that 
the HA must achieve. The outlines given above is the first attempt towards de-
fining and measuring the effectiveness of various HA proposals. We need to 
investigate further on finding the metric for each of the goal, a set of first-cut 
metrics is listed below: 

1. Phase 1: a probability distribution of loss of data integrity and services 

2. Phase 2: services dropped during the time, and whether the surviving re-
sources are maximally utilized after system re-integration. 

3. Phase 3: performance degradation as a percentage of full system power. 

3. Dependency Analysis of System Compo-
nents in DSM 
The well being of the complete system relies on the correctness of interactions 
among components that participate in the transactions. It is thus instructive 
to understand the dependencies among the components. 

3.1 Hierarchical System Components Dependency Analysis 
Component dependency can be approached in a two-level hierarchical manner. 
The top-level dependency graph comprises nodes of the system, with depend-
ency arcs being constructed among the nodes according to the coherent proto-
cols. That is, protocol actions are the same node dependency graphs. Figure 6 
describes two examples dependency graphs at this level. In the figure, L mean-
ing the node that originate the transaction, H is the home node of the missing 
data, D is the node keeps the dirty copy, and finally S is the nodes that cur-
rently contain shared clean copy. In this graph three nodes are dependent on 
each other in both cases, with an implicit dependency on the interconnect that 
transmits messages back and forth. At a given time, a node may be involved 
for multiple transactions, therefore for any node we in fact has a network of 
dependency graphs, which will change dynamically as old transactions retire 
and new ones start.
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The next level of dependency analysis goes into details within each node. From 
any transaction point of view, the components engaged present a collection of 
state machines. These state machines are responsible for maintaining their 
internal states as well as the data that they own, if applicable. 

Without loss of generality,  Figure 8 shows the major components within a 
node of a DSM system. They are further summarized in Table 2. 

 

Component Faulty Behavior 

Router Erroneous message handling: drop, truncate, misroute 
etc. 

Coherent Control- Malfunction: arbitrary coherence action, directory infor-
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Figure 6 Example of node dependencies at the top-level 
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Figure 8 Components within a Node 
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ler mation corruption 

Directory Malfunction: directory information corruption 

Memory Malfunction: not responding or data corruption 

 Table 2 Components with a node of DSM System  

Dependency analysis in this level takes the same approach as we did for the 
node-level. That is, by examining how these components are involved in re-
sponding to different transactions. Table 3 gives a summary of the analysis of 
dependence set for major transactions. “Node” in this table corresponds to the 
role in which it participates in transactions of Figure 6. The result will drive 
the Section 4, where we discuss how to improve HA of a node. 

Node Transaction Rtr Dir M P/C 

L Originate transactions  X   X 

D/S Respond to recall X   X 

Read miss to idle line X X X  

Read miss to shared line X X X  

Read miss to dirty line X X   

Write miss to idle line X X X  

Write miss to shared line (miss in L case) X X X  

Write miss to shared line (hit in L case) X X   

Write miss to dirty line X X   

Misc. requests/responses  X X   

H 

Recall response X X X  

Table 3 Dependence Set for Components within a Node 

3.2 Understand the Impact of Component Dependency 
Once we know how to obtain dependency graphs among system components, 
we can proceed to lay more theoretical foundations which will help us better 
formulate various problems. Although in practice these formulas might only 
give limited guides and insights, never the less they will provide the handle 
with which we can clarify at least some fuzziness in this field. 
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When a component X becomes faulty, the immediate result is that any trans-
actions that engages it will not complete correctly. We call the direct impact of 
X at time t, DI(X, t), to be the union of all these transactions. Mathematically, 
we have: 

 U
T

tXTtXDI at  on  depends that  All),( =  

To understand how X’s fault can propagate to the rest of the system, we need to 
define the Dependence Set of a component X. Each element in DS(X, t) is a tu-
ple of two attributes, an id and a time. Altogether they identify how X impact 
which component and at what time. Specifically, we have:  

U
),(by 
  touchedis 

)](,[),(

tXDI
Y

Y XTYtXDS =  

We further divide DS(X, t) into two subsets. The first subset, the direct depend-
ent set DDS(X, t), are components who will rely on the response from X in order 
to issue any future transactions. At the node level, the typical direct depend-
ent set includes nodes that suffer misses and the corresponding transactions 
go through node X.  In the case of read miss, the processor will halt for the data 
to return, and in the case of write miss, it will halt at synchronization release 
time when collecting invalidations. Impact of X made on the components in the 
second subset, the indirect dependent set IDS(X, t),  is more through data and 
directory dependence. For example, if there is a write-back transactions in 
DI(X, t), component that will read this particular line will get a stale data if X 
fails to process this transaction. The feature of direct and indirect dependence 
set will be further explored in Section 5.1. 
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We can proceed to establish DS(Y, Ty(X)) the same way we did for component X 
at time t. The total dependent set of (X, t) or TDS(X, t), is found by a breath-

first search of the dependent network constructed, rooted at (X, t). This is illus-
trated in Figure 9. 

Notice that every element in TDS(X, t) is annotated with time, therefore the 
components affected by the faulty (X, t) at T>t are: 

TXTtXTDSY
Y

Y <⊂∀ )( and ),(U  

That is, we can answer questions such as “how much a fault affect system after 
time t1?”, at least this is made possible theoretically by formulating the prob-
lem as outlined above. Likewise, questions such as “how does the fault propa-
gate in the system” can also be answered by traversing TDS(X, t) in an in-order 
walk (order here being the time). 

There are still a few things need to be pointed out here. First of all, TDS(X, t) is 
always an approximation of the real situation. The sources of deviation are 
mainly because that TCS(X, t) will be altered, possibly arbitrarily, if a fault in-
deed occur. The components in DDS(X, t) will halt, and their presence in 
TDS(X, t) will be no more than the first time. An example of this redundancy is 
the (A, t9) in Figure 9: A belongs to DDS(X, t) and will thus issue no other 
transactions. 

(X, t0)
(B, t2)

(X, t3)

(A, t1)
(E, t4)

(F, t5)

(G, t6)

(H, t7)

(I, t8)

(A, t9)

(A, t1)

TIME

DI(X, t)

DS(X, t)

(A, t9)

Direct Dependent

Indirect Dependent

 

Figure 9 Direct Impact, Total Impact and Dependence Set 
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 Furthermore, other components might simply behave unpredictably. What 
deserves further investigation is to detail out exactly how components is af-
fected, and incorporate them into the analysis. 

4. Improve HA within a Node 

4.1 Increase Fault-Tolerance within a Node 
Section 3 provides insights as how we will go about improve the fault-tolerance 
of a node. By far the most stressed component is the router, through which the 
node talks to the rest of the system. The second most stressed is the coherent 
controller, which also operates on the directory. Provided that failure rates of 
the router and the coherent controller might constitute a problem, one design 
that maximize HA of a node is shown in Figure 10: 

 

In this node architecture, two coherent controllers are hot-paired into opera-
tion. Their outputs are always compared before committed outside the bound-
ary. The outputs of coherent controller are usually simple enough to ensure 
that a comparison will not add noticeable delay in the critical path. The two 
routers are operated in idle-standby mode, that is, the second router is only ac-
tivated upon the failure of the primary one. 

Whether this design is justified depends on field data on the failure rate of 
these components. When these data is available, we can decide where the re-
dundancy should be added to maximize the cost-performance ratio. 

4.2 Gracefully Degraded Node Architecture 
Table 1 also shows that a gracefully degraded node architecture is possible by 
reduce the node to either a computing node or a memory node. Simply put it, a 
memory node is a node whose processor/cache component has failed, and a 
computing node is a node whose memory subsystem is not functioning. We now 
examine them in turn: 

Router

Router

CC

CC

Dir

 
Figure 10 An HA Node Architecture 
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1. Computing Node.  
 
A computing node can still contribute to the computing power of the system 
with its processor/cache component. For a computing node to function, the 
cache controller is not required to be working.  In addition, the performance 
of computing node can be greatly improved if part, if not all of the memory 
can be accessed by the local processor, though they will not and should not 
be accessible by other node because of the absence of the coherent control-
ler.   
 
Degrade into computing node is relatively easy, if so desired. The only re-
quirement is that the path of the processor/cache to router must still be 
open: it must not depend on the failure of the coherent controller. 

2. Memory Node.  
 
A node can safely downgrade into a memory node if only the proces-
sor/cache component has failed. We assume that a processor/cache failure 
will not jeopardize the paths with which a normal home node needs to com-
plete transactions. 
 
 If the coherent controller has failed, the memory can still be exposed to the 
remaining of the system, provided that mutually exclusive access to this 
memory range is insured. One way to enforce mutual exclusive is to re-
strain access under operating system or application control. For example, 
some portion of file buffer can use this memory still(?). 
 
Another more costly solution is to couple with the memory with a reduced 
coherent engine in prepare for the failure of the full coherent controller. 
This reduced coherent engine only allows either idle or dirty state of the 
line. These two states require minimum coherent state that can be stored 
along the memory. However, the engine itself might still be quite complex. 

We should point out that here we have not considered real implementation 
constraints which might render such degraded node architecture either unre-
alistic or insignificant. To give a simple example, consider the case where all of 
these components reside on one board: a design that minimizes inter-board 
communication latency. Although we do achieve graceful node performance 
degradation before repair, the unit of system reintegration will be the complete 
node regardless, and thus there will be further service perturbation when we 
bring the complete system to full power. 
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5. Improve HA of the System 

5.1 Increase Fault Detection Capability using the Coherent 
Protocol 
Fault detection is usually accomplished through a combination of different 
techniques. For example, high-end fault-tolerant systems usually use voting 
or comparison to mask or detect errors. Many current systems use ECC and 
parity bit mechanisms extensively in their components. The particular tech-
nique we will discuss here is time-out. It should be noted that it is often the 
case that one time-out will not immediately trigger fault-detection algorithm, 
this is so not only because of the case made by transient fault, but more for 
protocol timing extensions to cope with long delays induced by network conges-
tion. 

It is easy to see that any fault of X can be trivially detected by any Y that be-
longs to the direct dependence set of X. This is so because Y, by definition of 
direct dependence, is waiting for some response from X. In practice, however, a 
time-out at Y can only tell that something is wrong along with the path, which 
includes X, that the transaction has taken. By logic AND operation on all 
time-outs of all the direct dependence set of X will help to locate that the fault 
is X more quickly. Fault-detection algorithm needs to take advantage of this 
feature of direct dependence set. 

Indirect dependent set, as pointed out in Section 3.2, is more hazardous be-
cause they are allowed to proceed erroneously, which will further pollute the 
correctness of the rest of the system. Further more, time-out can not be applied 
to indirect dependent set. 

Therefore, to improve the fault detection capability of the system, we need to 
modify coherent protocol to minimize indirect dependent set. This can be ac-
complished by requiring all coherent transactions to be closed, that is, the unit 
of all transactions must be a request-response pair. Ironically, one of the class 
of open transactions in DSM is also one of the most vulnerable, namely, the 
write-back transactions. Write-back transactions can be made to be closed 
transactions by asking the home node to respond to whoever write-backs the 
data with a corresponding response. Other transactions can be enforced simi-
larly. Notice that here we have a tradeoff: we add more protocol complexity and 
traffic to the system in a hope to maximize fault-detection capability. 

In addition, we can further improve the data integrity of the system by a two-
phase commit protocol for any transactions that involve a dirty data transfer. 
When a node is about to transfer a dirty data, it stores the data in its internal 
buffer, and only squashes it upon receiving of the response indicating that the 
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dirty copy sent out has been safely delivered to destination. The following ta-
ble uses write-back as an example to summarize the result of this section: 

Normal write-back protocol - 

: made closed Fault-detection 

: made closed + buffering Fault-detection + data integrity 

Table 4 Improve Fault-Detection and Data Integrity of Coherent Pro-
tocol 

This optimization we call source buffering, which should apply to any dirty 
data transfer from the cache to the memory. The target here is to make sure 
that this transaction is safe. However, source buffering introduces a new possi-
bility of inconsistency, which may arise when the acknowledgement is lost. In 
this situation, some one else may have modified the data before the fault is re-
ported. When recovery, if we simply overwrite the memory with the copy buff-
ered at the source, we are updating the memory with an obsolete copy. This in-
consistency is still there even though we have reduced the possibility by clos-
ing the transaction. 

There are several possibilities to handle this new inconsistency. The foremost 
rigorous approach is to have the home node, upon receiving the write-back, 
change the state of the line into a holding state that disables the service to any 
further requests. The source, on the other hand, will issue another acknowl-
edgement to the home when the acknowledgement from the home is received. 
This second acknowledgement will then release the line back to the idle state.  

A more relaxed approach is to do more checking at the recovery time. When 
the recovery algorithm carries the data back to the home node, it checks the 
state of the line. If the state is dirty and the owner is the source, it updates the 
memory accordingly. Otherwise it makes the optimistic assumption that the 
data has safely made to the home. This is a reasonable assumption since the 
state of the line can not be changed unless the write-back has succeeded. 

5.2 N+1 Stand-by DSM System 
In this section we propose N+1 standby system as the ultimate HA solution for 
DSM system. In this system, an extra node is in standby idle mode and only 
takes over when a faulty node has be identified and excluded from the system. 
This node is a full replica of any other node of the system, substantiated with 
equal memory/cache capacity and processing power. It is optional whether this 
extra node has its own dedicated disk storage. However, it is crucial that it has 
the same robust channel to the entire IO subsystem. 
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5.2.1 Rational 
To explain the motivation behind the proposal, we proceed to examine the 
cost/performance metrics: 

• Cost 
In systems being shipped today, the processor and memory resources com-
bined amounts up to 30~40% of the total cost. Therefore, adding an extra 
node without dedicated disk storage will add 5~6% cost increase for a four 
node system. This fraction is even smaller for systems having larger num-
ber of nodes and can be justified if the HA is well realized.  

• Performance 
The primary advantage of a N+1 standby system is high coverage. Studies 
in the literature have shown that single component failure is the dominat-
ing case. While multiple fault flags may be raised in case of a fault, chances 
are only one faulty component is responsible. Furthermore, by using a lar-
ger recovery unit (a node) instead of a specific component additionally in-
creases the coverage and reduces the engineering cost of repair. 
 
The second advantage is no performance degradation after a system has 
successfully completed the reconfiguration. Because at all time the system 
is delivering power of an N node configuration. Thus, we have accomplished 
the goal of graceful performance degradation to the maximum. 
 
Lastly, an N+1 standby system has the potential of fast fault-detection and 
reconfiguration speed. In a full N node system where fault-containment 
approach is employed, each of the N-1 remaining node must first abort 
their on-the-fly transactions, save their semantics before dropping into 
fault-detection and reconfiguration phase. Then they must run a distrib-
uted consensus algorithm to agree upon which is the faulty node. This 
phase is characterized by intense communication and is based on the prem-
ise that the interconnect is error free, or else they have to use a serial link 
to accomplish this task. On the contrary, the extra node in N+1 node has 
not engaged before a fault has occurred and thus does not have any on-the-
fly transactions to save. Upon a notification of a fault signal, the extra node 
rapidly executes a self-testing algorithm which does not generate outbound 
messages, and then proceed to detect the error. After the fault has been 
identified, it reprograms the routers in the system so that messages for-
mally direct to the faulty node now goes to itself, and recover the contents 
of the faulty node and the operation resumes.  

We need to investigate more on fault-detection algorithm of N+1 system. 
When fault-detection algorithm is called into action, the system may already 
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be frozen and network totally jammed. We make two assumptions to simplify 
future discussions on fault-detection algorithm: 

1. The network is congested but not corrupted: data and messages can be said 
temporarily “stored” in the network. 

2. There are emergency lanes in the network reserved for fault-detection al-
gorithm and are deadlock free for messages of fault-detection algorithm 

In this report we outline the algorithm of the recovery algorithm in the next 
section. 

5.2.2 Recovery in N+1 System 
Given that the standby node is a full replica, we only needs to concern about 
retrieving cached contents (in memory and cache) on the faulty node. We first 
classify the contents into three categories: the idle, the exported and the im-
ported. The first two refer to lines that are homed at the faulty node, the differ-
ence being whether they are cached by other nodes or not. The imported con-
tents are those cached by the faulty node in its processor caches and are 
homed elsewhere. The lines that are both homed and cached in the faulty node 
can be arbitrarily classified. Here we say they belong to the imported class be-
cause the most updated versions are in the processor caches if they are dirty. 

We discuss recovery algorithm for these contents in turn: 

• Recovery of idle and exported contents 
The recovery of these contents depends how much architectural support 
there is to access these lines. Each line l has two attributes: Smem(l) and 
Sdir(l) , for whatever stored in the memory and directory, respectively. One 
thing we assume here is the availability of page table information for these 
lines to the recovery algorithm. Page table can be made fault-tolerant in 
N+1 system by keeping two copies in two distinctive nodes. The table entry 
will be invalidated before the recovery starts, and will  only be re-
established afterwards, during this period any access to the page will be 
hold. 
 
In the case when these contents and the two attributes are not accessible 
directly from the memory and directory of the faulty node, the algorithm 
first reads the page from the disk. If the page table indicates that the page 
is clean, the page can be safely loaded into the memory of the standby node. 
If however the page is dirty, we have no ways of knowing whether the dirty 
lines have been replaced from the caches (and thus lost permanently) or 
not, therefore these pages are not recoverable.  
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Total recovery is impossible for dirty pages. To ensure data recovery with-
out resorting to means such as check pointing, we need to have battery 
backed-up memory and directory, at least for the duration that the recov-
ery of the data is in operation. We have the following two cases: 
 
Smem(l) and Sdir(l) both available: 
This is a trivial case, all memory lines are either directly transferred to the 
standby node, or recalls are generated on behalf of the faulty node. 
 
Smem(l) available, Sdir(l) unavailable: 
In this case we first consult the page information, if the page is clean then 
all lines are transferred directly to the standby node. Otherwise we load the 
page from disk and generate recalls using broadcasting, and then merge 
the recalled lines with the page. 
 
Slight architectural supports can further improve the recovery of this case 
by limiting the expensive broadcasting. One support is to add a bit stored 
along with the memory, indicating whether the line is clean or dirty, and 
generate broadcasting recalls only for lines that are dirty. A further opti-
mization that requires more storage is to store the Log(P) pointer of the 
dirty owner along with the bit. This pointer can eliminate the broadcasting 
for good. 

• Recovery of Imported Contents 
The situation here is divided into two cases, depends on whether the proc-
essor caches are accessible to the recovery algorithm. 
 
When the caches are accessible, dirty lines are written back to their homes. 
On the other hand, if they are not accessible, the algorithm scans the mem-
ory of other node and marks the lines that are dirty and owned by the 
faulty node: any future accesses to these lines are trapped and induce abor-
tion of the corresponding processes. Note that the second case is quite ex-
pensive and may be better executed in parallel by all the nodes. 

The above outlines the major part of the recovery algorithm in N+1 system. 
More details should be carefully looked into for corner cases. 

6. Conclusion 
The following summarizes the main points raised in this report: 

1. Proposed and discussed the goals of an HA DSM system, and the metric to 
measure the success 
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2. Formulated the dependence analysis of fault occurrence. 

3. Discussed HA node architecture and its gracefully degraded form. 

4. Discussed enhancement of coherent protocols to improve fault-detection ca-
pability of the system. 

5. Proposed N+1 standby system as the ultimate HA DSM. 

The following table summarizes possible future research opportunities: 

Research Opportunities Merits 

A better and more practical definition 
of HA metrics 

Maybe. Possible leads to solving the 
difficulty of quantifying researches in 
HA. 

Continue investigate the dependent 
analysis of fault-occurrence, identify 
what is the majority fault model of dif-
ferent components, incorporate into 
the theorem 
 

Seek practical use of the theorem 

Theoretical interest mostly. 

Detailed design of HA node architec-
ture. 

Design and verification. Possible op-
portunity for quantified result. 

Detailed understanding of degraded 
node architecture 

Design and verification. Possible op-
portunity for quantified result. 

More investigation on fault-detection 
algorithm in N+1 standby system. In-
cluding architectural supports and 
sensitivity of recovery triggering.  

Design and verification 

More careful study on recovery algo-
rithm in N+1 system 

Design and verification 

Table 5 Future Research Opportunities on HA issues in DSM 

One big topic has not been covered yet is hardware support for HA in the case 
of software fault, we will address this issue in the future. 


