

Recovery of Memory and Process in DSM
Systems: HA Issue # 1

Zheng Zhang
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-76
March 30th , 2001*

E-mail: zzhang@hpl.hp.com

multiprocessor,
shared memory,
high availability

In this report, we discuss the recovery of memory and processes on
the platform of a shared-memory DSM system. We divide the
problem into recovery of unaffected memory (RUM), and recovery of
affected processes (RAP). We point out that specially designed fault-
tolerant, non-volatile memory is neither sufficient nor necessary to
solve the problem of RUM. It is not sufficient that the system can go
down when one node goes away, which can be a result of many types
of faults: power failure is but one of them. It is not necessary either,
because the system is distributed in nature; information redundancy
across fault units can be realized, therefore, without using special
memory. We discuss several ways of implementing a fault-tolerant
memory system using plain memory by modifying the write-back
protocols in DSM systems. The proposed techniques include
mirroring and RAIM, which stands for Redundant Array of
Independent Memory. The fault-tolerant memory system lays the
foundation for other HA solutions, in addition to attack the problem
of RUM. We use a novel approach to survey the space of transparent
rollback recovery alternatives as our means to target RAP. There are
two axes that constitute our space. The first axis is the fraction of
fault-tolerant memory system which is part of the reliable storage.
This, in many ways determines the cost of the system as well as the
checkpoint bandwidth. The second axis is how and when the
checkpoint image is established and committed. The three options,
built-on-the-fly, stop-and-forward and copy-on-write, have different
system complexity and performance implications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

2

1. INTRODUCTION ..3

2. RECOVERY OF UNAFFECTED MEMORY (RUM)...3

2.1 FAULT TOLERANT MEMORY ... 4
2.2 BUILDING A FAULT-TOLERANT MEMORY SYSTEM ... 4

2.2.1 Fault-Tolerant Memory System using Mirroring ...4
2.2.2 Fault-Tolerant Memory System using RAIM ..4
2.2.3 Some More Comments ...5

3. RECOVERY OF AFFECTED PROCESS (RAP) WITH BACKWARD ERROR
RECOVERY (BER)...6

3.1 COST-PERFORMANCE FACTORS OF CHECKPOINTING ... 7
3.2 API OF CHECKPOINTING .. 7
3.3 THE SPACE OF CHECKPOINTING ALTERNATIVES .. 9

4. ZERO-MEMORY CHECKPOINTING...10

4.1 MANAGE ACTIVE AND CHECKPOINT DATA ON DISK.. 11

5. SYMMETRIC-MEMORY CHECKPOINTING ...11

5.1 SINGLE-COPY CHECKPOINTING... 12
5.2 RAIM CHECKPOINTING ... 12
5.3 DUAL-COPY CHECKPOINTING... 13

6. ASYMMETRIC-MEMORY CHECKPOINTING...14

7. RELATED WORKS AND CONCLUSIONS ...15

8. ACKNOWLEDGEMENT...15

REFERENCES ..15

3

1. Introduction
The faulty scenario of the shared-memory multiprocessor system investigated in this report is sin-
gle-node (or single protection-domain) failure. We assume a robust, HA-enabled IO subsystem is
already in place. We describe the impact of the fault with dependency arcs originated from else-
where but end at the faulty unit. One example is shown in Figure 1.

HA-Enabled IO subsystem

Cache

Memory

Cache

Memory

Faulty Unit

Contaminate

Resource

Figure 1 Faulty Unit and the Impact of Fault in MCS System

We distinguish two types of dependencies, Resource and Contaminate. The first case refers to
the memory homed in the faulty unit and is needed by processes running elsewhere. The data con-
tained in these memories are not contaminated by the fault. The second type refers to the cases
where the processes ran on the faulty node have contaminated data and memory. An example of
such may be that a process running on the faulty unit writes an erroneous data, which is consumed
by other running processes before the fault is detected.

The system that we are interested in delivering is not going to be equipped with advance and ex-
pensive hardware/software technology that masks the fault completely. Rather, the goals are to:

1. Recover unaffected memory (RUM) so as to resolve the resource dependency, and

2. Recover affected processes (RAP) to reduce the impact on contaminate dependency

We assume OS technique is there to track the dependencies and distinguishe the above two
cases. This report intends to investigate different alternatives to achieve the above two goals.

2. Recovery of Unaffected Memory (RUM)
The goal here is to rescue the memory content so that processes depend on these data can sur-
vive the fault. We first enlist the current options of fault-tolerant memory. After pointing out why
the memory alone does not solve the problem, we discuss alternatives to build fault-tolerant mem-
ory system in the context of shared-memory multiprocessors.

4

2.1 Fault Tolerant Memory
One basic form of fault-tolerant memory is the non-volatile memory, which does not lose the
contents to power outage. Today NV-RAM is employed in many industry products already, for
example as a part of the disk cache. There have been other proposals as well. eNVy, for instance,
is a research proposal of non-volatile memory that uses a combination of battery-backup SRAM
and Flash memory [1].

Some form of redundancy is required in order to deal with hazards other than the power failure.
Sheaved memory [2] is one such proposal, in which several memory page frames may be bun-
dled together to permit read-one/write-many semantics.

The fault-tolerant memory alone is neither sufficient nor necessary in a distributed shared-memory
platform. They are not sufficient because the system can go down when one node goes away,
which can be a result of many types of faults: power failure is but one of them. They are not nec-
essary because the system is distributed in nature; information redundancy across fault units can
be realized, therefore, without using special memory.

2.2 Building a Fault-Tolerant Memory System
The solutions discussed here all assumes single -node failure. It is, however, trivial to extend them
to tolerate k-node failure. All these are done via the modification of protocol, at the relevant stage
when the memory content is to be altered. This is the point where redundancy must be applied.

2.2.1 Fault-Tolerant Memory System using Mirroring
One popular way of avoiding single-node fault is simply to make sure each data has two copies in
the memory, each of which residing on different node. We call this approach dual-copy or mem-
ory mirroring. This is the approach taken by many studies, in the context of message-passing
platform [3, 4] as well as shared-memory multiprocessors [5]. For the platform that we concern
here, we simply modify the coherent protocol so that the protocol always updates the mirror
home of a data whenever its primary home is updated with inbound DMA or cache write-back.
This way any single node failure can be tolerated and unaffected memory can be recovered.

The problem with the mirroring approach is that it is very expensive. Indeed, to make P pages re-
coverable we need a total of 2P pages. Alternatively, one can think of the mirroring as the analogy
of RAID-1 implemented in the memory space. Consequently, there can be a counterpart of
RAID-5 [6] in the memory space as well.

2.2.2 Fault-Tolerant Memory System using RAIM

RAIM stands for the Redundant Array of Independent Memory, which is simply the algorithm
of RAID-5 implemented in the memory system. This organization is shown in Figure 2, with an
instance of updating a piece of data and its parity. Each frame here is presumably one page. Note
we rotate the parity to avoid bottleneck for parity writes.

5

D00
D01
D02
D03

D10
D11
D12
P3

D20
D21
P2

D13

D30
P1

D22
D23

P0
D31
D32
D33

'0000 DD ⊕
'0000 DD ⊕ 0)'0000(PDD ⊕⊕

T0 T1

Figure 2 RAIM: D00 is updated with D00’

Assuming the system has N independent nodes. With RAIM, we can reconstruct the memory im-
age of the faulty node when single node fault occurs. The operation is O(LogN). This is in con-
trast with the mirroring which takes, theoretically, no time to recover the memory.

The hardware support for RAIM is relatively moderate. The memory overhead we pay becomes
dependent on number of nodes, N. The total memory space needed for P pages will be PN/(N-1).
In other words, the overhead fraction is N/(N-1) for RAIM, as opposed to 2 in mirroring. This is a
significant saving. The amount of additional traffic is the same for both organizations, namely dou-
bling those corresponds to whenever the memory gets updated for cache write-backs and inbound
DMA.

RAIM as is does not have the same fault-tolerant capability as the mirroring. This is so because
the parity update depends on the success of the primary update. If the primary update fails, we
have to make the pessimistic assumption that the parity update either does not fire at all or is cor-
rupted subsequently. This is in sharp contrast with the mirroring, where the primary and secondary
update is independent after leaving the source node. However, if dirty data transfers are made
closed and buffered at the sending nodes, this situation can be well dealt with. For more details of
this source-buffering technique, see a previous report [7]. RAIM with source buffering, there-
fore, is as strong as mirroring in terms of fault-tolerant capability. It is much cheaper with the
tradeoff of slower recovery time.

2.2.3 Some More Comments

volatile mirrored RAIM

Addressing Space

Figure 3 Addressing Space Partitioned into Regions with Different HA Support

We would like to make several comments before concluding this section:

• Both RAIM and Mirroring can be implemented in software – there is nothing that restricts the
way that they should be carried out.

• Both schemes can be applied at different scales in the system. For example, either RAIM or
mirroring can be done within one node. This will make interesting applications such as hot-

6

replaceable memory banks possible. Also, a M node system can use K RAIM groups, each
with degree M/K.

• It is also possible or even desirable, to apply them to separate ranges of addressing space. In
fact, one can envision that the addressing space being partitioned into regions with different
HA support and guarantee, as shown in Figure 3.

The importance of a fault-tolerant memory system is not to be under-estimated. It alone solves the
problem of recovering unaffected memory. Furthermore, it lays the technical foundation for re-
covery affected processes using checkpointing. Fault-tolerant memory system is the key ingredi-
ent for HA solutions discussed in this report and others [8].

3. Recovery of Affected Process (RAP) with Backward
Error Recovery (BER)
The recovery technique we consider here falls into the class of backward error recovery
(BER). BER establishes checkpointing at discrete points. If an error occurs, one only needs to roll
back to the last checkpoint and re-establish the application image and continue from there. The
processor states to be checkpointed into reliable storage is called the checkpoint image (data),
while the data that has been modified since the last checkpoint is called the active data . In other
words, the checkpoint image is the active data of the very last checkpointing interval. Checkpoint
data typically includes all or a subset of following: register sets of the processors, the PCs, and all
the memory contents that have been modified since last checkpoint. For non-deterministic applica-
tions, logs of inputs must also be maintained and checkpointed.

The checkpointing techniques we will be looking at is globally coordinated checkpointing, where
all processes of the application being checkpointed will synchronize and wait till all their out-
standing transactions to complete, and then proceed to commit the checkpoint. The time break-
down, seen by the application, is outlined in Figure 4. The techniques are also incremental, in the
sense that only modified data since the last checkpoint will be the subject of the process.

Checkpointing is a well-researched area and there exists a vast body of literature. Some of the
interesting survey materials (through which I started the learning of HA issues) can be found in
[9-11]. The objective here is to bring this error recovery scheme into the context of the platform
we are interested in, and examine/propose adequate solutions. We now briefly review the re-
quirement and API, and then proceed to explore the alternatives.

TE

TC

Execution

Checkpoint

Figure 4 the Time Breakdown for Checkpointed Process

7

3.1 Cost-Performance Factors of Checkpointing
We assume that the customers are not interested in an expensive system of full redundancy that
will mask the faults. Rather, they prefer a system with some HA guarantees and at the same time
deliver high performance in the absence of faults. In addition, the recovery speed is not their pri-
mary concern. Thus, the following two requirements are in order:

• HA resolution: tolerance of loss of raw work in case of fault; measured in unit of time.

• Performance degradation: execution time slowdown when HA support is turned on.

Therefore, a good implementation should allow fine recovery resolution, and with as little perform-
ance degradation as possible.

Providing checkpointing ability necessarily implies the cost of additional fault-resilient storage
where the checkpoint data is stored. The hardware cost of this fault-resilient storage depends on
the technology that implements them. Further more, the design and architectural complexity of
each scheme is also part of the cost equation and should also be taken into consideration.

3.2 API of Checkpointing
The essence of checkpointing API is to present the following two decisions to the implementation
layer: a) what to checkpointing and b) who make the call. There are a range of possibilities, but
here we discuss the two extremes: programmer controlled and user parameterized. The API
of these two approached locate at different levels, the first being at the library call level invoked
by the programmer at the time of coding, while the second is invoked by the user at the OS level.

In the first model, the programmer will insert checkpoint library calls that are bracketed by barri-
ers. For example:

barrier (chk_bar);
checkpoint(x);
checkpoint(y);
...
barrier (chk_bar);

The advantage of this approach is being economic in using the checkpointing bandwidth: the pro-
grammers (supposedly) know exactly what data they need to checkpoint. However, this is not a
familiar syntax to think about and can be quite a burden for the programmers: the checkpointing
data must be a complete set to which a rollback will be able to re-execute completely. Another
disadvantages is that it is hard for the programmers to get an idea as how much performance deg-
radation they are going to expect, which depends on the checkpoint frequency, the size of the
checkpoint data and the checkpointing bandwidth the system provides. This is not an easy equa-
tion to solve.

Both of the disadvantages in the above approach will be and can be challenged if time comes for
people to realize that they must write applications that is HA-aware. Ideally, the task for the pro-
grammers can be simplified to as little as only giving out checkpointing hints at the place they
would like to have the data checkpointed. It may be relatively an easier job for the compiler to
figure out what data is alive at this point and what is not [12]. Checkpointing calls can be inserted
for the first class of data, while the second class should only be flushed to stable storage once for
all. Front-end profiling can provide the programmer with an idea of how frequent the checkpoint

8

process will be invoked and thus how much the performance impact they should expect, and sub-
sequently guide further checkpoint fine-tuning. Of course, the compiler can not be as precise as
the programmer can, thus some unnecessary checkpoint data size increase will be seen.

The user-parameterized approach provides an API at the OS level. The only thing the user
needs to do is to specify two parameters, which directly relate to the two HA performance re-
quirements that we discussed earlier: the performance degradation and the checkpoint resolution.
A possible UNIX command, ckp, and its syntax is outlined in the following example:

ckp -resolution 5m -degrade 10 -no_log foo

Which runs the program foo with HA support. In this case, the user is willing to lost 5 minutes of
useful work in case of a fault, the performance degradation due to checkpointing is bound to 10%,
and this application is deterministic and thus no logging of input messages are necessary.

It is always possible to satisfy user’s expectation if only one of the HA performance requirement
is specified. For example, if only the resolution is specified, then the OS can preempt the applica-
tion and make a checkpoint after so much user work has been done. Likewise, if only the per-
formance degradation is specified, the OS can perform the checkpointing after it calculates the
ratio of how long it will take to checkpoint the active state versus how long the application has
executed since the last checkpoint. If, however, that both resolution and the performance degrada-
tion are specified, then we might not always be able to meet the goal if the underlying system does
not have enough checkpointing bandwidth. In this case, we assume the user prefers one goal to
the other.

While this approach has relieved the user from the burden of understanding the checkpointing
process, it can place tremendous pressure on the checkpointing bandwidth of the system. The
situation is especially bad when the application itself might be using lots of scratch space that does
not need to be checkpointed at all.

An optimal approach can be reached if the application is garbage-collection enabled. In this case,
the garbage collection, whether actually run or not, will output what portion of the active data does
not need to be checkpointed, and thus reduce the checkpoint bandwidth requirement. This obser-
vation has been made in the past, as pointed out by [9].

Checkpoint data size

Usability

user parameterized
+ Compiler
assisted

Programmer
controlled

+ Garbage-collection
enabled

Figure 5 Four API Strategies for Checkpointing

The four API strategies are summarized in Figure 5. From this point onwards, we will treat when
and what to checkpoint as a given. What we will focus on is to understand which implementation
is the most cost-effective under which situation.

9

3.3 The Space of Checkpointing Alternatives
There are many ways of dividing the space of checkpointing alternatives. We will follow two axes
that divide the space. The first being the raw checkpoint bandwidth, and the second being how
checkpoint image is established/committed. Throughout this report, we assume that the active im-
age is kept in volatile memory and is thus open to faults. One would think that if the active image
is protected by fault-resilient memory system on top of mirroring or RAIM the solution will be
more expensive. It turns out not so. Cost-effective HA solution that relies not on the availability of
warm (meaning in memory) checkpoint data, but rather the capability of rebuilt it quickly, are the
themes of two other reports [8, 13].

The raw checkpoint bandwidth into the reliable storage almost single-handedly defines the cost-
performance factor. A larger bandwidth will enable finer checkpoint resolution and as little per-
formance degradation as possible. From this standing, we can broadly classify different strategies
into three categories, depends on how much reliable memory is as part of the reliable storage. At
one end of the spectrum, there are schemes using the low cost (in terms of dollars per megabytes)
disks only, obviously they can not deliver much bandwidth. We call them Zero-Memory Check-
pointing. At the other end, people have proposed schemes capable of checkpointing all application
memory, such scheme we call Symmetric-Memory Checkpointing. An immediate advantage of
such system is the fast recovery time, since at the recovery the whole checkpoint image is warm
in the memory. Somewhere in between, we can have schemes that use less memory by keeping
only a fraction of the checkpoint data. They are called as Asymmetric-Memory Checkpoint.

Checkpoint data on disk

Active and
Checkpoint data in memory

(a) Zero-memory (b) Asymmetric-
memory

© Symmetric-
memory

Figure 6 Zero-Memory, Asymmetric-Memory and Symmetric-Memory Checkpointing

The second ax that we use to differentiate various schemes is the way that the checkpoint is es-
tablished and committed. The simplest form will stall the application and writes the checkpoint into
reliable storage, and then continue. Borrowing interconnect technology, we call this the stop-and-
forward. The second form simply marks the modified data to be unchangeable and continue the
execution regardless. A daemon will pull the data into the reliable storage at the background. If
the process ever intend to modify the unchangeable data, they will be halted until the data made its
way to the reliable storage. We call this approach copy-on-write. Following these two, it is obvi-
ous that there exist one more possibility in which checkpoint image is built on the fly before the
checkpoint. The checkpoint does nothing other than making an official statement that the check-
point image built is ready to commit. We name this as built-on-the-fly (better naming suggestions
welcome!).

10

The stop-and-forward approach is the simplest among all. But since it exposes the full checkpoint
latency to the application, it has the worst performance. The other two choices aim at hiding the
checkpoint latency along with application execution. Copy-on-write is more complex and performs
better, but it also depends heavily on the application – if the application repeatedly modify the
same pages (and do it soon enough), the frequent stall to flush the unchangeable back to reliable
storage simply can make it behave as many small stop-and-forwards. The added overhead of sys-
tem interruptions might very well bring worse performance. It has the added disadvantage that if a
fault occurs before all the unchangeable data is flushed, we need to rollback to one checkpoint
earlier than the end user expected. Built-on-the-fly is very attractive, but relies on hardware sup-
port and is not always practical. As always, there can exist hybrid schemes that use the combina-
tion of the three approaches.

The two-dimensional space, one ax being the fraction of reliable -memory as a fraction of reliable
storage, the other being the tactic that establish/commit the checkpoint, is the one that we will dis-
cuss in turn.

4. Zero-Memory Checkpointing
Zero-memory checkpointing always store the checkpoint image onto the disk. This is the simplest
and the most economic form of checkpointing. The problem, of course, is the low checkpoint
bandwidth that the system can offer, leading to poor application performance. Consequently, zero-
memory checkpoint with stop-and-forward option is only practical in a multiprogramming environ-
ment where throughput is much stronger a demand than latency. In addition, the applications must
be able to hide the checkpoint latency from each other, and they do not need excessive IO band-
width themselves.

The copy-on-write approach, when checkpointing, simply marks all the pages and then allows the
processes to keep on execution. A daemon then runs in the background pulling data into the disk
and reset the marks on the fly. If the processes attempt to modify any marked data, they are
stalled and the data is flushed to disk. As pointed out earlier, it is possible that the checkpoint
process to be interrupted by a fault and one has to roll back to the previous checkpoint, violating
the resolution requirement filled out by the end user. Conversely, to reach the resolution require-
ment user specified it is possible that the actual checkpoint frequency might need to be higher.
Another caveat is that the performance is heavily application dependent. If the active data over-
laps with the checkpoint data and the overlap occurs fast enough, we may very well end up with
same amount of stall time due to checkpointing, if not more (considering all the overhead involved
in trapping the processes).

The built-on-the-fly version does not appear as a serious candidate at the first glance. However, it
plays a vital rule to ensure the correctness of even the base zero-memory checkpoint scheme. If a
dirty page is swapped out to the disk, either as a result of paging or an exercise of this option, the
page has already safely made to the disk. Presumably, if the page is not to be modified again, that
version of page should be taken by the checkpoint. However, when the page is written to the disk,
caution must be taken that we do not wipe out the checkpoint version of the page. The problem is
how should we efficiently manage the coexistence of the checkpoint and active pages on the disk,
which is more general than we thought. Shadowing (twin paging) is a nature solution. We discuss
one implementation at the OS level in the next section. A solution at the disk level is discussed in
[14].

11

4.1 Manage Active and Checkpoint Data on Disk

C
A

C
A

C
A

C
A

(a) Checkpointed (b) Page dirty in
memory

(c) Dirty page
written back

(d) New
checkpoint

Figure 7 Manage the Coexistence of Active Data and Checkpoint Data on Disk

Because active data and checkpoint data coexist on the disk, each entry in the page table needs
two pointers. One pointer A, pointing to an active page while the other one C points to a check-
point page, as shown in Figure 7. We now describe the algorithm with which these pointers are
manipulated.

Without loss of generality, we start with the case in which processes have just completed the
checkpointing (Figure 7-(a)). In this case, both pointers point to the same page. Once process
starts execution and pages are modified in the memory, the active pointer points to the other page
which holds stale data anyway (in fact, as process goes along, that’s the previous checkpoint
data) (Figure 7-(b)). The dirty page maybe written back to memory before the new checkpoint
begins, in this case they are written to where the A pointers point at (Figure 7-(c)). At the moment
of checkpointing, modified pages are either dirty in memory, or have been written back to disk.
The establish phase of the checkpointing process simply flushes all dirty pages back to disk, writ-
ing to where the A pointers pointed at. When this phase successfully completed, the commit phase
simply change the C pointers to align with the A pointers. Assume the disk is already HA-enabled,
faults occurs during either phase can be handled without any problem.

5. Symmetric-Memory Checkpointing
Symmetric-memory checkpointing, where the complete image of the last checkpoint is available
immediately upon recovery, can be implemented in several different ways. We will describe them
in turn.

2N
/(N

-1)

3

PD1 PD2

(a) Single copy (b)RAIM © Dual Copy

Figure 8 Alternatives of Symmetric-Memory Checkpointing

12

5.1 Single-Copy Checkpointing
The single-copy checkpointing scheme is shown in Figure 8-(a). The checkpoint data is stored in
volatile memory and is therefore itself not fault-resilient. However, the active data and checkpoint
image is separated by a HA boundary, meaning that no faults are going to simultaneously take
both of them down. Obviously, this approach limits the scale of the HA solution to one protection
domain.

Theoretically, we must allocate two memory frames, each is large enough to take one checkpoint
image, in the backup domain. This is dictated by the atomic principle of checkpointing. One frame
of the memory is updated with the checkpoint data, while a complete undisturbed checkpoint im-
age of the last checkpoint interval must be stored in another frame to prepare for any fault might
occur during the checkpoint process itself. Once a checkpoint image is committed, the backup
frame will be freed to load the next checkpoint of the next interval. In other words, the two
frames alternate their roles as the application running along.

Handling Partial Checkpoint Image Update. For incremental checkpointing, however, typi-
cally only a fraction of the total memory needs to be copied to the backup. Alternation of the two
frames will not work if we only update part of the checkpoint image. We can combine the two
frames together to form a stack, assigning one of them to be the primary. The primary always
receives the new checkpoint and the old content it has is pushed to the second frame. This is an
elegant and practical approach.

The above operations are described as a stop-and-forward version. It is straightforward to adopt it
to either built-on-the-fly or copy-on-write approaches. In fact, Mariposa family of HA solutions
can be considered as variations of the built-on-the-fly approach [8, 13, 15], where writes are con-
stantly reflected to the backup domain.

The problem of built-on-the-fly approach is that there may be multiple writes to the same line
within one checkpoint interval, all being reflected to the backup domain. We can, on the other
hand, mark all the lines that need to be checkpointed and then proceed into the next interval. No
modification to a marked line is allowed (such as a write ownership grant) until we have sent it to
the backup domain. This will be the copy-on-write version and it avoids the same-line-writes prob-
lem mentioned above. However, the difficulty is that we must make sure that all marked lines, not
only those to whom modifications are attempted in this interval, should be checkpointed. A dae-
mon reflecting these lines seems to be the only, not very attractive solution.

5.2 RAIM Checkpointing
The organization of RAIM symmetric -memory checkpointing is shown in Figure 8-(b). The
checkpoint data is kept fault-resilient using the RAIM technique and, unlike the single-copy
scheme, puts no restriction on where the checkpoint data must reside and how it is mixed up with
the active data. Logically the RAIM range is divided into two identically sized buffers; each is
large enough to host one checkpoint image. The operations for various options on the two buffers
are almost identical to the case of single -copy.

The symmetric-checkpointing using RAIM has memory overhead rate of 2N/(N-1), closer to that
of single copy for large N.

13

5.3 Dual-Copy Checkpointing
The dual-copy symmetric-memory checkpointing is shown in Figure 8-(c). Checkpoint data is
made fault-resilient by keeping two copies in two distinctive nodes. As in the case of RAIM
checkpoint, there is no restriction on where the checkpoint data should be placed.

The establish phase of the checkpoint process first makes another copy for each piece of the ac-
tive data. This ensures that the active data is made fault-resilient before overwriting the check-
point data. If this phase successfully finishes, the commit phase then goes ahead overwrites one
copy of the old checkpoint data. The total memory overhead is thus 3.

Can we do better with less memory overhead, say 2? We now prove that this is generally not pos-
sible. Considering the active data X, whose checkpoint data is on node A and B. Now we over-
write the copy on A with the active data X. At this instance, if node B fails and there maybe an
active data Y on it that has not yet made a new copy, we have lost the only old copy of X and the
new copy of Y. If such event indeed occurs, we can roll neither forward nor backwards because
the atomic property has been violated. In other words, the checkpoint of active data in one node is
dependent on another node, if the action of copying active data in the first node leaves a subset of
mixture of the only old and new copies in the second node. If all nodes depend on some other
nodes, we say a deadlock has occurred. Such an example is shown in Figure 9-(a), the copying
of the page 1 into node 2 clearly depends on the availability of node 3, which keeps the only new
copy of page 3.

N O O
 N O O
 N’ N O O
 N O O
 N O O
O O N O
O O N

page
 1
 2
 3
 4
 5
 6
 7

Node
1 2 3 4 5 6 7

(a)

N N O
 N O N
 N’ N O O
 N O O
 N O O
O N N
O N N

Node
1 2 3 4 5 6 7

page
 1
 2
 3
 4
 5
 6
 7

(c)

N N O
 N O N
 N’ N O O
 N O O
 N O O
O O N O
O O N

Node
1 2 3 4 5 6 7

page
 1
 2
 3
 4
 5
 6
 7

(b)

N N O
 N O N
 N’ N O O
 N N O
 N N O
O N N
O N N

Node
1 2 3 4 5 6 7

page
 1
 2
 3
 4
 5
 6
 7

(d)

Figure 9 Reduce the Memory Overhead in Dual-Copy Checkpointing

The same proof we have given above suggests how we can attack the problem in general. When-
ever we have a deadlock, we can always break the dependence cycle by making extra copies. In
Figure 9-(b), we break the dependency by making a new copy of page 3. We can then proceed
until another deadlock is reached, if any. We can derive a greedy algorithm that picks up the node
to break the dependency based on a) how many dependencies can be broken and b) how many

14

extra copies are made. This algorithm will do much better than the overhead up-bound of 3. For
this particular example we use only 1 extra copy and all the deadlocks are broken as a result of
chain reaction. The process is described in Figure 9, where the pages that finished checkpointing
are underlined in each step. We need yet to understand what is the lower bound of the overhead.
Another problem is that the algorithm is sequential in nature, although copy operations between
deadlock stages are parallel. In this example, the process has to be finished in four steps. One
way of achieving more parallelism is to break more dependencies on several nodes, instead of one,
whenever deadlocked.

The above discussion assumes a stop-and-forward approach. The dual-copy does not allow an
efficient and complete implementation for built-on-the-fly or copy-on-write approach. We can only
furnish a partial built-on-the-fly solution, even with 3 buffers. What we do is to reflect the writes
to the 3rd buffer before checkpoint. At the time of checkpoint, the establish phase is thus com-
pleted already. We then select one of the remaining buffers and copy into it the modified pages
from the 3rd buffer. This is the process of the commit phase. This concludes one checkpoint inter-
val. Note that the application must be stalled during this copy duration. As the execution proceeds
into the next checkpoint interval, the idle buffer that was not selected can be freed to host the re-
flecting writes. In other words, the three buffers can rotate their roles as the execution continues.

6. Asymmetric-Memory Checkpointing
As shown in the previous section, requiring that the complete checkpoint image be immediately
available upon recovery requires excessive memory space. The approaches that relax this demand
by rebuilding checkpoint image quickly at the speed of memory is one attractive solution and is the
topic of the two subsequent reports [8, 13]. Asymmetric -memory checkpointing explores the pos-
sibility of keeping only part of the checkpoint image in the memory by utilizing the locality property
the application may exhibit.

In asymmetric -memory checkpointing, the fault-tolerant memory system is only large enough to
keep a fraction of the total application data. The first goal is therefore to maximize the overlap of
the newly modified data with those kept in the memory. By doing so we will be able to minimize
the chance of running out memory buffer to store the checkpoint and hence having to flushing to
the disk while checkpointing. Notice that it’s impossible to reach an optimal solution in this regard.
One heuristic procedure may be as follows:

Whenever a new modified page is P generated, the replacement algorithm will check if its
last checkpoint page P’ is in the memory. If so it goes ahead pins that page. If not, it re-
serves a free page if there is any, or replaces an unpinned page using LRU algorithm. As
the number of modified pages increases, old checkpoint pages that do not overlap with the
current working set gradually gets flushed to the disk.

This is not all. To take into account of recovery, we should retain in the buffer those pages that
are not modified but referenced, because these are the pages that the application will reference if
they fall back to the checkpoint. The replacement algorithm must be designed carefully to balance
the above two requests.

The above discussion assumes the stop-and-forward implementation. In fact, that’s about all the
asymmetric checkpointing can do. The fact is that since the fault-resilient memory system now
carries only a subset of the pages, it is very hard to establish a one-to-one hardware mapping be-
tween the active page to any page in the fault-tolerant buffer. The absence of a simple, one-to-

15

one mapping relationship between the active data and the buffer makes it impractical to implement
built-on-the-fly solution, which has very low checkpoint overhead. Same holds for the copy-on-
write approach. Asymmetric -memory checkpointing is a seemingly promising solution but appar-
ently fall short on delivering much at the end.

7. Related Works and Conclusions
In this report, we discuss the recovery of memory and process on the platform of shared-memory
DSM system. We divide the problem into recovery of unaffected memory (RUM), and recovery
of affected processes (RAP). We point out that specially designed fault-tolerant memory is nei-
ther sufficient nor necessary to solve the problem of RUM. We discussed several ways of imple-
menting a fault-tolerant memory system using plain memory. The proposed techniques laid the
foundation for other HA solutions, in addition to attack the problem of RUM. We surveyed the
space of transparent rollback recovery alternatives as our means to target RAP. There are two
axes that constitute the space. The first ax is the fraction of fault-tolerant memory system as part
of the reliable storage. This in many ways determines the cost of the system as well as the check-
point bandwidth. The second ax is how and when the checkpoint image is established and commit-
ted. The three options, built-on-the-fly, stop-and-forward and copy-on-write, have different per-
formances and implications on the system complexity.

The rollback recovery technology has been the focus of a great number of researchers. Some of
the interesting surveys can be found in [9-11]. The method employed in this report to divide the
alternative space is however new to this author’s knowledge. N+1 parity has been proposed to
implement diskless checkpoint schemes [16] in message-passing platforms. Using RAIM technol-
ogy to implement a general-purpose fault-tolerant memory system in shared-memory multiproces-
sor is a novel concept.

8. Acknowledgement
I thank Manu Thapar for the crucial management support and encouragement he gave me to con-
tinue my study on HA even if a previous report [7] was shown not as fruitful as I have wanted.
The selection of this topic owes a great deal to Bart Sears’ suggestion. John Jinakiraman taught
me a great deal of recovery issues, I appreciate his precious time. Tom Rokicki was kind enough
to go over a draft version of this report and gave encouragement, I am grateful for his comments.

References
[1] M. Wu and W. Zwaenepoel, “A Non-Volatile, Main Memory Storage System,” presented

at the 6th Architectural Support for Programming Language and Operating Systems,
1994.

[2] M. E. Staknis, “Sheaved Memory: Architectural Support for State Saving and Restoration
in Paged System,” presented at the 3rd International Conference on Architectural Support
for Programming Languages and Operating Systems, 1989.

[3] M. Stumm and S. Zhou, “Fault Tolerant Distributed Memory Algorithms,” presented at
2nd IEEE Symposium on Parallel and Distributed Processing, 1990.

16

[4] A. Kermarrec, G. Cabillc, A. Gefflaut, C. Morin, and I. Puaut, “A Recoverable Distrib-
uted Shared Memory Integrating Coherence and Recoverability,” presented at the 25th
International Symposium on Fault-Tolerant Computing Systems, 1995.

[5] C. Morin, A. Gefflaut, M. Banatre, and A. Kernarrec, “COMA: an Opportunity for Build-
ing Fault-Tolerant Scalable Shared Memory Multiprocessors,” presented at the 23rd An-
nual International Symposium on Computer Architecture, 1996.

[6] G. A. Gibson, “Redundant Disk Arrays: Reliable, Parallel Secondary Storage,” : Univer-
sity of California, Berkeley, 1990.

[7] Z. Zhang, “High Availability Issues in DSM Systems: Research Opportunities,” Hewlett-
Packard Laboratories, Technical Report 1997.

[8] Z. Zhang, “Single System HA Solutions,” Hewlett-Packard Laboratories, Techinical Re-
port 1997.

[9] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang, “A Survey of Rollback-Recovery Pro-
tocols in Message-Passing Systems,” School of Computer Science, Cargegie Mellon Uni-
versity, Technical Report CMU-CS-96-181, October 3 1996.

[10] C. Morin and I. Puaut, “A Survey of Recoverable Distributed Shared Memory System,”
IRISA, Technical Report 975, December 1995.

[11] D. K. Pradhan, Fault Tolerant Computer System Design: Prentice Hall, 1996.

[12] C. C. Li and W. K. Fuchs, “CATCH: Compiler-assisted Techniques for Checkpointing,”
presented at 20th International Symposium on Fault-Tolerant Computing, 1990.

[13] Z. Zhang, “Mariposa+: Some Thoughts on Further Optimization for Mariposa,” Hewlett-
Packard Laboratories, Technical Report 1997.

[14] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wikes, “Mime: a High Perform-
ance Parallel Storage Device with Strong Recovery Guarantees,” Hewlett-Packard Labo-
ratories, Technical Report HPL-CSP-92-9, March 1992.

[15] M. Ziegler, “"Mariposa" -- Adapting the Sequoia "Fulcrum" Technology for Use in the
Yosemite CEC,” System Architecture and Design Laboratory, Hewlett-Packard Com-
pany, Technical Report number, February 7 1997.

[16] J. S. Plank and K. Li, “Faster Checkpointing with N+1 Parity,” presented at the 24th An-
nual International Symposium on Fault-Tolerant Computing, 1994.

