

Architectural Sensitive Application
Characterization: The Approach of
High-Performance Index-Set (HP-Set)

Zheng Zhang
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-75
March 30th , 2001*

E-mail: zzhang@hpl.hp.com

shared memory
multiprocessor
architecture,
performance
evaluation

Good simulation tools that provide architectural relevant insights play vital roles in
building complex system such as shared-memory multiprocessors. In this report, we
discuss HP-Set, a simulation tool that takes the core scheduling component of CIAT
and integrates it with a set of statistic gathering probes that generate the
corresponding index. HP-Set stands for High Performance index-Set. In a nutshell,
HP-Set is a portfolio with its major indexes being the following: general statistics,
coherent misses, data reuse and locality, granularity and the IO index.

The objective of HP-Set is to be architectural sensitive and yet not to evolve into the
role of a full functional simulator. We achieve the goal by getting rid of fancy
statistics and by actually implementing relevant protocols that aim at optimizing
certain aspects of the index. By comparing the index with and without the
perturbation of the protocols, we will know not only how big the impact the index has
on the overall performance, but also how likely we can improve them architecturally.

Using HP-Set, we analyzed several commercial applications and obtained insights
not available before. For example, our overall analysis points out that it's a common
misconception that TPCC is more memory intensive than TPCD, the difference is
rather due to their pressures on the memory system. Our communication index
indicates that the third-party dirty hits dominate, and thus faster directory lookup
and cache-to-cache transfer optimizations should be encouraged. On the other hand,
significant number of false-sharing misses is and will continue to be a dominant
performance factor. Our granularity analysis suggests that spatial localities of
coherent objects are rather limited, and blind sequential prefetching might do more
harm than benefit. Our IO-Memory analysis finds that IO contributes a non-
negligible factor in total system traffic and is the major cause cache misses.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

2

1. INTRODUCTION ..3

2. USING HP-SET TO OBTAIN AN OVERALL PICTURE..4

2.1 STATIC MEMORY USAGE AND ACCESS BREAKDOWN ANALYSIS............................... 4

2.2 CACHE MISS BREAKDOWN ... 6

3. THE COMMUNICATION INDEX ...8

3.1 3RD PARTY DIRTY HIT .. 9

3.2 FALSE SHARING ... 10

3.3 PRODUCER-CONSUMER TYPE AND UPDATE PROTOCOL .. 11

3.4 MIGRATORY DATA AND THE CORRESPONDING PROTOCOL OPTIMIZATION 14

4. THE DATA REUSE AND LOCALITY INDEX ..14

4.1 THE GRANULARITY INDEX ... 16

5. THE IO INDEX ..17

6. CONCLUSION ...19

7. ACKNOWLEDGEMENT...20

REFERENCE: ...20

3

1. Introduction
Good simulation tools that provide architectural relevant insights play vital roles in building complex
system such as shared-memory multiprocessors. CIAT [1] is one tool of popular use in HP-Lab.
Unfortunately it does not deliver the application characteristics in such a way that immediately
suggests relevant architectural improvement opportunities. In this report, we discuss HP-Set, a
simulation tool that takes the core scheduling component of CIAT and integrates it with a set of
statistic gathering probes that generate the corresponding index. HP-Set stands for High Per-
formance index-Set. The index set is composed of the set of statistics shown in Table 1. In a nut-
shell, HP-Set is a portfolio with its major indexes being the followings: general statistics, coherent
misses, data reuse and locality, granularity and the IO index.

The objective of HP-Set is to be architectural sensitive and yet not to evolve into the role of a
full functional simulator. We achieve the goal by getting rid of fancy statistics, and by actually im-
plementing relevant protocols that aims at optimizing certain aspects of the index. By comparing
the index with and without the perturbation of the protocols, we will know not only how big the
impact the index has on the overall performance, but also how likely we can improve them archi-
tecturally. The following table gives the outline.

Table 1 : Implication of HPSet

Category Question Implication

Overall Analysis What is the general characteristic
of the applications, and what part
of the system performance will it
stress the most?

Identify system performance
bottleneck and derive high-
level engineering decision

Communication
Index

What is the communication pat-
tern between processes? How is
the shared memory being used?

Understand the trade-off of
several mature coherence pro-
tocols

Data reuse and
locality

How effective are the cache hi-
erarchies being used

Design the caching hierarchy,
bandwidth requirement etc.

Granularity What is the granularity of data
objects?

Line size and sequential pre-
fetch

IO index How much the IO contributes to
both traffic and cache misses

IO subsystem design issues

The analysis approach is hierarchical. The tool is flexible enough to allow the user select at which
level the statistics should be collected. The top level is the coarsest, but it enables the designer to
quickly pinpoint the specific problem. The middle level breaks the statistics into data types (when
available), this gives feedback on what data causes the most problem. The bottom level breaks the
statistics further into pages, and this helps to decide which particular piece of data may be of the
greatest interest. In addition to specifying the level option at run time, one can always run HP-Set

4

at the deepest level and let off-line processing aggregate the statistics towards higher levels. Fur-
thermore, data can be either per-process or aggregated together. Unless otherwise stated, the re-
sults presented in the report are in the middle level and they are aggregated among all the proc-
esses.

We assume a general cc-NUMA type of architecture [2]. In our simulation, we assume every
process run on one cache. Using the HP-Set, we analyzed several commercial applications and
obtained insights not available before. The rest of the report is organized more or less in the order
of the index presented in the above table.

2. Using HP-Set to Obtain an Overall Picture
In this section, we introduce the methodology of using HP-Set to obtain the overall performance
pictures of the applications under study, namely TPCC16, TPCD-Q1 and TPCD-Q3. This part of
HP-Set is itself composed of two separate components: 1) the memory footprint and access distri-
bution and 2) the cache miss breakdown. We will see that although the footprint and access offers
limited information, it can nonetheless answer a few key questions in a straightforward fashion.
However, by far the most important analysis is the cache miss breakdown, through which we can
immediately pinpoint the part of system that the application will stress the most and is thus likely to
be the bottleneck when running this particula r application. The ability of answering these questions
quickly will help us to concentrate on the most critical part of the system by going into the relevant
index data of HP-Set.

2.1 Static Memory Usage and Access Breakdown Analysis
It is important to breakdown analysis according to different data types, this is the only gateway
that can lead us into any possible insight of the application – it is too often the case that analysis at
the source code level is impossible. Listed in Table 2 is the data types that we are able to identify
for the Oracle V7 database system. There are altogether seven types of data, five out of which is
in the shared region. Note that even in situations where we can not divide data regions as detailed
as we do here, it is always possible and useful to divide them into two general classes: the private
versus shared data region.

Table 2: Data Types Breakdown

Name Region Meaning

Lit Private Literal Variables

Prv Private Private stacks etc.

IOB Shared IO staging area

Blk Shared Main database buffer pool

LkB Shared Special for Oracle: pages
mixed with locks and data-

base data

5

IBk Shared Special for Oracle: pages
mixed with IO block and da-

tabase data

Oth Shared Other unidentified data

The memory footprint and access distributions of the three applications are listed in Table 3, in
both absolute and relative numbers. Memory footprint is in the unit of meg-bytes, while memory
access is the fraction of instruction.

The procedure of analysis is outlined as follows:

1. The absolute footprint. Obviously, the larger the footprint is, the more caching space may be
required. However, strictly speaking, we still learn very little, unless we know exactly how
data is being reused in the cache hierarchy. Moreover, while private data will be divided uni-
formly for each processor, the same may not hold true for shared memory region: there is al-
ways the possibility that all these memory lines will be accessed by every process. The sec-
ond problem can be compensated by running HP-Set with the option of dumping statistics for
each process, instead of the one aggregating over all processes

Still, we can infer what cache conflict misses will look like by taking into account both the
footprint and access weight. Assuming a class of data type I has access weight R(I) with total
footprint S(I), then under uniform access pattern, the reuse rate to any line of this data type is
simply R(I)/S(I). It follows that the higher this ratio is, the more likely that it will be found in
caches.

2. The access weight to shared memory portion. The larger this number is, the more interest-
ing optimal data placement problem might be, same is true for coherent misses resulted from
inter-process communication.

Following the procedure outlined above, we have these observations:

1. TPCC16: this application has large footprint, and over 90% are in shared memory, access to
which amounts to 46%. It is therefore more challenging from the cache hierarchy’s point of
view, in terms of both data placement that deals with remote conflict miss, and the potential
large number of coherent misses. We can also infer that the data type Blk might not use
caches as efficiently as others, for example the type LkB.

2. TPCD-Q1: this application has very small footprint, and less than half is shared memory,
therefore conflict misses and data placement are unlikely to be a problem for shared data.
Moderately sized caches should work well. In addition, most accesses (87%) are to private
memory. Therefore, unless majority of shared memory accesses causes coherent misses, co-
herent misses should not be an issue either.

3. TPCD-Q3: relative to TPCD-Q1, TPCD-Q3 has a larger footprint. On the other hand, ac-
cess weight to shared memory region is even smaller. Accesses to private memory account
for about 85%. The conclusion is thus similar as TPCD-Q1.

6

Table 3: Memory Footprint and Access Breakdown

 Oth Lit Prv IOB Blk LkB IBk ALL

TPCC16 0.22 0.39 11.56 64.19 38.93 14.55 6.91 136.75

 0.2% 0.3% 8.5% 46.9% 28.5% 10.6% 5.1% 100.0%

TPCD1 0.00 0.15 2.00 0.17 1.22 0.06 0.00 3.61

 0.0% 4.1% 55.4% 4.8% 33.9% 1.7% 0.0% 100.0%

TPCD3 1.85 0.11 14.99 0.00 0.00 0.00 0.00 16.95

Mem(M)

 10.9% 0.7% 88.4% 0.0% 0.0% 0.0% 0.0% 100.0%

TPCC16 0.02 0.00 0.19 0.02 0.05 0.06 0.00 0.34

 6.4% 1.0% 55.2% 5.1% 13.9% 17.7% 0.7% 100.0%

TPCD1 0.00 0.00 0.30 0.00 0.04 0.00 0.00 0.34

 0.0% 0.1% 87.2% 0.0% 12.3% 0.3% 0.0% 100.0%

TPCD3 0.00 0.00 0.36 0.00 0.06 0.01 0.00 0.43

Acc/Instr

 0.0% 0.2% 84.5% 0.0% 13.9% 1.4% 0.0% 100.0%

Comparing the access weights of all the three applications, we know that they are all around
0.3~0.4 range, that is, one memory access every three instructions. Therefore, it is clear that all
these applications are memory intensive, and if there is anything that leads to higher performance
of TPCD than TPCC, it is only because TPCD uses cache hierarchies more effectively.

2.2 Cache Miss Breakdown
We must first introduce the system configuration assumed by HP-Set in this study and address
possible devaitions when going to other configurations. The default system has a multi-level cache
hierarchy for each process, with inclusion property enforced. A process runs on one
processor/cache set in its life time. The coherence of caches are taken care of by a invalidation
based, full directory protocol. Conflict misses are measured by using a direct-mapped 1M cache
with 32 bytes line size. Data placement and memory allocation follows the first-touch algorithm,
i.e., the page is allocated in the node who touches it first. We will examine the effectiveness of
this algorithm briefly later. Coherent IO is fully supported, when new lines are read into memory,
all cached copies are invalidated; likewise, when lines are read out to the disk, recall transactions
are generated for dirty lines, which will subsequently become shared instead. Event order is
enforced by the dispatching engine of CIAT/CDAT, which states that all synchronization events
are observed in sequential order. Obviously, this is a very conservative measure because only
those synchronization operations that content for the same locks should be kept in order. It is
therefore very likely that we over-estimate the execution time because processes are pre-emptied
due to this aggressive scheduling. However, nailing down accurate timing information is at any
rate very difficult. Therefore we did not attempt to modify the dispatching engine since it captures
the inter-process communication very accurately, which is key to obtain a reliable measurement of
coherent misses.

7

What happens when going to other configurations? The most important change occurs when
several processes are scheduled to run in an interleaved fashion on one processor, and when
several processors may share one bus. We now discuss the impact on coherent miss and conflict
miss in turn:

1. The impact on coherent miss. It is clear that when multiple processes are scheduled to run
on the same processor/cache set, some coherent misses reported by HP-Set will either
disppear or short-circuited. The first case happens when the data a process writes is later
picked up by another process that shares the same cache, the second case occurs for the
same reason between processes that run on different processors but share the same bus. In
any case, however, HP-Set is being conservative and reporting the up-bound of coherent
misses.

Process migration in real system in an attempt to achieve better load-balancing may alter the
amount of coherent misses as well: when a process writes in one cache and then later
migrates to another node, its access to that data will “appear” as a coherent miss. Therefore
HP-Set will under-estimate this type of coherent misses. However, process migration should
be discouraged at the first place if the benefit of load-balancing does not compensate the
damage done by detroying cache affinity. Until a clear process management decision is made,
we do not attempt to embed any decision here in an ad hoc manner. Besides, HP-Set’s
emphasise is to understand applications better, having dynamic process migration will make
the analysis extremely difficult, if not entirely impossible.

2. The impact on conflict miss. With or without process migration, HP-Set is unlikely to give the
exacct number on conflict misses. This is due to several reasons, the first is HP-Set’s decision
to simulate direct-mapped caches to simplify simulation, this approach is to give bounds on the
miss rates and the insight of how caches are being utilized (will be discussed in Section 4).
The second is due to the fact that we run one process per processor/cache set. When
schedule multiple processes on one processor, they might be displacing working set from each
other and thus increase cache misses. To compensate this, we use a relatively small L2
Cache (1M). This question is unlikely to be well answered until, again, a well defined process
management has been designed and implemented.

Misses are categorized into cold, coherent and conflict misses. The term cold miss deserves
some discussions. A cold miss is the access miss when the process access the data the very first
time. These cold misses can, in reality, be all types of outcomes: they can be true cold misses still,
they can be coherent misses, and conflict misses and even hits. In fact, they are termed as
unkown misses in cache sampling studies. While their true nature is difficult to predict, running a
longer trace and collecting statistics after processing a certain amount of records will certainly
help. Another thing to note is that in a system using direct-mapped caches, the cold misses
reported minus the total number of lines in L2 caches will always be misses – it is just that we
don’t know whether they are true cold miss, coherent misses or conflict misses.

It is also important to distinguish read misses with write misses. In fact, the question set on stake
is larger: with wider processors equipped with non-blocking caches, the equation of estimating the
impact of memory stall becomes non-linear. While this is an expensive problem to tackle with (the
only viable solution is to simulate the wider processor and non-blocking cache altogether),
processors certainly need not to stall on writes as much on reads. In a multiprocessor

8

configuration, the memory consistency model only states that stores are to be performed at the
release point. We therefore separate load misses with store misses.

Misses are decomposed in Figure 1. Note the category MISSIORD is the load misses because the
cache lines are invalidated due to IO operations. We report numbers in the convention of number
of misses in 1K instructions. Please note the total misses are drawn towards the right side of the
graph.

Examine Figure 1, we have the following observations:

1. TPCC16: this application is quite problematic, the total misses/K-instr is over 6, even with
static affinity scheduling. Moreover, a large fraction of misses are due to conflict and coher-
ent misses; on the other hand, misses caused by IO operations are minimum. Therefore, we
should look into the coherent and data reuse index of TPCC16 in more detail, but probably
pay less attention to the impact of IO (caveat discussed in Section 5).

2. TPCD-Q1/Q3: these two applications share one thing in common – they utilize caches very
well, and their overall misses are small in numbers. However, IO causes the majority of
misses. Therefore, if one is/cares to improve the performance of TPCD-Q1/3, the focus
should be the IO subsystem and its interface to memory system.

0.00

0.50

1.00

1.50

2.00

2.50

M
is

se
s/

K
-In

st
r

0.00

1.00
2.00

3.00

4.00

5.00
6.00

7.00

A
llM

is
se

s/
K

-In
st

r

COLDRD 2.05 0.03 0.13

COLDWT 0.90 0.00 0.02

COHRD 1.07 0.01 0.29

COHWT 0.48 0.00 0.03

CONFRD 2.12 0.03 0.03

MISSRDIO 0.02 0.24 1.35

ALLMISS 6.65 0.31 1.83

TPCC-16 TPCD-Q1 TPCD-Q3

Figure 1: Cache Miss Breakdown

3. The Communication Index
Coherent misses are results of inter-process communication, and they are not going to be elimi-
nated no matter how cache sizes are increased. In fact, if there are significant coherent misses,
increasing cache size is not only non cost-effective, but may adversely hurt the performance by

9

attain dirty lines too long in caches, which leads to the increase of coherent miss penalty by other
processes later.

The communication index of HP-Set is composed of several indices and will be discussed in turn.
They are:

1. The fraction of 3rd party dirty hit

2. The fraction of false sharing misses

3. Producer-consumer pattern and update protocol investigation

4. Migratory data and the corresponding protocol handling

The first two indices are general. There are two reasons why the second two indices are chosen
by HP-Set. The first being that producer-consumer and migratory communications are abundant in
other applications, we would like to understand whether they exist in our applications also. Sec-
ondly, there are mature protocols proposed by the research community, and we want to see how
much potential there is by incorporating them.

3.1 3rd Party Dirty Hit
When suffering a coherent miss, the miss penalty varies according to where the data is ultimately
returned. For the system that HP-Set assumes, there will be two kinds of misses, often called as
2-hop and 3-hop misses, the later one is also know as 3rd party dirty-hit:

• 2-hop miss: the home node of the line has the line clean in memory

• 3-hop miss: the home node has a stale copy, and the most recent copy is dirty in the cache of
the processor last wrote it.

In the case of infinite cache, the first processor that suffers the coherent miss will take a 3-hop
miss and pull the data back to memory; all subsequent misses will end up as 2-hops. With a finite
cache, dirty lines may be purged back to home node as a result of cache conflicts, and thus 3-hop
miss will be reduced. It is also easy to see that average number of sharers can be calculated by
using the 2-3hop breakdown:

 hopofnumber
hopofnumbersharersofnumber 3

21+=

This is so because between any two write operations, there will always be one and only one op-
eration that suffers a 3-hop miss.

Table 4: 3rd Party Dirty-Hit and False Sharing Statistics

 IOB Blk LkB Ibk All

All-Miss 0.9% 27.0% 72.1% 0.0% 100.0%

3Hop 80.5% 76.9% 61.5% 97.3% 65.8%

TPCC16

FALSE 79.5% 62.3% 69.6% 78.4% 67.7%

All-Miss 0.0% 52.2% 47.8% 100.0% TPCD1

3Hop 40.0% 14.20% 54.2%

10

 FALSE 79.5% 62.3% 69.6% 47.2%

All-Miss 0.0% 89.6% 10.4% 100.0%

3Hop 98.7% 77.7% 96.5%

TPCD3

FALSE 1.9% 65.7% 8.5%

The understanding of 3-hop and 2-hop miss breakdown is vital: they have different implications on
the system requirement. 2-hop is served directly out of the main memory, therefore if the majority
of misses are 2-hop misses, then speculative memory read in parallel with directory lookup as well
as optimizing the path from main memory to network interface will be important. On the other
hand, 3-hop is much more expensive – in terms of network bandwidth (more transactions) and
latency (more hops in the network). If 3-hop misses are significant, we need faster directory
checkup, no speculative read of memory (which will waste memory bandwidth anyway), faster
network and cache-to-cache transfer support. The abundant amount of 3-hop also implies that the
average number of active sharers is small in number, thus some saving of directory cost can be
done by using shorter vector.

HP-Set over-estimate 3-hop by not taking into account for the write backs that turns 3-hop into 2-
hop. In fact, the communication indices are all built upon infinite cache to catch the intrinsic com-
munication pattern of processes. In reality, number of miss transactions stays the same, but with
the clustering of caches, the hops will be reduced. Again, HP-Set emphasizes on application un-
derstanding, and over-estimating these hops gives a more conservative measure.

The number of 3-hop miss breakdown are listed in Table 4, the 4th row of each application gives
the fraction of 3-hops in the percentage of total coherent misses, divided into different data types.
The results show that across all applications, 3-hop misses are significant. Bearing in mind that the
coherent misses in TPCD does not worth looking but those in TPCC does pose a performance
threat, it thus tells us that engineering decisions such as those mentioned earlier optimizing 3-hop
transactions can be rewarding, and it also highlights that directory savings is possible by using
shorter vectors.

3.2 False Sharing
False-sharing [3, 4] happens when communications are generated because different processes are
sharing the same cache line without sharing the same data. The exact definition will become clear
when we discuss the algorithm that HP-Set uses to detect them. False-sharing was not at all paid
enough attention when HP-Set was first started, it is only when a companion project aimed at re-
ducing coherent misses surprisingly encounters significant false-sharing in Oracle V7’s behavior
that the index was designed and implemented.

To detect false sharing, HP-Set uses a bit vector, called written, for each line, each bit is for a
subset of the bytes of the line. For simplicity, we assume that the line is 32-bytes, and there are 32
bits in the written vector – thus the false-sharing detection is at the granularity of byte; for each
line we also has a flag called is_false, now the algorithm is as follows:

• On writes

If (dirty hit) {

 setBit(written, addr&0X1F); // keep track of written byte

11

} else {

 clearVec(written);

 setBit(written, addr&0X1F);

}

• On reads
If (coherent read miss) {

 If (!isSetBit(written, addr&0x1F)) {

 False_sharing++; this_line->is_false = TRUE;

 }

} else if (isHit && this_line->is_false

&& isSetBit(written, addr&0x1f)) { // we have count a false-shr

 this_line->is_false = FALSE; False_sharing--; // but we shouldn’t!

}

That is, we keep track of whether the coherent read miss was to the writing of the exact data.
Note the use of the is_false flag to account for possible over-estimation of false-sharing.

The fraction of false-sharing reported in Table 4 is startling: 65% overall for TPCC. This effect is
less pronounced in TPCD. This outcome may be partially due to the fact that tupples/attributes are
packaged contiguously while accesses to are fine grained in nature.

It should be pointed out that having significant amount of false-sharing does not automatically im-
ply that short-lines are necessarily better, even discount the fact that shorter lines will need more
tag areas as well as increased directory entries all over the system. The reason being that large
line size has the prefetching effect that conforms to data objects of good spatial locality – and we
are only examining coherent misses here. What we do confirm is that in the realm of coherent
objects, false-sharing is not trivial. What will happen when going to short lines? False-sharing will
decrease, but misses reduced by prefetching with longer lines will also arise. The end result is a
mixture of both trends. We use HP-Set to simulate 4-byte line size and find coherent misses are
decreased by 20%.

What can one do to eliminate, or at least minimize the impact of false sharing? The responsibility
largely rest on the programmers of these applications, HP-Set identifies where the false-sharing is
happening and, if necessary, it can be run at page size to identify them in more detail. There are a
couple of hardware optimizations one can apply as well, for example using write caches to com-
bine writes, applying lazy releases consistency etc. However, it is not convincing, yet, that these
optimizations will be cost-effective. The viable solution, if we indeed find significant false-sharing
all across important applications, is to suggest not to push for a long cache lines too much, and use
sectored L3 cache to alleviate the problem. With sectored L3 cache, it is possible to obtain the
beneficial prefetching effect without the harm of false-sharing.

3.3 Producer-Consumer Type and Update Protocol
One special pattern of communication is both easy to detect and optimize: producer-consumer re-
lationship. This can be made in a more general format as xP-yC, where P and C stands for pro-
ducer and consumer respectively, x can be either 1 or M, stands for one or multiple. Obviously,
when it is certain that one process produces the data consumed by another, a plain invalidate pro-

12

tocol will always produce 3-hop coherent miss which the consumer suffers (in the infinite cache
case). This type of data is often seen in scientific applications at the boundary of data decomposi-
tion, or some global variables that all processes need to access. Update protocol, from simple ones
such as competitive update protocols [5, 6], to sophisticated such as [7], which update the con-
sumers when writing the data, can eliminate these misses.

Given infinite bandwidth throughout the system, an update protocol that always update no matter
what will remove all coherent misses. The downside of any update protocol is the traffics associ-
ated with unnecessary updates. These spurious updates come from two sources. The first is when
updates are brought to some one that will not use the data, or at least not immediately, this is the
case for imperfect P-C detection. The another more general and also more severe problem comes
from the artifact of long lines, we will see this more clearly when discussing the competitive up-
date protocol.

The competitive update protocol of order K associates with each cache line a counter which can
counts up to K. The counter is set to K whenever the processor access the line. When updates
are sent to the current sharers, each of them decrement the counter, the line is invalidated if the
counter reaches 0, or updated otherwise. With long cache lines, if there is spatial locality in the
data objects, it is possible that the consumer side will overrun its threshold. And if this happens
then we will be having all these update traffics without removing the actual miss.

Table 5: Producer-Consumer and Migratory Data

 IOB Blk LkB Ibk

All-Miss 0.9% 27.0% 72.1% 0.0%

UPRDT 10.3% 14.4% 23.0% 15.3%

UPRD 65.0% 49.2% 37.5% 91.0%

COHRD3 80.5% 76.9% 61.5% 97.3%

TPCC16

16.2%

MIG 59.4% 54.3% 72.5% 69.4%

All-Miss 52.2% 47.8%

UPRDT 1.1% 37.6%

UPRD 39.3% 46.2%

COHRD3 40.0% 14.2%

TPCD1

15.7%

MIG 8.6% 52.1%

All-Miss 89.6% 10.4%

UPRDT 0.8% 38.1%

UPRD 94.3% 95.2%

COHRD3 98.7% 77.7%

TPCD3

58.6%

MIG 5.7% 75.7%

To gain more insight of the competitive update protocol, let’s assume that there is a sequence of
loads and stores from different processors to a certain line:

13

Call the first group of readers the last_sharers, and the second group this_sharers. For simplic-
ity, we let f stands for the ratio of the message size of an invalidate or update message over a
read miss message, and also let S be the size of last_sharers and this_sharers. Denote h to be
the success rate of the second update. We now proceed to compare the misses and traffics of the
update protocol and competitive update protocol of order 1.

For the pure invalidate protocol, we have the followings:

)1(fSinvtraffic

Sinvmiss

+=

=

And for competitive updates we have:

fShShuptraffic

hS
up

miss

)2()1(−+−=

=

The second term of the traffic equation above is simply the product of the number of nodes that
the protocol sent updates and the size of the message. For this simple analysis, an equal traffic
breakdown is reached with the success rate of:

ffh +> 1/()

Thus, if update traffic comes for free (h=0), we always gain; and if the update message is as
large as the read miss, then we need at least 50% success rate.

To investigate how much we can gain by using an update protocol, HP-Set implements two com-
petitive update protocol. The first one is an hypothetical protocol, which collapses all writes by a
single producer into one update, we denote this as UPDT in Table 5 as the up-bound measure.
The second one, denoted as UPDTT is the default competitive update protocol with order of 1,
which will update only the first time. There is no difference between the two protocols if the pro-
ducer only write once before the consumer reads it. However, if the producer writes multiple
times, even if the protocol is updating the right consumer, it may run over its threshold and decides
to invalidate the copy instead. Therefore, the difference between the two protocols tells us the
run-length of the producer, something interesting to obtain in any case.

Ignoring the results of TPCD and concentrate only on those of TPCC. Our result suggests a large
difference of UPDT and UPDTT, which means that if competitive protocol is to be supported,
there should also be some ways of lumping writes to the same line before they are sent to the po-
tential consumers. The success rate of the baseline is around 20%, this means we should have
enough bandwidth before we attempt this type of protocol, and only when coherent miss emerges
as the major performance degradation factor. To simply put it, our results recommend that, at the
present, the impact of update protocol is likely to be marginal and may not be promoted to higher
priority of engineering decision. This is especially true in light of the significant false-sharing of the
Oracle V7.

dbacba RRWRRW

14

3.4 Migratory Data and the Corresponding Protocol Optimization
Migratory data refers to the type of communication pattern where a data changes hand in a load
followed by store fashion. That is: RaWaRbWb,…,RcWcRaWa…

We will discuss the correlation of migratory data and producer-consumer data later. For now let’s
assume that it’s largely unpredictable that who is the next node read/write the data. The migratory
data is a very common pattern. For example, processes summing up a global variable, will cer-
tainly have this type of behavior. The presence of migratory data has been found in numerous ap-
plications [8] and it is by far one of the difficult communication pattern to be optimized.

Since the migratory data hops around unpredictably, their misses are very hard to eliminate – the
only viable option will be using prefetching. However, there is the so-called migratory data han-
dling optimization [9]. This optimization proceeds at several steps. The first one being detecting
migratory data on the fly, using the regular expression outlined earlier. Once a line is marked as
migratory data, the ownership will be transferred to the node that read miss on the data, with the
old owner invalidated. The result is faster write completion which in turn leads to faster release as
well, the second benefit is the reduction of traffics. There is downside of this optimization: if a data
is wrongly detected as migratory data, 2-hop misses will be turned into 3-hops (example:
R1W1R2R3, suppose this data is marked as migratory, R3 will be a 3-hop miss), and there can even
exist cases that hits will be turning into misses (substitute R3 with R1 in the same example). There-
fore, unless migratory detection is successful, using this optimization could be risky.

One might expect, from the nature of commercial workloads, there should be significant instances
of migratory data. However, the large quantity of false-sharing might just as well shield this effect
from us. We report the result of migratory data in Table 5, the data is in the form of percentage of
3-hop miss (a clear instance of migratory data should always begin with a 3-hop load miss). We
see indeed that migratory data consists the majority of communication pattern, 70% of 3-hops are
of migratory pattern. While this is encouraging, the real implementation must use an adaptive mi-
gratory data handling algorithm, that is, the default protocol should not to rip off the ownership of a
dirty line and transfer it to the node that load misses next. Otherwise it is almost certain that a
fraction of 2-hop misses will be turned into 3-hops and endure larger miss penalty.

It is possible that some data can be both migratory data and producer-consumer. This happens
when the data is shared between two processors, and each has a deterministic load-then-store
fashion. This, in fact, happens quite often for some pages of TPCC.

4. The Data Reuse and Locality Index
We have seen that there are significant conflict misses in TPCC. HP-Set also reports that, using
the first-touch algorithm, 75%, 89% and 31% of these conflict misses are remote, for TPCC16,
TPCD-Q1 and TPCD-Q3 respectively. This is indeed quite better than using a random algorithm,
which will give instead 15/16, 14/15 and 22/23. However, HP-Set also indicates that first-touch
algorithm might result in disparity of memory usage among different nodes. Some more investiga-
tion should be in order. Table 6 reports the conflict miss distribution of the three applications. With
these data, and taking into account the projection that when we use larger L2 caches in the future,
the database system might scale up their working set as well, it seems evident that architecture
variation such as L3 cache should be recommended.

15

Table 6: Conflict Miss Distribution

 Lit Prv IOB Blk LkB Ibk

TPCC16 1.78% 9.19% 2.45% 77.01% 9.11% 0.14%

TPCD1 2.25% 0.00% 2.14% 84.36% 11.13% 0.11%

TPCD3 1.47% 50.40% 5.03% 14.63% 23.38% 0.45%

How does the data use the caches? To understand this HP-Set simulates a vector of direct-
mapped caches. There are a number of advantages by doing so. First, by looking at the reuse rate
(defined as reuse captured by the level of cache in question over the total number of reuse in infi-
nite cache) for different data types and/or pages, we will be able to identify the data using caches
less efficiently and is thus the target of further improvement. Secondly, we keep track of what
portion of the misses, in all levels of caches, is to remote node, and thus we can easily play with
different combinations without the need to run multiple simulations. For example, suppose we
choose the vector as 32K, 256K, 1M, 4M and 16M, then we can use the result of any three of
these caches to estimate a three-level cache hierarchies.

The reuse curves of TPCC16 is presented in Figure 2. There are three levels of cache hierar-
chies, with L0 being 4K, L1 64K and L3 1M. We immediately identify that the data type Blk is the
one that does not use the caches well – its reuse curve is below others. Therefore, software opti-
mization should pay attention to improve, for example the temporal locality, of this type of data.
There is also hardware optimization opportunity as well. If we know a certain data is not using
cache well because its long reuse distance, we can have it bypass lower caches so as to leave
more rooms for other data. This optimization we call as smart-caching. It is easy to note that for
each instance of such by pass, one can at most prevent one future conflict miss. This optimization
has been investigated, and the result is that conflict miss is reduced by 2%. This is largely due to
the lack of the bypass instances. We will look into this in more detail in the future.

Reuse Curve

0.0%

40.0%

80.0%

120.0%

Cache Hierarchy

A
g

g
re

g
at

e
R

eu
se

 R
at

e

Prv

Blk

LkB

ALL

Prv 89.4% 98.2% 99.8%

Blk 71.8% 89.4% 95.1%

LkB 92.0% 98.3% 99.6%

ALL 87.1% 96.8% 99.1%

L0 L1 L2

Figure 2: Reuse Curves for TPCC16

16

4.1 The Granularity Index
It is often important, and interesting as well, that we can understand the granularity of the data
object that the application references. However, here we treat line size as a given and measure
granularity in multiple of the default cache line size. This is mainly because we do not have control
of various cache parameters. And if finer granularity is needed, we can always repeat this part of
the simulation with shorter lines.

The granularity index goes hand in hand with sequential prefetching. And it helps to understand
the potential of other optimizations [10, 11]. The larger the granularity is, the more likely that se-
quential prefetch should do well. Therefore, we design the algorithm of detecting granularity based
on tagged sequential prefetching.

The algorithm of tagged prefetch is quite simple. Associated with each line of the cache there is a
tag bit. This bit is reset when the line is fetched from below. Then, whenever a line that has the
tag bit reset is referenced, a prefetch will be issued for the next line, and this line’s tag bit will be
set. One can imagine a sequence of blocks is being fetched, as long as their accesses are in the
same order. This constitutes the base of granularity detection algorithm.

To detect granularity, we distinguish the prefetch that first starts a sequence, such instance is
termed as pref_lead. When a prefetch is issued, we check to see if the previous line has the tag
bit set, if not then this one is a pref_lead, otherwise this reference belongs to the sequence, we
reset the previous line’s tag bit. Using this algorithm, suppose we have a reference stream such
as: R(1)R(2)R(3)R((1)R(2)R(3), we will have 2 pref_lead for total of 6 prefetches. Then we can
derive a set of statistics as follows:

prefgoodprefeffi
leadprefgoodprefgran

/_
_/_1

=
+=

The pref_good statistics are the portion of prefetches that are used before invalidated by other
processes. For the above example, we have granularity as 3 and prefetch efficiency as 2/3, ex-
actly what we expected.

These tags are built along with the directory entries, therefore there can be arbitrary number of
sequences on the fly in the system at any time.

Next we can change the events that triggers the prefetching to detect granularity of different
kinds of accesses. For example, we can allow only cold misses to enter the prefetch routine, and
this should tell us the granularity of cold misses. By triggering the prefetching only on load access,
we will then know the granularity of objects accessed by loads – something interesting theoreti-
cally but possess little practical interest. In Table 7 we report coherent object granularity, that is,
we trigger prefetch with coherent misses only.

Ignore the data on Prv region for now, for the shared region, TPCC has very small granularity,
something very nature for this application. TPCD has a somewhat larger granularity. In any case,
however, coherent objects do not seem to be anywhere close to two lines. These traces are com-
piled for 32 bytes line size. A trace compiled for larger line size should be interesting to study. In
the next section, we will see how the IO makes a significant difference as mentioned earlier.

17

Table 7: Coherent Object Granularity Distribution

 Prv Shar All

Gran 10.19 1.38 1.44
TPCC16

Pref-Eff 90.3% 22.1% 24.8%

Gran 3.82 1.81 1.66 TPCD1

Pref-Eff 74.2% 42.4% 73.9%

Gran 3.93 16.28 4.50 TPCD3

Pref-Eff 75.0% 92.7% 78.0%

5. The IO Index
The goal of IO index of HP-Set is not to study the IO system behavior, but rather how the IO
subsystem interacts with the memory system. This is first because that we fundamentally lack
such knowledge, and is also due to some caveats that force us to backup from understanding the
IO system using HP-Set altogether. The problem is largely associated with the tracing methodol-
ogy. The dilemma is that to understand the interaction of memory with IO, we have to use
load/store traces whose very nature determines that they are both expensive to collect and proc-
ess. However, IO events are sparse, especially for systems with larger main memory, thus unless
we collect longer traces, such as system call traces, we will not be able to get a complete picture.

Table 8: IO Index Breakdown

 Prv IOB IBk ALL

INSTR/IORD(B) 1204.1 38.0 497.7 34.3

IOINV/IORD 94.8% 0.0% 0.0% 2.7%

INSTR/IOWT(B) 813.0 222.1 90834.5 174.1

IORC/IOWT 93.7% 98.9% 100.0% 97.8%

TPCC16

MISSIORD/ALLMISS 0.3% 0.0% 0.0% 0.3%

INSTR/IORD(B) 88.0 7648.7 87.0

IOINV/IORD 72.9% 20.6% 72.3%

INSTR/IOWT(B) 1023538.8 818831.0

IORC/IOWT 100.0% 80.0%

TPCD1

MISSIORD/ALLMISS 77.6% 0.1% 0.0% 77.7%

INSTR/IORD(B) 16.4 8203.0 16.4

IOINV/IORD 73.1% 69.8% 73.1%

INSTR/IOWT(B) 811351.4 649081.1

IORC/IOWT 100.0% 80.0%

TPCD3

MISSIORD/ALLMISS 73.2% 0.1% 0.0% 73.4%

18

To have a complete picture of IO subsystem’s impact, therefore, involves two steps. We should
consult researches that based on using long, system level traces to get the idea of sheer volume of
IO, and then use HP-Set to gain the knowledge of how IO interacts with the rest of the system.
IO indices of HP-set are listed in Table 8, here is the definition of terms used:

1. INSTR/IORD(B): number of instructions per IO (inbound) bytes

2. IOINV/IORD: number of cache lines actually invalidated due to IO reads

3. INSTR/IOWT(B): number of instructions per IO (outbound) bytes

4. IORC/IOWT: number of cache line recalls due to IO writes

5. MISSIORD/ALLMISS: fraction of cache misses due to IO reads over total L2 cache misses

Not shown here is the total IO traffics (weighted over different message size) over total system
traffic.

We discuss the results of TPCC and TPCD in term:

1. TPCC16:

• Traffic: it turns out that for TPCC16 the traffic contributed by IO can be significant, HP-
Set reports an estimation of 12%. However, most of these IO traffics are a total waste
from the point of memory subsystem: only about 5% of IO reads actually invalidate cache
lines. IO writes however, have a very substantial recall rates.

• Miss: misses caused by IO is minimum.

2. TPCD:

• Traffic: IO traffic is significant for TPCD-Q3. However, since TPCD has low overall
traffic because of its efficient usage of caches, it is less likely that IO traffic makes a big
impact.

• Miss: IO causes most of the them – well over 70%.

The results can be simply put it this way: IO affects TPCC mostly through traffic, and affects
TPCD through cache misses – if processor stalls at all on memory access, chances are that this is
due to IO reads.

There are a few points to make regarding these results:

1. Isolate the IO subsystem from the rest. We have seen that IO traffics go on the bus in vain
in the case of TPCC. For future applications, it is very likely that large amount of IO can by-
pass the caches as well. Isolating IO can be done by instructing the DMA inbound traffic to
examine the directory first, if there is no copies made in the caches, then there is no need to
go further. This isolation also enables us to optimize the sub-component of the system without
the need to worry about the interference and perturbation towards other components.

2. Update the caches in private region. The ratio of MISSRDIO over IOINV instances in the
private memory region tells us how successful it will be if we were to update caches if IO
traffic towards private region has to get on bus. We have 92%, 93% and 97% for TPCC16,
TPCD-Q1 and TPCD-Q3 respectively. These numbers are strong support for one simple
principle: if IO reads in private data region has to get on bus, let them go all the way to update
the cache.

19

3. Prefetch for MISSIORD is effective: for this we need to refer back to Table 7, the coherent
misses in private memory are all caused by IO. Not with a surprise, we see granularity and
prefetch efficiency both notches up. Therefore, if the underlying architecture does not support
updating the cache, the next thing we can do is to prefetch on misses caused by IO. Note we
need to distinguish misses by IO from other misses, as the small granularity and low efficiency
of shared data region so indicates.

These suggestions made by analyzing the data of this set of application using HP-Set: isolate the
IO subsystem, update or prefetch on misses due to IO reads, should largely address the necessary
design issues of IO-memory interface.

6. Conclusion
In this report, we defined a set of indexes that gauge the performance of shared-memory multi-
processor. The tool, HP-Set, is based on the notion that application characterization must itself
deliver architectural relevant insights. HP-Set achieves the goal be actually simulated optimizing
protocols on the flight. By using HP-Set, we gain several insights of the applications as well as
new research opportunities, these contributions are listed below, with new research opportunities
underlined:

1. Overall Analysis: we find that all three applications, TPCC16, TPCD-Q1 and TPCD-Q3 are
memory intensive. However, TPCD-Q1 and TPCD-Q3 have small miss rates, they use
caches efficiently and the only performance degradation comes from misses caused by in-
bound IO traffics. TPCC, on the other hand, has more aggressive demands on the
cache/memory systems, in both conflict misses and coherent misses.

2. Communication Analysis: we find 3-hop misses are dominating. Therefore faster directory
lookup, cache to cache transfer and high-bandwidth low-latency network are required. Direc-
tory savings might be achieved by using shorter vectors, instead of saving total number of en-
tries. There are significant false-sharing – enough to warrant both software and hardware
optimizations. The contribution from more advanced cache coherent protocols to handle pro-
ducer-consumer relationship can be marginal, especially in light of the false-sharing problem.

3. Data reuse and locality analysis: we find that the first-touch data placement algorithm
works well. However, the algorithm might result in disparity of memory allocation among par-
ticipating nodes. More research should be done towards a better solution. We also identify a
certain type of data that does not use cache efficiently. Smart-caching, whose aim is to de-
termine which level of cache should retain a data deserves more research effort.

4. Granularity analysis: our result indicates that the granularity of coherent object is rather lim-
ited. Therefore blind sequential prefetching might adversely degrade the performance if the
system does not have enough bandwidth. Large granularity, however, has been found to be
common for the private IO region.

5. IO-Memory analysis: we find that IO contributes a non-negligible factor in total system traf-
fic in TPCC, and is the major source of cache misses for TPCD. It is important to isolate IO
subsystem from the rest of system as much as possible for a variety of reasons. We also be-
lieve that either updating the caches or sequential prefetch should work well to eliminate these
misses, provided that a mechanism is derived to distinguish the private IO region apart from
the rest of memory.

20

7. Acknowledgement
The author wishes to thank Sekhar Sarrukai for test-driving HP-Set and many of his valuable in-
puts. Tom Rokicki, John Janakiranman and many others have provided feedback; I am grateful for
their time. Manu Thapar provides crucial management support and guidance.

Reference:
[1] G. Abandah, “Tools for Characterizing Distributed Shared Memory Applications,” Hew-

lett-Packard Laboratories HPL-96-157, Dec 1996.

[2] D. L. e. al, “The Stanford DASH Multiprocesso,” IEEE Transactions on Computer, vol.
25, pp. 63-79, 1992.

[3] J. Torrellas, M. S. Lam, and J. L. Hennessy, “False Sharing and Spatial Locality in Multi-
processor Caches,” IEEE Transactions of Computers, pp. 651-663, 1994.

[4] M. Dubois, J. Skeppstedt, L. Riciullli, K. Ramamurthy, and P. Stenstrom, “The Detection
and Elimination of Useless Misses in Multiprocessors,” presented at the 20th Annual In-
ternational Symposium on Computer Architecture, 1993.

[5] F. Dahlgren and P. Stenstrom, “Reducing the Write Traffic for a Hybrid Cache Protocol,”
Journal of Parallel and Distributed Computing, vol. 26, pp. 193-210, 1995.

[6] A. R. Karlin, M. S. Manasee, L. Rudolph, and D. D. Sleator, “Competitive Snoopy Cach-
ing,” presented at the 27th Annual Symposium on Foundations of Computer Science,
1986.

[7] A. Raynaud, Z. Zhang, and J. Torrellas, “Distance-Adaptive Update Protocols for Scal-
able Shared-Memory Multiprocessors,” presented at the 2nd Annual International Sympo-
sium on High Performance Computer Architecture, 1996.

[8] W. Weber and A. Gupta, “Analysis of Cache Invalidation Patterns in Multiprocessors,”
presented at the 3rd International Conference on Architectural Support for Programming
Language and Operating Systems, 1989.

[9] P. Stenstrom, M. Brorsson, and L. Sandberg, “An Adaptive Cache Coherence Protocol
Optimized for Migratory Sharing,” presented at the 20th Annual International Symposium
on Computer Architectures, 1993.

[10] Z. Zhang and J. Torrellas, “Speeding up Irregular Applications in Shared-Memory Multi-
processors: Memory Binding and Group Prefetching,” presented at the 22nd Annual In-
ternational Symposium on Computer Architectures, 1995.

[11] S. Palacharla and R. E. Kessler, “Evaluating Stream Buffers as a Secondary Cache Re-
placement,” presented at the 21st Annual International Symposium on Computer Archi-
tectures, 1994.

