[} cickano

Position Papers for the World Wide Web
Consortium (W3C) Workshop on Web Services

W3C Web Services Team
Contact: Harumi Kuno
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-73

April 3rd, 2001*

E-mail: hkuno@hpl.hp.com

Web-services, This technical report is a collection of position papers that HP
W3C, E-services, submitted to the World Wide Web Consortium (W3C) Workshop
transactions, on Web Services. The W3C Web Services Workshop represents
electronic a community interested in XML-based Web service solutions
commerce and standardization of components thereof, including both

solution providers and users. The goal of this workshop is to
advise the W3C about which further actions (Activity
Proposals, Working Groups, etc.) should be taken with regard
to Web services.

* Internal Accession Date Only Approved for External Publication
O Copyright Hewlett-Packard Company 2001

Introduction

The W3C Web Services Workshop represents a community interested in
XML-based Web service solutions and standardization of components

thereof, including both solution providersand users. The god of this

workshop is to advise the W3C about which further actions (Activity

Proposa's, Working Groups, etc.) should be taken with regard to Web

Services.

In order to present a coordinated position, researchers from HP Labs (both Pao
Alto and Brigtol) and representatives from both the E- Speak Organization and the
E-process Operation collaborated closdly (by telephone and email) to produce
nine position papers reflecting HP s pogition on topics ranging from
conversationd interfaces for web-services to eectronic contracts to service
management. This technical report is a collection of the position papers that HP
submitted to the World Wide Web Consortium (W3C) Workshop on Web
Services. (The order in which they appear reflects the infrastructure stack
sketched in the “HP Web Services Architecture Overview” paper.)

Table of Contents

CONVERSATION DEFINITIONS: DEFINING INTERFACES OF WEB SERVICES.....10

ADVERTISING AND DISCOVERING BUSINESS SERVICES.........ccooiiiiieee, 15
REQUIREMENTS FOR AUTOMATED NEGOTIATIONcoooiiiiiiiiinieeee e 21
TOWARDS THE ELECTRONIC CONTRACT ...ttt 25
SECURITY REQUIREMENTS FOR WEB-SERVICES. ..., 28
A FRAMEWORK FOR BUSINESS COMPOSITIONccccoiiiiiiiiiineneereeseere e 34
TRANSACTIONAL CONVERSATIONSo 39
A PEER-TO-PEER SERVICE INTERFACE FOR MANAGEABILITY ...ocoiiiiireeieee 45

HP Web Sarvices Architecture Overview
Kannan Govindarajan, Arindam Baner;ji

Email: Kahnang@hpl .hp.com, axb@hpl .hp.com

1. Abstract:

Web services are different from traditional distributed computing models. Web services architectures
provide aframework for creating, and deploying loosely coupled applications. One of the consequences
of the loose coupling isthat any entity that aweb service may interact with may not exist at the point of
time the web service is devel oped. New web services may be created dynamically just as new web pages
are added to the web and web services should be able to discover and invoke such services without
recompiling or changing any line of code. In this position paper, we outline some of the high-level
architectural requirements of a comprehensive framework for web services, we propose alayered
approach to architecting web servicesthat allows for pluggability and interoperability. In addition, we
distinguish between infrastructure services and application specific frameworks.

2. Introduction:

The web service architecture allows businesses to expose business assets as services. Standardizing
interactions amongst services has the added advantage that any enterprise can out-source parts of its
operation that it does not have expertise in. In addition, since the vision of web services enables web
servicesto dynamically find new web services that it can interact with, enterprises can find new
providersfor the service relatively quickly. A specific application of thisdynamismisinthe e-
procurement arena. For example, the average sourcing/procurement cyclein enterprisesis of the order of
3-4 months. Of thistime, about 50% of the time is spent in identifying the appropriate suppliers, about
20% of the timein handling the RFQ (request for quotes) process, and an additional 10% of thetimeis
spent in negotiating the appropriate deal. The ability to dynamically find suppliers can translate to
significant time savings, and therefore to lowering of costs. Essentially, the procurement and fulfillment
business process are model ed as services, and a hub is the aggregation point for the services. In such an
architecture, finding a new supplier isthe same as finding the fulfillment service of the supplier at the
hub. HPs web services vision enables such a dynamic world by allowing business processes to be
modeled as web services, by providing a platform for hosting such web services, by defining the
technical conventions that enable the interoperability between web services, and by defining a hub, or
aggregation mechanism for web services.

It is our position that fundamentally different component model is required for modeling web services.
This is because the assumptions that are made by traditional distributed component models are violated

by web services. In addition, we believe that a comprehensive web services platform has at least three
related technologies:

1. Thetechnologiesthat define the hosting platform that hosts services. Service providerstypically
will host their services on this hosting platform.

2. Thetechnologiesthat define the hub that allows services to dynamically discover other services
and establish trust in the context of the community. This hub technology potentialy is
compatible with other hub-like efforts such as UDDI (www.uddi.org).

3. Thetechnologiesthat define the standard conventions that ensure that services can inter-operate
with each other irrespective of their implementations.

The hosting platform provides, among other things, technol ogies that are required to model existing
business asset/process as a web-service, allows clients of web servicesto invoke services, etc. The hub

-2-

provides technologies for web services to be described, discovered, etc., and the standard conventions
specify the things that have to be standardized so that web services hosted on various web service
platforms inter-operate. We at HP have found these three technol ogies to be extremely relevant in the
mobile services and electronic marketplace deployments. We now briefly provide an overview of these
scenarios. The mobile service we consider provides a sales representative access to manuals from his cell
phone and allows him to print the manuals on a printing service that may be determined by his current
location. For example, an architecture of a mobile online printing solution is shown in Figure 1

Cam parents in Architecture

Haudett Pochard Campus Gr-Line Prinfing Service
b poom) s sl print_sam)
Ll APTHAL ay Srind i
B LIER,
ﬁ
. N ﬁr e 1 1wl
.l e d-' -'Fr S
e W E\wh.
Frivior of bl e 7 e
i v Pt | SOARSTML) oy
Caacusant g it st
-
- - "}'{ Toch. Masudks Exrte Sarvica
Frd® Sarmica kst otar {ivra s i b o B
2 'h sacaicli” Sars ks
- Corvm ol
- -. l,'h.-.-_l.:“
brnbar @ i on'E b Sarvices lhg:ﬂ S0P AL I L
Cprod g, P PR T] l:."“‘ Lh Dapumenty f L
Lonwueris E F
Wnbile Dperst _
Prnd” Sirvix i mntid % HE
e ik
o T
‘_- - Ceiie BT e
rearsalia
nnnnn — | sk i Zard re By
oo e ey Cpaa i |
] cadar %
-
" +)

Sarvics Fxa - 3
wik Coll Fare d FLL Traemetiny

Figure 1 - Components of a mobile online printing solution.

The architecture of an electronic marketplace is sketched below in Figure 2. Note that the two
architectures are quite similar -- the MNO in the mobile solution serves as the aggregating and
intermediating entity, whereas the hub in the electronic marketpl ace serves as the aggregation point and
may intermediate the access to services hosted on it. We suggest that W3C standardize the technical
conventions that enable web services to inter-operate with other web services. The conventions that need
to be standardized fall into two categories: infrastructural and domain specific. Infrastructural
conventions should be separated into many layers that provide the functionality that essentially allow
web service creation, deployment, interaction, and execution. In addition, specific web service
infrastructures may also standardize common functionality that is applicable in specific domains. Two
domains of particular interest in the web services space are el ectronic marketplaces, and mobile services.
In addition, it isimportant for W3C to keep all the web services related conventions coordinated in order
to enable a coherent platform.

3. Infrastructure for Web Services

The basic infrastructure for web services serves the same purpose that CORBA and COM serve for
traditional distributed computing infrastructures. However, there is an important distinction between the
infrastructure for web services as opposed to traditional infrastructures. The inter-operability problem

among web services is more challenging than the inter-operability between traditional distributed
enterprises. One reason for thisisthat web services may be separated by firewalls and the semantics of
data being communicated between them may not be uniform at the communicating ends. Another
important distinction between web services and traditional distributed component modelsisthat the
binding between carious web servicesislooser and can occur later than the binding between various
components of atraditional distributed application.

Electronic Marketploce Architecture

HF Parts S ppder Hawlatt Fackard
(wavavs 0 ppierCo.com) =—"" Wah Sarvices Hub (mith UbGT) —— thwstizh p.cemn)

| e pepit s Perimd | (i . i
| rervereprrsrr———— e e n‘_
[M| nnml‘.%uuﬂi -

Purch el rder CTL

= Sikes Drdu r” Servior

| ety parka e |

i:__ [iz tericei soler Triier Somvie | A
LT -w...,u.';._h -.1 Wlﬁ'm“ﬁ"’#i!‘ Falesdiedsr Tl
QT Y N Y~ e =
| iz Sarvicel dhippng
LR o e 8] EedayTomplaidiyre s qplonss "'“"'!ﬁl
e e L Fr Lt
’ s v
Zhippire " Sarvi
T o
b g™, —— I—
-
HP Cugtomier

Figure2 - An architecturefor an Electronic Marketplace.

Assumptions

Note that one of the key differences between the traditional distributed computing models and web
servicesinfrastructure is that the message formats need standardization. Thisisin addition to
standardizing the APIs needed to access the functionality. Standardizing just the APIs asthe Java ™
distributed computing platform has done leads to a situation where there are many incompatible
implementations. For instance, at the time of writing this position paper getting two JIMS
implementations to communicate was still an open issue. We believe that the message formats should all
be characterized as XML messages and W3C guide their definition so that different web service
infrastructure implementations can inter-operate. In addition, as mentioned before, web services are
fundamentally different from traditional distributed models for the following reasons:

Web services areloosaly coupled: Changesto aweb service should not require re-installation of
software components by the users of the web service.

Web servicesrequire dynamic binding: Typically, application designers bind software components to
one another at development time. Web services, on the other hand, are likely to be implemented and
provided by different service providers. In addition, we must enable easy changes to the serviceswe are

-4-

using, easy discovery of new services, of new capabilities of existing services, and of hew binding or
location information of services.

Web services communication is based on a Document Exchange M odel: Traditional component
frameworks support a network-object model of interaction in which objects of strictly defined types are
transferred between components using a request-response interaction pattern. Cross-organizational
business interactions do not fit this framework well for two reasons. The interfaces of services may need
to be changed in ways that cannot be captured by simple extensions. This precludes the use of object
inheritance to support the inter-operability in presence of change. Secondly, interactions can be long
lived. Therefore, asynchronous exchange of XML documentsis better suited for cross-organizational
business transactions.

Web servicesin different enterprisesarelikely to use different semantics. The interpretation of the
data communicated among enterprisesis different for each enterprise. For instance, the addressfield of a

purchase order may have different significance for the parties. If auniform object model is used, the
semantics of data often tends to be similar or homogeneous contributing to tighter coupling.

Web servicesin different enterprisesrequireadistributed model of security. Security
responsibilities are split amongst the enterprises. Each enterprise managesits end of the security
infrastructure independently.

Web services from different enterprises may be built using heter ogeneous technology stacks. Each
enterprise decides on the computing infrastructure independently taking into consideration many factors.

Web serviceinteractions must be ableto traver se corporaefirewalls. Traditional distributed systems
aretuned for applications that are depl oyed within the enterprise; Web services may be deployed from
behind Firewalls. They may need to access other web services across enterprises. For example, in the
J2EE™ architecture, the application are written to receive input from outside the enterprise, however, the
applications do not often initiate outbound requests to applicationsin other enterprises. In the realm of
web services, accessing applicationsin other enterprisesisthe norm rather than the exception.

- Web Services Infrastructure Stack

| A

. " Conwersation based high-level
S e 3
LIITT:::I:' Dol o

Figure 3 - Thelayersof an infrastructure for web-services.

Asshown in Figure 3, theinfrastructure for web servicesis made up of the following layers:

The communication layer: The communication layer should be transport independent though bindings
for common transport protocols suchasHTTP, SMTP, etc., should be defined. Essentially, this layer
answers the question: How do web services communicate with each other over standard protocols? The
messaging layer provides the requisite properties of the messaging such as reliability, security, etc. In
order for web services to communicate with each other they have to agree on the technology, standards
and protocols for communication. They also need to agree on the syntax and semantics of datathey are
going to exchange. However, the data that they exchange can be classified into infrastructure parts that
theinfrastructure usesin order to route the message and application specific parts that the infrastructure
does not inspect.

The Service definition layer. Essentialy, thislayer is concerned with defining how services expose
their interfaces as well as the service invocation model. It addresses question such as do the web services
expose a RPC like invocation model or do they expose a completely asynchronous document exchange
model. The invocation model rests on the messaging model. Since the programming model for web
servicesis more likely to be document exchange based, it is difficult to adopt an object interface
definition language for the purpose of defining interfaces of web services. Another aspect to keepin
mind when defining interfaces in terms of message exchanges is that the order of message exchanges
playsarolein theinterface definition. In addition, the security infrastructure has to provide mechanisms
that allow service providersto easily determine whether the invoker has the authorization for invoking
the service. It should be noted that the service definition layer provides the platform on which the other
infrastructure services and functionality is built on. We at HP have invented CDL (Conversation
Definition Language) as a means of expressing the interface of web servicesin terms of the documents
that are exchanged with the service.

I ntrospection: The web service infrastructure has to define mechanisms that allow clients of web
services to introspect web services in order to determine how they should interact with them. There are
two conversations that allow servicesto get information about another service they areinterested in.
These two conversations support the dynamic interaction by allowing afunctionality that is similar to the
notion of introspection in traditional object systems. The ServicePropertylntrospection conversation
provides general information about the service, the conversation it supports, its provider, and how to
access the service. The ServiceConversationlntrospection conversation returns the complete description
of the conversations as CDL documents.

Themechanism for binding to services: This allows clients of servicesto determine the service they
want to use in a declarative manner separate from the interface definition of the service. This essentially
involves defining the meta-data of services and registry infrastructure for storing and querying the meta-
data of services. M atchmaking is the process of putting service providers and service consumersin
contact with each other. The matchmaker iswhere services that want to be dynamically discovered
register themselves or their service offerings, and where services that want to find other services send
their request for matches. Some of the services advertising themselves through the matchmaker will be
simple end-providers, while others may be brokers, auction houses and marketplaces which offer alocale
for negotiating with and selecting among many potential providers. The matchmaker isavery simple,
foundational, service on which the rest of the service framework rests, and should be as neutral as
possible. It isthe web-spider search engine of the web servicesworld. The matchmaker service depends
on the meta-data definition system that is provided by the infrastructure. This meta-data system should be
flexible and capabl e of defining the meta-data of awide variety of services. Some of the requirements of
the meta-data definition system are the following. It should be capable of defining the metadatafor a
wide variety of services. Thismeansthat if different vertical industries want to define their metadata for
the servicesin their industry in different ways, the mechanism should allow that. It should allow the
metadata to evolve in agradual manner without changes to the backends or the enterprises that are using
old versions of the metadata definition. This allows specific advertisersto differentiate their descriptions

of the goods/services they sell with characteristics that enhance their advantage over their competitors. It
should be compatible with existing metadata definition mechanisms so that existing web services can be
advertised at matchmakers and discovered. It should identify portions of the metadata that are searchable

Thesecurity infrastructure: This enables web services to secure various aspects of the service.
Traditional PKI infrastructures may not be suited for the web services space. In addition, the security
infrastructure will have to provide not only secure transport, but also higher-level access control
mechanisms. Web Services or E-Services pose a unique challenge to the design of a distributed security

system. At the high level the security system performs the access control, accountability, system integrity
and confidentiality.

Unfortunately security systemstoday cannot do these things well in a distributed environment that spans

multiple, independently managed security domains. Some of the specific problems that must be solved
are:

Elimination of man in the middle attacks at boundaries of security domains. Frequently security
must be compromised to convert from one security model to another at a border of one or more
security perimeters.

End to End authorization and confidentiality

Accountability

The system must not rely upon any central security domain. There are known problems with
global name spaces, interoperability of dissimilar security domain infrastructures, the need for
trusted third parties at boundaries, etc. The system's objective isto establish an authorization,
accountability, and confidentiality agreement between a client and service without depending
upon any centralized security domain.

The system needs to be suitable (scalable?) for awide range of service value. A service can
range from afew centsto potentially millions (billions?) of dollars. While multiple security
systems could be invented, tailored to the needs of low or high value services, the challengeisto
develop asingle security infrastructure that can be readily adapted to either extreme.

Transaction Support: The web servicesinfrastructure should provide support for some notion of
transactions so that web services can compose other web servicesin atransactional manner. Traditional
two phase commit protocols may not be appropriate in the context of web services. In addition,
transactionality in the web services world may be restricted to providing support for atomicity only. This
isin contrast to the consistency, isolation, and durability properties guaranteed by traditional distributed
transaction systems. Some of the questions that need to be answered by the support for transactions are:

Do we allow resource locking?

What isthe model for achieving transactions?

What protocols do we need to support in order to achieve atomicity?
Do we make compensation time-bounded?

Does atomicity apply to conversations or isolated invocations?
Should we enable composition of different atomicity models?

Management Support: The web services infrastructure should specify how web services are to be
managed so that various aspects of the interaction among web services can be managed. There are two
interpretations of manageability for services. Manageability from a management system'’ s perspective
refersto whether a service provides sufficient information (events, measurements, and state) and control
points (lifecycle control, configuration control, etc) so that a management system can effectively monitor
and control the behavior of the service. Thereis a second notion of manageability — manageability froma
peer service's perspective. When two services interact with each other, one of them initiates a request
(client) and the other services the request (service). From aclient’ sperspective, a service is manageable

if the latter provides sufficient visibility and control over itself and over the transactions or conversations
it executes. For example, a service that provides information about the progress of aclient’s ongoing
transactions and an ability to escal ate the speed of transactionsin progress (perhaps by paying additional
price) is more manageabl e than a service that does not. Similarly, a service that can be queried about how
much quality of service (QoS) it can guarantee and that can provide response time measurements about
its transactions is more manageabl e than a service that does not provide these features. From a service’s
perspective, aclient is manageableif it can provide enough information about service usage back to the
service. For instance, a client that can be queried about its perception or quality of experience with the
serviceis more manageabl e than a client that cannot be. Similarly, aclient that provides end-to-end
response time measurements of its transactions back to the service is more manageabl e than a client that
does not.

Domain Specific Infrastructure

We now turn our attention to some of the domain specific functionality that the web services
infrastructure should standardize. There are two main domains that we believe web services have amajor
impact. These are: electronic marketplaces, and mobile web services.

Electronic Marketplaces

In the specific domain of integrating business applications across enterprises, web services can play a
rolein standardizing some of the interactions between businesses. The web servicesinfrastructure
providesfacilities to find web services and interact with web services. However, in the business to
business scenario, the negotiation and contract formation functionality has special relevance.

Negotiation: Standardizing the protocols required for various forms of negotiation such as auctioning,
two-party negotiation, etc., allowsweb servicesto cleanly attach their own specific strategies while still
being able to negotiate with awide variety of partiesin order to complete business transactions. The
negotiation framework aimsto provide infrastructure that allows two or more independent entities to
interact with each other over time to reach agreement on the parameters of a contract. It isaimed
primarily, though not exclusively, as ameans to reach trade agreements. It can be used both by
automated entities, and by users via appropriate software tools. Its value to negotiation participantsis that
it isaprerequisite to provide decision support or automation of the negotiation, and hence make the
process more efficient. Furthermore, they can be confident that the basic rules of interaction in any
negotiation are standardised, hence reducing the effort to autormete many different kinds of business
interactions. They are able to negotiate simple contracts, where only price is undetermined, and more
complex contracts where many complex parameters depend on each other. Furthermore, the protocols
provide the participants with trust guarantees, that no party has accessto extrainformation or isableto
forge falseinformation. Its value to negotiation hosts such as auction houses and market makersisthat it
provides a standard framework that all potential customers can use to interact with them. However, it
does not require a specific market mechanism, so allows the host to decide on an appropriate one. It not
only provides standard off-the-shelf market mechanisms such as the English auction, but also allows
custom mechanisms to be implemented for particular special needs such as the FCC auction for
auctioning bandwidth.

Contract Formation and Business Composition: The central idea of the conceptual model for contracts

is that the business relationship that motivatesinteractions that follow is captured explicitly in an
electronic contract. An electronic contract is a document formed between the parties that enter into
economic interactions. In addition to describing the promises that can be viewed as rights and obligations
by each party, the e-contract will describe their supposed respective behavior in enough detail, so that the
contract monitoring, arbitration and therefore enforcement is possible. The terms and conditions

-8-

appearing in the e-contract can be negotiated among the contracting parties prior to service execution. In
this way businesses with no pre-existing relationships can bridge the trust gap, be able to strike deals and
take them to completion. Business composition is the ability for one business to conpose e-services,
possibly offered by different providers, to provide value-added servicesto its customers. Composition of
e-services has many similarities with business process (workflow) automation. A web service virtualizes
the customer interaction aspects of the business processes implementing a service. In order to specify
how services should be composed, we must define the interaction process associated with a service as
well asthe flow of service and inter-service invocations.

Conversation Definitions: defining interfaces of web services

Kannan Govindarajan, Alan Karp, Harumi Kuno, Dorothea Beringer, Arindam
Banerji

Hewlett Packard Company
10450 Ridgeview Court MS 49EL-FR
Cupertino, CA 95014

Abstract

In this position paper, we advocate a novel methodology for defining interfaces
of web services. This novel methodology is motivated by the realization that
web-services have unique characteristics not addressed by traditional methods
of defining interfaces. In particular, our methodology addresses the fact that
web-services are characterized by loose coupling amongst the participating
entities, as well as a message oriented interaction model. We identify various
characteristics of a desirable solution.

1 Problem Statement

Web services, or e-services are applications that interact over the open internet
through the use of standard protocols. In order for web services in one
enterprise to interact with web services in other enterprises, we must establish
technical conventions for standardizing interactions with web services. These
technical conventions range from the messaging formats to interaction
definitions, to properties of the interactions such as security, transactionality,
etc.

Traditional distributed object models use the concept of interfaces to model
interactions. This is a useful technique because the language in which an
interface is defined can be completely independent of any language used to
implement that interface. However, most traditional distributed object
infrastructures were designed for distributed systems whose deployments were
limited to within a single enterprise. They are thus suited to deploying services
across organizational boundaries due to the following inherent characteristics of
the inter-enterprise web services:

Web services are loosely coupled: Changes to a web service should not
require re-installation of software components by the users of the web service.

-10-

Web services require dynamic binding: Typically, application designers bind
software components to one another at development time. Web services, on

the other hand, are likely to be implemented and provided by different service
providers. In addition, we must enable easy changes to the services we are
using, easy discovery of new services, of new capabilities of existing services,
and of new binding or location information of services.

Web services communication is based on a Document Exchange Model:
Traditional component frameworks support a network-object model of
interaction in which objects of strictly defined types are transferred between
components using a request-response interaction pattern. Cross-organizational
business interactions do not fit this framework well for two reasons. The
interfaces of services may need to be changed in ways that cannot be captured
by simple extensions. This precludes the use of object inheritance to support
the inter-operability in presence of change. Secondly, interactions can be long
lived. Therefore, asynchronous exchange of XML documents is better suited for
cross-organizational business transactions.

Web services in different enterprises are likely to use different semantics.
The interpretation of the data communicated among enterprises is different for
each enterprise. For instance, the address field of a purchase order may have
different significance for the parties. If a uniform object model is used, the
semantics of data often tends to be similar or homogeneous contributing to
tighter coupling.

Web services in different enterprises require a distributed model of
security. Security responsibilities are split amongst the enterprises. Each
enterprise manages its end of the security infrastructure independently.

Web services from different enterprises may be built using
heterogeneous technology stacks. Each enterprise decides on the
computing infrastructure independently taking into consideration many factors.

Web service interactions must be able to traverse corporate firewalls.
Traditional distributed systems are tuned for applications that are deployed
within the enterprise; Web services may be deployed from behind Firewalls.

6. Characteristics of Solution

It is our position that in the web-services world, there needs to be a clear
distinction between the public interface supported by a service and its private
process that implements the public interface. This distinction enables flexible
and dynamic inter-operability between Web services; for example, a service

-11-

implementor can re-implement a service as long as it still supports the public
interface. We base the definition of these public interfaces on the document
exchange model, meaning that service interaction points are defined in terms of
the documents that are exchanged with the service rather than method
signature definitions.

In addition to defining service interaction points, an enterprise deploying a web
service also needs to specify the valid sequences of message exchanges
(interactions) that the service supports. For instance, RosettaNet PIPs define
the interaction sequences that are specific to supply-chain like interactions
amongst enterprises. However, RosettaNet does not support loosely coupled
web services, and thus does not provide a generic mechanism for defining new
interactions among services running in different enterprises. We identify that a
generic, open ability to define the valid interaction sequences as part of the
interface definition is necessary for enabling loose coupling amongst web-
services. Such definitions would enable clients to determine dynamically the
relative order in which the documents are to be exchanged to perform any unit
of work with the service.

7. Outline of CDL

The Conversation Definition Language (CDL) is an XML schema for defining
valid sequences of documents exchanged between web services.
Conversations have been studied in the agent community, and provide a
means of defining the interfaces of services in terms of the interactions that the
service supports. The interaction definitions are at a level that is higher than the
transport layer and allow high-level modeling of the interfaces that the service
supports. For example, the details of the transport binding are the responsibility
of a separate layer in our architecture and can use existing technologies such
as WSDL [1] for this purpose. Essentially, CDL allows web services to model
their public process in a lightweight manner. CDL also provides an extensional
view of a web service in terms of the messages that are exchanged with it.

Conversation based interface definition enables loose coupling among web
services by defining an asynchronous document exchange model, as opposed
to a remote procedure call model, for interaction amongst web services. Web
services can inter-operate with each other as long as they conform to the
conversation definitions exposed by them irrespective of the implementation
stack that supports the conversation definitions. CDL as described in this paper
suffices to model interactions amongst two web services. We plan to extend it
to support secure, mediated, and multi-party conversations.

The notion of interactions amongst services can be expressed in many ways.

-12 -

One way is to express the concept of the shared interaction that abstracts away
the entities in the interactions. CDL, however, specifies the view of the
interaction from the viewpoint of the entities that are interacting. This means
that a programmer who is programming a service can define the CDL for his
service just as programmers today define the interface for the code that they
write. In many vertical industries, there may be standard ways of defining
conversations that can be found at an internet-wide registry. In this case, the
programmer can select the conversation that she wants her service to support.
This allows the clients of the service to interact with the service in a well-
defined, though loosely-coupled, manner.

The design of CDL separates the mapping of external interactions between
services from mappings to internal legacy business logic, which most service
implementations will typically encapsulate. This latter mapping is described
through business logic mapping layer documents that are outside the scope of
this paper. Furthermore, the conversations that a service supports can become
one of the pieces of information that is required at service registration, just as
tModels for services are required when services are registered at UDDI
registries today. Furthermore, the CDL definitions themselves can be listed in
registries so that clients can discover the CDL definitions required to interact
with services that support the CDL.

One can extend CDL in a variety of ways in order to capture various kinds of
semantics. Some of the possible extensions include:

Disconnected conversations: support for long-lived conversations
with mobile entities.

Multi-party conversations: support for conversations amongst
multiple entities.

Transactional conversations: support for atomicity and other
desirable properties for interactions and conversations.

Secure conversations: support for security.

Mediated conversations: support for a third mediating entity that can
monitor and control the execution of the conversation, like the hub-
based messaging in RosettaNet specification.

Mobile conversations: support for mobile clients in addition to the
notion of disconnection.

Support for events: the ability to define what the conversation
definition will look like when support for events is added.

-13-

8. Relationship to existing standards

The conversation definition language defines the notion of interfaces and
protocols of web services. Here we use the word "protocols” to denote the
ordering of invocations. It presents an abstraction that is above the format of
the XML message on the wire that other standards such as SOAP define.

For example, an interaction amongst the services could be a SOAP message,
where the body of the SOAP message contains the document that represents
the request from the client to the service. CDL defines conversations that take
place on top of a messaging layer. However, CDL is independent of any
particular messaging protocol.

The current version of WSDL (1.0) is an XML-based format that describes the
interfaces and protocol bindings of web service functional endpoints. WSDL
also defines the payload that is exchanged using a specific messaging protocol;
SOAP is one such possible messaging protocol. However, neither UDDI nor
WSDL currently addresses the problem of how a service can specify the
sequences of legal message exchanges (interactions) that it supports. Like
WSDL, CDL does not expose the service implementation. Both CDL and WSDL
provide a language to define interactions amongst the entities. Unlike WSDL,
CDL relies on a separate specification to define method dispatch, and relegates
the binding to various message protocols to a lower layer in the stack.

Note that conversation definitions are not workflow definitions. The key
difference between a conversation and a workflow is that a conversation
models the externally visible interaction model of the web service. A workflow is
one way to actually implement the web service.

9. References

[1] Web Services Definition Language (WSDL) available at
http://msdn.microsoft.com/xml/general/wsdl.asp

-14-

Advertising and Discovering Business Services

Alan H. Karp, Kevin Smathers
Hewlett-Packard Laboratories

Palo Alto, California
Alan_Karp@hp.com
Kevin_Smathers@hp.com

Abstract

One of the key needs for businesses to operate effectively over the Internet is the ability
to discover providers of servicesthat they need. It isour postion that the mechanisms
used by existing marketplaces and ad hoc consortia do not fully meet this requirement
because they lack the flexibility needed in the dynamic environment of the Internet. In
particular, web-based services need to be able to describe themsalvesin new ways
without undue delay. We believe that vocabularies are a representation of ontologies
that are well suited to the business needs. A framework that alows for easy creation,
dissemination, and evolution of vocabularies, while accommodating industry standard
vocabularies better meets this need.

1. Business Need

As business sarvices move to the web, it becomes increasingly important to automate
the way buyers and sdlersfind each other. Advertisng at the Super Bowl is not going
to attract software. Clearly, some sort of automated advertising and discovery
mechanism is needed. However, blind searching on keywords results in too many fase
misses as well astoo many false hits. What is needed is a context that provides
semantic meaning to the search terms.

An ontology provides semantic content to an attribute, alowing parties to agree on the
meaning of the value associated with that attribute. For example, in an eectrica
engineering ontology, GATES might be an integer denoting the number of dectronic
gates per square inch. In alandscape architecture ontology, GATES might be astring
dencting the style of gate. There are many way's to represent ontologies. Examples
include hierarchica taxonomies and vocabulary expressed as name-vaue pairs. We
fed that the latter best meets the needs of e-businesses.

Business interactions on the web use ontologiesin away that differs from many
common uses, leading to a set of requirements on the infrastructure.

Adaptability iskey. However the ontologies are defined, it must be
possible to describe new kinds of things without undue delay. Waiting for
the next verson of a stlandard ontology congtitutes undue delay.

-15-

Ontologies must be widely available. 1t doesn’'t do a business any good to
describe itsdlf in an ontology unknown to its potential customers.

Trandation from one ontology to another related ontology is critical.
Simply trandating between languages is enough to judtify this requirement,
but the ability to cross market ssgments that have their own way of
describing the same thing enforces it.

Fixed values registered in a catalog service may not be adequate. For
example, advertised prices may depend on who is doing the search or when
the search isdone. Hence, dynamic attributes are needed.

Complex descriptions and queries must be supported. A businessis more
than just itslist of products and their prices. It isacombination of those
factors plus its business practices and procedures.

Delayed discovery, in which the searcher is notified when a suitable service
is found whether or not the initid search succeeded, is needed in many
scenarios.

2. Other Ontology Efforts

We have been discovering things on other computers as long as there have been
networks, probably even before. The Internet and the growth of commerce on it have
dramaticaly increased both the need for discovery and the difficulty in providing it.
While asurvey of dl ontology efforts would be of vaue, it is beyond the scope of this
position paper. However, understanding why these efforts fail to meet the needs of
business being conducted on the Internet is important for understanding our position.
We ve picked some representative examples to illustrate the problem.

Probably the firgt efforts attempted to index the entire web. The AltaVigta search
engine provides afull text search of every web page it hasindexed. A problem with
this gpproach is that you get no hits or 40,000, a phenomenon that has been facetioudy
cdled the Alta Vista effect. Yahoo aso indexed the web, but with human indexers.
However, searching requires following a fixed hierarchy, something better for humans
than software. Other hierarchical indexing schemes, such as CoS Naming and LDAP,
provide wildcarding that avoids some of these problems, but they don't provide any
specia mechanisms to support ontologies. Y ou can dways make a particular node in
the hierarchy an ontology node in which points below it are defined in terms of that
ontology. Unfortunately, the very feature that makes it easier for software to search,
wildcarding, makes it impossible to enforce the use of the ontology.

Object systems, such as CORBA or Jini, provide ameans to find objects that
implement specific interfaces. However, abusiness service is more than the interfaces
it supports. While Jni is built on top of JavaSpaces, avery generd search engine that

- 16 -

could be used to provide more complex description and discovery, thereis no specific
support for ontologies. VerticaNet supports alarge number of trading communities.
Each has a specidized ontology to enable businesses within that community to find

each other. However, there is only one ontology per community, so that additions must
wait for gpprova from a centra authority.

More recent efforts to provide description and discovery frameworks are UDDI and
ebXML. UDDI Verson 1 dlows businesses to describe themselvesin one or more
standard taxonomies, such as NAICS and UNSPSC. However, these taxonomies are
not flexible enough for dl Stuations. For example, it is difficult to decideif the

category “computer service” isfor hardware or software. Verson 2 of UDDI, currently
being designed, alows new taxonomies to be introduced. However, alowing the
description of abusiness service in detail is not one of UDDI'sgods. Itisonly

intended to provide afirs levd filter; further discrimination is donein direct
communication with the service provider. Another sandard in the making, eoXML, is
smilar to UDDI Verson 2 in that it dlows categorizetion in different taxonomies.
However, ebXML includes more of the other aspects of doing business on the web than
does UDDI.

E-speak was designed for doing business in the dynamic environment of the Internet.
Business sarvicesin an e-spesk environment are constructed by specifying the job that
needs to be done rather than how the job isto be done. Thus, a business process that
needs a billing service describes the propertiesiit islooking for rather than naming a
spedific billing service. Hence, arich, flexible description and discovery mechanism
was critical to making e-speak useful. 1t's not surprising that e-speak incorporates
many of the features needed for discovery of business services on the web. Our
position is strongly influenced by our experience with e-spesk, both in understanding
the most valuable features of e-speak vocabularies as wdll as in knowing what
extensons would be most useful.

3. Dynamic Vocabularies as Discoverable Services

We bdieve that busnesses will want to use industry standard ontologies, but they need
away to meet gpecia needs on atime scale shorter than these standard ontologies can
be updated. We propose aframework for defining vocabularies to meet thisneed. A
vocabulary isa particular representation of an ontology thet allows a business service to
be described as attribute-value pairs. Further, avocabulary can be advertised asa
business service itsdf in another vocabulary. A very smple base vocabulary
understood by dl is needed to ground the recursion.

Thismechanism is best illustrated by an example. Say that | am interested in finding a
billing service to incorporate into my business processes. | find generd business
sarvices vocabularies by doing alookup in the base vocabulary. | use those
vocabulariesto find the ones related to business processes. | can then look for the exact

-17 -

sarvice I’'minterested in. Note that | may turn up more vocabularies, which | can then
use to extend my search. More complex cases involving detalled business services
might well go through more levels. However, a the end of the process, | will have
found a vocabulary that isrich enough to describe the services in sufficient detail. Of
course, the vocabulary creator decides how much detall is sufficient. If abusinessfinds
that it needs an extension, dl it needsto do is create a new vocabulary and advertise it
in the previous vocabulary.

The vocabulary framework must support certain festures that fall into 4 categories.
Specification
It should be possible to specify both the vocabulary and the query in XML.
Using XML makes it easer for independently coded applicationsto use the
vocabulary. It aso meansthat a specification for doing trandationisin
place.

The vocabulary mechanism must alow for user-defined attribute types.
These types can be defined in terms of other user-defined types, but at
some point the definition must end in arich set of architected types. One
such type should be a service description in terms of another vocabulary.

Mandatory attributes, those that must be included in every service
description, alow the vocabulary creator to enforce consstency standards.

Multi-vaued attributes are amust. It must dso be possible to define
attribute vaues as arange. These requirements can be combined by
specifying the dlowed atribute values as a congraint on the type.

Advertisng and searching
Businesses must be able to advertise in multiple vocabularies.

The search language must support complex queries, including inequality
and subgtring matching

The search mechanism must provide support to express arbitrary boolean
rel ations between terms from different vocabularies.

Evolution of vocabularies

The vocabulary framework must permit the trandation of one vocabulary to
arelated one.

- 18-

It should be possible to evolve a vocabulary without invaidating previous
USES.

Allowing inheritance from another vocabulary will make introducing new
vocabularies easier.

Often two or more equivaent vocabularies may be developed. It is
important to distinguish between two references that refer to such
equivalent vocabularies as opposed to independent references to the same
vocabulary.

Cregtion and control
The owner of avocabulary must be able who can modify its definition.

Controlling who can advertise in avocabulary is one way that marketplaces
can provide adegree of trust. Controlling who can search using a
vocabulary provides the service provider with adegree of trust in the client.

The vocabulary should carry information about the creator of the
vocabulary in order for the user to have sufficient trugt in the matching
rulesit contains,

The crestor of the vocabulary must be able to define the matching rules,
and these matching rules should be definable per attribute, not just per

vaue type.

Thislagt point needs some explanation. Consder astring-vaued attribute. What
congtitutes a match on a“lessthan” query? Isit collating sequence? In what language?
Isit substring? Case sendtive? Starting at the beginning of the string? The creator of
the vocabulary has the semantic knowledge to understand the meaning of the attributes
and answer these questions, and the answers may be different for different attributes.

Once such agenerd vocabulary mechanism isin place, it can be used for other
purposes. Events can be defined in terms of avocabulary. Publishers and subscribers
can find each other by advertising in the event’s vocabulary. Event state can be
specified as attribute vaues in the vocabulary and subscription filters can specified as
congraint expressons in the vocabulary. A vocabulary can dso form the basis of
online negotiation and contract formation. Each multi-valued attribute can be trested as
aclausein a contract, and negotiation can proceed to settle on vaues in the contract.

-19-

4. References

This section provides links to the pages of the technologies referenced in this
document.

1

© © N o g &~ 0 DN

AltaViga http://dtavisgacom

CORBA: http://mnww.corba.org

ebXML: http://ebxml.org
E-speak: http://e-speak.net; hitp://e-speak.hp.com

Jni: http:/Amaww.sun.comvjini

LDAP: http://mwww.openldap.org

UDDI: http://uddi.org
VeticaNet: http://mwww.verticanet.com

Y ahoo!: http://www.yahoo.com

-20-

Requirements for Automated Negotiation
Claudio Bartolini®, Chris Preist*, Harumi Kuno?
Hewlett- Packard Labs
) Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK
(2 1501 Page Mill Road, Palo Alto, CA 94304, USA

Emal: cl audi o_bartol i ni @p. comchris_preist@p.com harum _kuno@p.com

1. Introduction

The increasing importance of business to business eectronic trading has driven interest
in automated negotiation to soaring heights. In recent times, web-service enabled
electronic marketplaces have been displacing proprietary trading solutions. Looking at
thistrend, we foresee a need for a generd software infrastructure that enables
independent entities to interact using multiple forms of negotiation. Thisinfrastructure
would cover avariety of aspects, including defining agenera protocol for negotiation
(induding the definition of the actors, roles and phases of negotiation); defining a
taxonomy and alanguage for negatiation rules to cast the generd protocol into one that
embodies the desired market mechanism; defining alanguage to express negotiation
proposals.

Negotiation has been for decades a centra subject of study in disciplines such as
economy, game theory, and management. When discussing negatiation, it isimportant
to distinguish between negotiation protocol and negotiation strategy. The protocol
determines the flow of messages between the negotiating parties, dictating who can say
what, when and acts as the rules by which the negatiating parties must abide by if they
areto interact. The protocol is necessarily public and open. The Strategy, on the other
hand, is the way in which a given party acts within those rules in an effort to get the
best outcome of the negotiation for example, when and what to concede, and when to
hold firm. The strategy of each participant is therefore necessaxily private. In this
document we concentrate on the requirements for architecting software enabling
automated negotiation, therefore we discuss protocols and not Strategy .

Existing approaches to architecting software enabling automated negotiation provide
either ad-hoc software for particular market mechanisms or proprietary solutions. We
take an open agpproach by defining a standard protocol for interaction among the
participants in the negotiation process. Our protocol is defined independently from the
negotiation rules embodying the particular market mechanism that the negotiation host
wants to impose. Ingtances of negotiation ruleswill be used to cast the genera protocol

-21-

into a specific one that embodies the desired market mechanism. This approach is
general with respect to awide variety of market mechanisms, from one-to-one
negotiation to auctions and double auctions.

2. Value proposition

Our podgition is that we need to design a standardized infrastructure that alows two or
more independent entities to interact with each other over time to reach agreement on
the parameters of a contract. This infrastructure is aimed primarily, though not
exclusvely, as ameans to reach trade agreements. It can be used both by automated
entities and by users via gppropriate software tools.

Thevaue of such aframework to negotiation participantsisthreefold. Firgt, the
framework frees participants from having to develop their own negotiation
infragtructure, providing prerequisite services such as the provison of decision support
and support for the automation of the negotiation process. Second, the infrastructure
enforces the standardization of basic interaction rules, dlowing participants to be
confident that basic rules of interaction in any negatiation will be followed. For
example, participants will able to negotiate smple contracts, where only priceis
undetermined, as well as more complex contracts involving multiple complex and
interdependent parameters. Third, the protocols provide the participants with trust
guarantees, ensuring that no party has access to extra information or is ableto forge
fdse information.

The vaue to negotiation hosts, such as auction houses and market makers, is that by
providing astandard framework that is independent of any specific market mechanism,
they will increase the number of potentia customers who can interact with them. The
infrastructure would alow the hosts to select an gppropriate market mechaniam. It
would provide standard off-the-shelf market mechanisms (e.g. English auction), and
aso dlow custom mechanisms to be implemented for particular specid needs (e.g. the
FCC auction).

3. Requirements

We identify the following requirements for a negotiation protocol that would meet our
gods

Be aufficiently formal that automated entities can interact using it.

Support negotiation about Smple and complex objects.

Be aufficiently generd that avariety of different market mechanisms (e.g.
1-1 negotiation, combinatoria auctions, exchanges) can be expressed as
specific ingances of it.

-22-

Support security mechanisms and protocols that enable participants to do
busnessin atrusted way.

Allow, but not require, the existence of athird party to arbitrate agiven
negotiation (e.g. an auctioneer in an auction.)

Support exigting ways of doing business, as wdl as permitting more radicd
approachesin the future.

4. What needs to be defined

4.1. A general protocol for negotiation that can support a wide variety of market
mechanisms

A negotiation protocol provides ameans of standardizing the communication between
participants in the negotiation process by defining how the actors can interact with each
other. We therefore base the definition of our protocol on conversation orchestration
protocols such as CDL [1] or WSDL [2].

We propose that the protocol should be generd enough to support awide variety of
market mechanisms. Therefore the protocol should be based on the common aspects of
the various market mechanisms that it wants to support. That is, define the negotiation
process as an exchange of negotiation proposals followed by a phase of agreement
formation. The two phases will often be intertwined for some market mechaniams.

Designing the protocol requires the definition of:
1. Therolesplayed by the actorsinvolved in negotiation processes

2. The phases of the negotiation process (e.g. admission, proposa submission,
agreement formation)

4.2. A taxonomy of rules of negotiation

As noted above, the protocoal is defined independently from the negotiation rules
embodying the particular market mechanism supported by the negotiation host. The
rules for negotiation will then cast the genera protocal into one that can be used to
embody a particular market mechanism.

Examples of types of rules for negotiation would be rules for deciding on the well-
formedness of a negotiation proposal. Another example isrules regulaing the
dternaion of participantsin submitting proposds. Again, there will be rulesthe
dictating the vishbility agpect of proposas in many-to-many negotiation, i.e. who
among the participantsis entitled to see a submitted negotiation proposal, and so on.
Rules will be needed for supporting mechanisms such as zero knowledge proofs to

-23-

4.3.

4.4,

avoid reveding private information in the course of negatiation.

A language to define rules of negotiation

The language to define the rules of negotiation should be standardized. Theideaisto
have a declarative language for expressng rulesin away that participantsto
negotiation can reason about them. The declarative layer would then be mapped to
reusable software components implementing the logic expressed by the rules. These
components would be plugged in the orchestration infrastructure for the protocol to be
cast to embody a desired market mechanism.

A language to express negotiation proposals

The format to express negotiation proposas has to be standardized. The requirementsto
be satisfied by a candidate language would be:

Support for ontology and namespaces
High degree of expressiveness
Ability of expressng less than fully bound specifications

Ability of expressng condraints over ranges of possible vaues aswell as
definite values of aspecification

Loosdly supporting types and some degree of inheritance
Support for complex queries
Support for complex matching

RDF [3] and DAML-OIL [4] are promising candidate languages

5. References

[1] Govindargan K., et a. Conversation Definitions: A way of defining interfaces for
web services — submitted to W3C Workshop on Web services, 11-12 April 2001, San
Jose, CA

[2] http://msdn.microsoft.com/xml/generd/wsdl.asp
[3] http:/Ammww.w3.0rg/RDF
[4] http://mww.daml.org/2000/12/daml+oil-index.html

-24-

1.

Towards the Electronic Contract
Micha Morciniec, Claudio Bartolini, Brian Monahan, Mathias Sdlé
Hewlett-Packard Labs
Filton Road
Stoke Gifford
Bristol BS34 8QZ
UK

Emal: ni chal norci ni ec@p. com cl audi o_bartol i ni @p. com
brian_nmonanhan@p. com mathias_sall e@p. com

Introduction

In recent years we have witnessed an exploson of business gpplications exploiting
Internet as a communicaion medium. Initidly, ontline catalogues and shop fronts have
been deployed followed by auction dtes and findly business-to-busness (B2B)
infragtructures [Sculley 1999]. Electronic marketplaces are e-commerce infrastructures
that aggregate potentidly large numbers of buyers and sdlers and dlow them to
interact according to a variety of market mechanisms such as request for quotes, reverse
auction or exchange resulting often in dggnificant cost saving. They repidly evolve
towards trading of web services rather than commaodity goods.

As each enterprise tries to maximize its gods, conflicts of interets are certain to
appear. Possible concerns [Favier 2000] range from security of transactions, fairness of
the market mechanism, anonymity, identity of business partners to service performance.
We fed confident that adequate solutions can be provided for most of the technology
related concerns, however, a technology gap exists in addressng concerns tha have
their roots in the societa aspects of businessinteractions.

In the read-world the contracting process together with the established inditutions and
adequate enforcement and trust mechanisms provide an answer to these concerns. We
assart that reification of this process will be required in order to endble enterprises
edablish and manage dynamicdly changing business reaionships that can be formed
in the eectronic marketplaces.

-25-

2. Electronic contract

A contract is a Saement of intent that regulates behaviour among organizations and
individuals. An eectronic contract is its refication in software that can be indtantiated
as a st of obligaions that are fulfilled between parties, refused or waved as future
events occur. Because the contract parties are assumed to be autonomous and self-
interested, conflicts will occur, and an gppropriate resolution mechanism is required.

An €dectronic contract can be viewed through transformations that are agpplied to it
during its lifecyde in the dectronic marketplace. Further, there is an information
viewpoint that shows (document) objects that can be observed a the beginning and
termination of each stage. Conceptudly, the lifecycle can be split into the three dtages
of contract drafting, formation, and execution.

Contract drafting phase — Given the contract template model, the drafter role constructs
an ingance of the template. In this phase the contractud roles, abdtract business
interactions and contractud Stuations are specified. Furthermore, if the drafter acts as a
regulator, rules and congraints can be added which should be adhered to during the
contract execution phase. The template typicaly has a number of free variables that are
agreed upon in the next phase.

Contract formation phase - Paticipants assume contract roles and negotiate the details
of ther responghilities. The negotiable variables of the contract (deadlines, order of
actions) become fixed, and concrete business interactions are bound to the abstract ones
defined in the template. The relationships between contract parties are crested and are
cgptured in the contract statements using the policy expressons that imply obligations
and rights of parties.

Contract execution phase —Actua delivery of contract consderation happens. Typicdly
this phase condiitutes service or goods ddivery, invoicing, bill caculation, presentment
and payment. The interactions between the paties may be monitored for ther
conformance to the terms of the contract.

3. Scope of the proposed work

Standardization effort is required to enable enterprises to interact with each other and
electronic marketplaces. The scope of the effort is broadly related to the provision of a
contracting framework in the context of eectronic marketplaces. More specificaly it
includes the following:

1. Definition of the structural model for eectronic contract (means to capture
contractual commitments) that includes relevant information objects reated to the
contract during itslifecyde

- 26 -

2. Definition of the main phases and roles involved in the contract lifecyde and
transformations gpplied to it. In particular,

Contract formation (contract drafter, contract negotiator);

Contract fulfillment (service provider, service consume);

3. Specification of the protocols used by the relevant roles to achieve these
transformations. In particular,

Protocol used for contract formation;

Protocol used for contract fulfillment;

4, Interfacing of the contracting framework components with other componentsin
the enterprise.

4. References

[Sculley 1999] Sculley A.B., William W., Woods A., 1999, “B2B Exchanges : The
Killer Application in the Business-to-Business Internet Revolution”, 1Sl Publication.

[Favier 2000] Favier J., 2000, “eMarketplaces Face the Law”, the Forrester Report,
October 2000, http://www.forrester.com

- 27 -

Security Requirements for Web-Services

Hewlett Packard Position Paper to the Worldwide Web Consortium Workshop on Web
Sarvices, April 11" and 12",

Author: Mike Jerbic, Hewlett Packard Co. email: Mike Jerbic@hp.com

Abstract:

As XML document exchange mode s become the de facto standard for users and
programs to interoperate with web services across multiple security boundaries, end to
end security becomes either meaningless or at best extremdly difficult. Today's XML
Security "solutions' center around document encryption and signature: that is securing
the confidentidity and integrity of the XML document itself. Missang from the solution
auite is an interoperable standard to authorize access to services and aframework for
accountability should one or more components of a service invocation fail to perform.
The W3C should initiate an activity to create sandards for defining, discovering, and
exchanging authorization and accountability information within XML document
conversations.

Problem Statement

HP has taken a position that XML document oriented conversations are appropriate and
necessary to exchange information needed to discover, exchange necessary

information, invoke, and receive eectronic services over the Web. For XML
conversations to become practica for the exchange of persond information, service
invocation authorization, and service participant accountability, security must be
designed into the conversation framework from the beginning.

Security servicesin use today do not satisfactorily address the needs of an open, web-
oriented document exchange modd for eectronic service ddivery. They are deficient
today in these ways.

Security services are single domain oriented. E-services by design cross
multiple domains. Examples include service composition across enterprises
and the overdl Business to Business dectronic commerce problem. Even
though PKIs (such as Verisign) gppear to Span security domains, they by
virtue of being a"trusted third party,” smply establish their own domain.
Service providers and consumers must be able to establish a security
context independent of so called trusted third parties.

Security systems require unnecessary information, the exposure of which is

- 28 -

agloba privacy, public safety, and security issue. Many times names,
contact information, and other non-essential persond informetion is
required to support legacy identity oriented security services. Adversaries
misuse thisinformation routindy. A globa e-services infrastructure must
dlow for communication of privacy policy, the sharing of sengtive
information, and recourse in the event privacy agreements are not kept.
Some specific indudtries that are facing critical privacy problems yet aso
have the business requirement to exchange private information over the
web in the conduct of their e-services are:

United States Hedlth Care delivery (HIPPA regulation requirements).

United States multinationa enterprises who must comply with the
European Union Privacy Directive for the protection and use of European
citizen information

Banking and Financid Services transactions
B2B and B2C service invocation ant payment
And many others...

Privacy and Security expectations must be part of the agreement [XML conversation|
between service providers and service consumers. They cannot be ambiguous. XML
conversations should have the flexibility of being private conversations.

Security systems do not scde well and may actudly prevent service
providers from entering markets. Security systems often do not scalein

Cog. Cost can be measured in severd ways including legacy system
integration or porting costs and the cost of ownership of centra security
SENVers or Sservices.

Time. Security serversthat map names to authorizations, for example, may
require severa hours up to days to vet new entries or to make permission or
role changes granting authorizations to new services. Open, web based
dynamic service providers require much faster, easier to change
authorization systems. Redl time managesbility of security databasesisa
sgnificant impediment to the dynamic advertisng, discovery, and

invocation of e-services,

Solution Requirements

Overdl HP spostion isthat XML documents must be able to include security context

-29-

information that is discoverable, invocable, and interoperable. The solution needs to
include:

Authorization. Computers do not need identities to perform requested services.
Computers need authorizations. Authorizations should be embeddable or atachable
to XML service requests. Authorizations range from simple payment (credit card
number, digita cash...) to a certified, tamper res stant authorization message
originating from an authorization authority the service recognizes.

Accountability. While computers only need authorizations, people need methods
of determining accountability. Usualy thisis achieved through an access control
ligt, which maps authorizations to an identity and an audit trail of activity. Other
forms of accountability information are possible and should be explored.

Manageability. Multiple methods of authorization management must be
supported. Three primary ones are:

Mapping names (identities) to authorizations. Thisisone of the most common
forms of managing Service access to named individuals. Also knows as an Access
Control List, mgpping names to authorizations works well in smal communities
where identities are commonly known and used. This method does not scale well
for large communities where name collisons can occur. An example is below:

Authorization Access Control list example for three identities.

Name Servicel || Service2 || Service3 Service4 ... || Servicen
Mike Yes Yes No Yes No
Terry No No Yes No No
Eliot Yes Yes Yes Yes Yes

Mapping names to roles, mapping roles to authorizations. An extenson of the
access contral ligt is the creation of roles and privileges. Individud identities are
mapped to roles, which in turn are mapped to specific authorizations. This scheme
is somewhat more manageable for services that have alarge client base (large
number of names) or a ditributed client base, where individua authorization is
delegated. An exampleis below.

Authorization Access Control list example for threeroles.

-30-

Role Service Service 2 Add User Service 3 Service 4 Servicen

Bill User Credit

Subscriber Yes No No No No
Admin No Yes No No No
Back Office No No Yes Yes No

I dentity to Role Map

I dentity Subscriber Admin Back
Office
Ted Yes No No
Mike No Yes No
Terry No No Yes

Direct Authorization from the service provider. There are times when a determining
authorization does not require checking a map of identity to authorization, asin the
two examples described above. A service can Smply grant access to an entity. This
gpproach is best documented in the Smple Public Key Infrastructure (SPK1). In this
system a service requestor is given an authorization to use the service by the

sarvice. When aservice isinvoked, the requestor presents a tamper resistant

message authorizing the access to the service provider. No externd authorization
database check isrequired, since the authorization verifier has dl the information
required in the service invocation request. Direct authorizations may be delegable.

End to End Security. Service invocations and responses should be able to be
confidentia (encrypted) between the requestor and the service provider, without
relying upon any intermediary third party such as aweb server, portd, etc.
Applications do exist where intermediaries may need to examine the traffic flow
between service provider and consumer, and the security architecture should be able
to support this.

-31-

Support of existing security mechanisms, protection of IT investment already in
place. Security contexts need to have the flexibility of usng legacy security
infrastructure components such as X.509 identity certificates, S2ML, SSL, and
integration with web browser security.

Discoverability. XML conversations need to support the exchange of security
context information, and the requirements to access a service must be discoverable
by the service requestor. A conversation infrastructure must be devel oped that
includes security.

Scalability. The solution must support the service issuing its own authorizetion to
aclient without the need of an additiond trusted party (such asa CA). Cettificate
Authority or Authorization Authority oriented solutions such as S2ML, SSL should
be supportable as well for those service providers who want/need to leverage them.

Privacy. A method for interoperable exchange of privacy intentionsis strongly
desired. (Leverage / extend P3P?)

Tamper Resistance. The security architecture must provide for tamper resistance
(mogt likely through digitd dgnatures, XML DSIG?).

Non-Repudiation. Tamper resstance, which istechnicdly feasble, must not be
confused with non-repudiation, which is not. Digita sgnature technology can
present some evidence of the signer’ s intent, but non repudiation and the legd
trustworthyness of exchanged documents must be governed not only by available
technology, but also by law and contractua agreements.

Relationship to Other Standards

To address the requirements above, many aready proven security standards must be
considered and supported in the proposed new standard where they add vaue. While
not intended to be an exhaudtive list of standards to consder, the following servesasa
darting point. It isimportant to note that the W3C aready has experience in developing
and recommending security solutions, and severd of the standards have originsin W3C
activities

SSL secures aweb browser to aweb server. In the case of aportal of many services,
confidentidity offered by SSL ends, with the client relying on the web server to end

sarvice security outside of the client’s control. SSL is not end to end in adistributed
service world.

S2ML provides an authorization authority model that must be queried every time an
authorization is required. S2ML isa standard in process at the OASIS standards
organizetion.

XML Encryption provides confidentidity of an XML document, but it does not provide

-32-

authorization information in a standard, interoperable way.
X.509 PKI — OK if the service provider can use name to authorization maps.
SPKI1 — OK if the service provider can’t use name to authorization maps.

Session Layer Security (SLS) — While not grictly astandard, HP hasinvested uniquely
in adigtributed authorization system to secure end to end Java gpplications. The
security mechanism of HP s E-Spesk, SL S could be extended to XML. HP awaits the
opportunity to work with the W3C to propose and extend this technology.

P3P — A description of asite's privacy policy that can be downloaded and
automeatically compared to the user’s preferences.

XML DSIG - Provides digitd sgnaturesto XML documents. This functiondity should
be consdered for inclusion as part of the XML security standard to support tamper
resistance.

-33-

A Framework for Business Composition
Andy Seaborne, Eric Sammers, Fabio Casati, Giacomo Piccindli, Ming-Chien Shan

Today, the Internet is not only being used to provide information and perform e-
commerce transactions, but also as the platform through which services are delivered to
busi nesses and customers. More and more companies are rushing to provide al sorts of
services on the Web, ranging from more "traditiona” on-line travel reservations and
directory services to real-time traffic reports and even outsourcing of entire business
functions of an organization, such as 1T or human resources departments.

Business composition is the ability for one business to compose e-services (possibly
offered by different companies) to provide vaue-added services to its customers.
Composition of e-services has many smilarities with business process (workflow)
automation. An e-service virtualises the customer interaction aspects of the business
processes implementing a service. In order to specify how services should be
composed, we must define the interaction process associated with a service aswell as
the flow of service and inter-service invocations. In this paper we refer to a business
process that composes e-services as e-process.

Wefirg outline the trend to business composition and e-processes, and then set out
some requirements on standards to be developed to support e-processes.

E-Processes and E-Services

E-processes are typicaly designed, developed, and deployed by enterprises that want to
compose interna cgpabilities with third- party capabilities, either for internd use or to
expose them as (complex, vaue-added) e-servicesto customers. Note that, while the e-
savicesinvolved in an e-process may belong to severa companies, the e-processis
company-pecific. Its definition is typicaly known to and controlled by asingle
company. For both e-processes and e-services, we do not envison the need for
companies to expose internd details of how they run their business. Still, companies
should be able to express in a standard format the interaction aspects for their service
offer aswdl asfor ther service needs. A common language is crucid for the

assessment of the compatibility between the interaction processes offered by an e-
service provider and those expected by the designer of an e-process.

The effectiveness and efficiency of business processes impact directly the profitability

of acompany. It isin the best interest of e-service providers aswell as e-sarvice
consumers to understand the operational requirements for their cooperation. An e-
process defines the interactions between the company owning the process and the e-
sarvice providers involved in its implementation. In particular, an e-process defines the
orchestration activity needed to enable the cooperation between the e-service providers.
Astraditional processes were designed around the operational model of customised

-34-

business applications, e-processes should be designed around e-services. A clear
understanding of the business interaction mode of an e-service is paramount.

The Evolution of e-Processes

Phase 1 : integration of exiding interna assets

Today, enterprises are automating their processes to reduce costs and improve process
execution qudity and speed. Process automation and management technologies enable
the separation between business logic, resource logic, and applicationlogic. Process
can be controlled, managed, and evolved separately from the applications. Still, in this
phase, resources are internd to the enterprise.

Phase 2 : gtatic integration with partner processes on a case-by-case basis

By incorporating e-services provided by business partnersinto an e-process, an
enterprise can create processes that utilize external resources. However, in this phase,
service section and invocation is il performed in an ad-hoc way, and require
preliminary agreements (from a business, legd, and technica perspective) between the
cooperating companies.

Phase 3 : dynamic integration with negatiation, with companies

Beyond such datic use of externd services, fully dynamic e-processes make decisions
each time they are executed in order to invoke the best available service that can fulfill
the customer's needs. The tradition design-deploy cycle of phases 1 and 2 has changed
to a per-ingance st of decisions.

In the remainder of the paper we focus on dynamic e-processes, since these are the ones
that can provide the best vdue and are in line with the philosophy of the e-service
environment. In particular, which aspects of e-services should be standardized in order
for users to define e-processes that compose e-services and executethemin afully
dynamic and efficient way.

Enabling Standards

We now focus on dynamic e-processes, since these are the ones that can provide the
best vdue and are in line with the philosophy of the e-sarvice environment. In
particular, which aspects of e-services should be standardized in order for usersto
define e-processes that compose e-services and execute them in afully dynamic and
effident way. Some of these andards are under development by industry consortia or
standardization bodies, while others till need to be developed.

-35-

Service Metadata

In order to stay competitive, service providers should offer the best available service in
every given moment to every specific customer. Similarly, e-processes should be able
to compose the best services available when the process is executed. Hence, when
defining an e-process, we heed to be able to describe the type of service we want, and
let the system discover which specific e-service can satisfy the e-process needs. In
order to be able to select e-services and understand their characteristics, astandard for
sarvice description is needed. This slandard should alow the definition of the e-service
properties, so that the e-process can determine its suitability for satisfying the business
needs.

We a0 note that we do not envision the definition of acommon, globa ontology that
can fit every e-sarvice description. In fact, while businesses will certainly want to use
standard ontologies when available, they will often need to define attributes faster than
alowed by standardization bodies. Hence, the stlandardization effort here should dlow
the definition as well as the discovery of ontologies.

Service Interface

The description of an e-service should include the specification of the e-service
interface. In order to support e-processes, a sandard way of defining thisinterface is
required, so that the e-process execution engine can determine which operations are
available on the selected e-services and how to invoke them. It is dso desirable to have
adescription of the semantics of each operation, to understand, for instance, whether
the invocation of an operation commits the invoker to a payment or to send a
regigtration form.

Note that services are typicaly complex entities, offering several methods (operations)

to beinvoked as part of their interface. For instance, an e-music service may dlow

users to browse or search the catalog, to listen to songs, or to buy songs. The service
provider may want to impose congtraints on the order in which these operations are
invoked. Hence, asmple, IDL-like definition of the interface may not be sufficient to
specify how the interaction with a dynamicaly discovered service should be conducted.
We refer to the set of interactions (i.e., invocation of operations) with an e-service as
conversation. In order to be able to correctly interact with a selected service, a standard
description of the supported conversationsis aso required.

Transactional Processes and Services
A desirable feature in workflows as well asin service compostion is the ability to
execute parts of the processin an atomic fashion, i.e., so that dl of it is executed or the

effect of partia executions can be (semanticaly) "undone’. A typicd exampleisthe
reservation of atrip, where the customer would like to "aomicaly” book the flight and

-36-

the hotdl. If, for instance, the flight could be booked but no hotd room is available, then
the flight reservation needs to be "cancelled" or "undone’. A standard description of
the transactional properties of an e-services would give the e-process engine the ability
to perform such atomic executions and to identify how to interact with services when
performing "commits' and "rollbacks'.

Negotiation

Advanced service compaosition systems may provide facilities for negotiating with the
discovered e-services before ng them, and for reverting to other servicesif the
negotiation fails. A standard for negotiation is required so that service composition
tools may have embedded negotiation capabilities. In thisway, the benefits of
negotiations could be made easly available to e-process designers and users.

Security

Many services may require security credentials before alowing interactions. A standard
need to be defined so that e-process definition languages dlow the definition of the
appropriate security certificates to be used, and e-process engines know how to
authenticate and get authorizations for service executions.

Contract

A contract forms the basis of an e-process between businesses. The contract identifies
the roles and responghilities of the parties, the obligations and ddliverables. With
dynamic integration, it become important to explicitly represent services. In earlier
phases, when there was an explicit integration phase, the issues in a contract would
have been dedlt with. With contract choices being made during the execution of an e-
process, the agreements entered into will need to be recorded.

Service Discovery

The previous subsections have discussed mechanisms to enable interaction with an e-
sarvice once it has been discovered. However, mechanisms to discover e-services are
required, so that the e- process can dynamically look for e-services during each
execution. Hence, slandards for identifying and querying service directoriesin order to
retrieve information on e-services and their properties are needed.

Non-Requirement

In the previous section we have stated some requirements for dynamic e-processes. In
this section we want to state a nonrequirement because we believe it to be

unnecessary.

- 37 -

There is no need to provide an explicit representation of the business network
dynamically generated to ddiver the value of a service. In other words, the services and
processes used by one service are not exposed to the service clients. The dynamic
nature of e-services means that the exact choices of which other services to use may not
have been made at the time a contract is entered into.

The service client neither knows nor is concerned about the interna details about how a
service megtsits obligations. Each service has apartid view of the business network,
no single point having aglobd view of the entire network.

The service provider is free to search and invoke other services that best meetsits
needs. Companies do not expose their interna operations or be congtrained to do
business as prescribed by some "globa™ process definition. Instead, companies want to
expose sarvices, but be free to implement such services the way they warnt.

- 38 -

Transactional Conversations

Svend Frolund and Kannan Govindargjan
Hewlett-Packard Company
email: svend_frolund@hp.com, kannan_govindaragjan@hp.com

1 Introduction

We beieve that web services should make ther transactiond properties available to
other web services in an explicit and sandard way. Transactiond properties should be
pat of a service's interface rather than a hidden aspect of its backend. The transactiona
behavior of a service can then be exploited by other services to smplify their error-
handling logic and to make entire busness-to-busness interactions transactiond.
However, such business-to-busness transactions are chdlenging to implement because
they span multiple companies and because the underlying transaction protocols execute
over wide-area networks.

It is fundamenta for web services to communicate through conversations. A
conversation is a potentidly long-running sequence of interactions (document
exchanges) between multiple web services. For example, a manufacturer may engage in
a conversation with a supplier and a conversation with a shipper to carry out the activity
of purchasing parts. In many Stuations, the backend logic triggered as pat of these
conversations may be transactiond. For example, it may be possible to arrange for parts
to be shipped, and then later cancd the shipment (if the parts have not actudly been
sent yet). Cancdling the shipment is an example of a compensating transaction, it
compensates for the initid transaction that arranged the shipment. Since the notion of
conversation is fundamentd to web services, the exportation of transactiond properties
should fit with conversations, giving rise to transactiond conversations.

In the Internet setting, aomicity is the most important aspect of transactions. Atomicity
means that the effect of a transaction ether hgppens entirdly or not at al. We aso refer
to this as dl-or-nothing semantics. If a sarvice A knows that a conversation with
another service B is aomic, then A can cancd the conversation and know that B will
clenly revert back to a consstent Sate. Furthermore, A can rey on the B’s
transactiond behavior to ensure state consgtency in the presence of failures, such as
logicd eror conditions (eg., shipping is impossble) or sysemlevd falures (eg., the
crash of aprocess or machine).

Services should expose therr transactiond behavior in a manner tha facilitates
composition of transactions from different services. For example, it should be possble
for the manufacturer to compose a transactiond conversation with the supplier and a
transactional conversation with a shipper into a transactiona activity that includes both
conversations. The advantage of cregting these multi-conversation transactions is tha
the manufecturer gets dl-or-nothing semantics for the entire end-to-end purchasing
activity: if shipping is not avalable, the order placement is canceled. This is a very
poweful notion, that we bdieve will ggnificantly reduce the complexity of

-39-

progranming business-to-business activities between multiple web services. Composite
transactions provide a notion of “clean abort” for entire busness-to-business activities.
Moreover, having a standard notion of transaction adlows us to build generic software
components that perform the transaction composition.

2 Atomicity

We discuss different ways for transactions to be atomic. As terminology, we introduce
the notion of a transaction outcome, which is ether commit or abort. The outcome is
abort if the effect of the transaction is “nothing.” The outcome is commit if the effect is
“dl_”

2.1 Two-Phase Commit and Compensation

If we execute two aomic transactions, their combined effect is not necessarily atomic:
one transaction may abort and the other may commit, which means that the combined
effect is nather dl nor nothing. If we creste a composte transaction from two
condtituent transactions, we need to emsure that ether both condituent transactions
commit or that both condituent transactions abort. There are two traditional ways to
ensaure this. One way, cdled two-phase commit, is based on the idea that no condtituent
transaction is dlowed to commit unless they are dl able to commit. Another way,
cdled compensation, is based on the idea that a condituent transaction is adways
alowed to commit, but its effect can be cancelled after it has committed.

With two-phase commit, transactions provide a control inteface that adlows a
transaction coordinator to ensure atomicity. One incarnation of the control interface is
the XA gpecification [3]. Essentidly, the control interface provides a prepare method,
an abort method, and a commit method. The coordinator cdls the prepare method to
determine if a transaction is able to commit. If the transaction answers “yes” then the
transaction must be able to commit even if fallures occur. Thet is, the transaction is not
dlowed to laer change its mind. If dl transactions answer “yes” the coordinator cals
their commit method, otherwise the coordinator cals their abort method.

With compensation, there is no additiond control inteface. Instead each “red”
transaction has an associsted compensating transaction. With compensation, a
coordinator can ensure atomicity for a number of condituent transactions by executing
the transactions, and if any transaction aborts, the coordinator executes the
compensating transaction for dl the transactions that have committed.

2.2 Discussion

Although both two-phase commit and compensation can provide aomicity for
composite transactions there are trade-offs between the two methods. Compensation is
optimigtic in the sense that the coordinator only enters the picture if something bad (eg,
abort) happens. With two-phase commit, the coordinator enters the picture even if dl
transactions commit. The coordinator dways cdls prepare and either commit or abort
for any transaction. On the other hand, two-phase commit aways provides a point after

- 40-

which a service can forget about a transaction. Once the transaction is instructed to
commit, the service can forget about the transaction. With compensation the sarvice has
to be able to compensate forever. The ability to compensate may or may not require the
savice to mantan pedgent dsate. Of course, there are hybrid modds where
compensation is bounded by time or the occurrence of events (such as recealving a
naotification).

In practice, few systems use two-phase commit in the Internet context. One reason is
that, with two-phase commit, a service exposes transaction control to other services. If
a service answers “yes’ in response to a prepare request, the service has to be able to
commit the transaction until indructed otherwise by the coordinator (which may be
another service). Few sarvices are willing to export such transaction control in a
loosaly-coupled system. Another reason for the limited use of two-phase commit is that
composite transactions may be long running. If we want transactions to span entire
business-to-business activities, we have to accept the possbility that transactions may
run for a long time. With two-phase commit, a condituent transaction cannot commit
until the composite transaction can commit. Thus, a fast service may be forced to wait
for adow sarvice,

If we want to support two-phase commit, we need a protocol that dlows flexible
designation of the coordinator role. For example, a given web service may be willing to
play the role of participant in certan Stuations, but may indst on playing the role of
coordinator in other dtuations. If we have a conversation definition language, such as
CDL [1], we can capture this digtinction through different conversations. A service can
export a coordinator version and a participant version of the same logica conversation.

We believe compensation is a fundamenta notion of aomicity for web service, and in
the remainder of this paper, we shdl only consder compensation. This does not reflect
aposition againg two-phase commit, but is merdly to smplify the discusson.

3 Isolation, Durability, and Consistency

Traditional database transactions satisfy the ACID properties (atomicity, consstency,
isolation, and durability) [2]. Unlike traditiona database transactions, we do not believe
that transactions, in the context of conversations, should necessarily provide isolation.
Isolation is concerned with contralling the concurrent execution of transactions to
provide the illuson that concurrent transactions execute one &fter the other in some
(indeterminate) serial order. Isolation is unnecessarily drict for Internet transactions.
This is evident from many Interret Stes that provide transactions without isolation. For
example, dtes, such as Amazon.com, provide transactiona semantics in the form of
compensation (cancelling an order within a given time limit) and do not provide
isolation. Besdes being unnecessaily drict in many cases, isolation is adso codly
because transactions may be long running, and providing isolaion for long-running
transactions hampers the overal performance.

-41-

To continue the comparison with database transactions, we would expect the
“primitive,” condituent transactions to provide durability and condstency. Durability
means that transactional updates are made perdgent if the transaction completes
successfully. Congistency means that a transaction tekes the system from one consstent
date to another. The durability and condstency of congtituent transactions follows from
the transactiona properties of the backend logic in web services. We do not beieve that
“composite” multi-conversation transactions should provide any globa notions of
durability or consstency beyond what the condituent primitive transactions provide. In
other words, we do not rely on any particular notion of durability or consstency when
we compose primitive transactions into composite transactions.

4 Describing Transactional Properties

We outline briefly wha it may teke to describe, and thus export, transactiond
properties of web services. The darting point for our discusson is the assumption that
sarvices communicate through explicit conversations. If a service exports a description
of its conversations—the conversations it is willing to engage in—the question is how
the service can gpecify the transactiond properties of those conversations. The
specification makes explicit to other services how the sarvice is transactiond. The
specification should communicate the following aspects of transactions.

Demar cation. We need to describe which parts of a conversation are transactiondl. If
we consider a conversation as a sequence of interactions, we need to identify the
transactiond sub-sequences of those interactions. At one extreme, the entire
conversation may be transactiondl. But other possibilities may exist aswell. For
example, only asingle interaction may be transactiond, or an identified sub-sequence
may be transactiond. In generd, asingle conversation may have multiple

transactiona parts.

Outcome. To exploit the transactiona behavior of a service, we need to know the
outcome (commit or abort) of its transactions. One way to communicate the outcome
of atransactiona conversation to other services isto associate a particular outcome
with a particular point in the conversation. For example, a specific interaction may
denote abort and another interaction may denote commit. If the conversation reaches
an interaction that indicates abort, the parties of the conversation know theat the
outcome is abort. We need to describe which interactions indicate abort and which
interactions indicate commit. Notice that we can aso use document types instead of
interactions to indicate the outcome of transactions.

Compensation. We need to describe how transactions can be cancelled or
compensated for. For example, aconversation may have a particular document that
triggers compensation, or different documents may trigger compensation &t different
points in the conversation. To initiate compensation & agiven pointina
conversation, sending a compensation document must be alegd interaction at that
point in the conversation, and we must be able to generate the appropriate

-42-

compensation document. Notice that compensation may not be possible at any point
during atransactiona conversation, so we need to know both how and when
compensation is possible.

If a service exports a description of its conversations in the form of an XML documernt,
we can think of the description of the transactiond properties as a companion
document.

5 Requirements

To conclude, we outline basi ¢ requirements for web service transactions.

We want our notion of web service transaction to fit with conversations. Conversations
provide the context for transactions. transactions teke place within conversations, and
we tak about transactiona conversations. The integration of conversaions and
transactions have consequences for the transaction model. Because conversations can
be long-running, so can transactions. The transaction protocols, such as two-phase
commit and compensgtion, involve communication between web sarvices These
communications should be fird-class members of the conversations between web
savices. For example, if we have a conversaion definition language to describe
conversations, we should use that language to describe the transaction protocols as well.

We want to support compensation as part of the transaction modd. With two-phase
commit, transactional web services rey on an externd entity, a transaction coordinator,
to communicate the transaction outcome to them. Such rdiance on externd entities may
not dways be appropriate in loosdy-coupled systems. Compensation does not
introduce the same leve of rdiance on externd entities. Our pogtion is not agang two-
phase commit, but rather in favor of compensation: two-phase commit protocols may
be appropriate in certain dtuations. If we have a transaction modd that supports both
two-phase commit and compensation, we have to address the issue of “mixed-mode’
transactions—transactions whose condtituent transactions are based partly on two-phase
commit and partly on compensation.

In generd, regardless of the choice of transaction modd, we want to support a
decentraized, peer-to-peer modd for transactions. For example, we do not want to
assume the exisence of a centralized transaction coordinator. We do not want to
prevent a centrdized notion of coordinator, we smply do not want to rely on one.
Notice that the notion of a transaction coordinator may be relevant for both two-phase
commit and compensation. A centrd coordinator might make sense in conjunction with
compensation. This coordinator would then gather the outcomes of the various
congtituent transactions and execute compensation transactions as necessary.

We need to address the issue of trust between the web services that participate in a
transaction. Both two-phase commit and compensation assumes that the various parties

-43-

are well-behaved (or trusted). For example, two-phase commit assumes that participants
vote “honestly” and that they do as indructed (commit or abort). Furthermore, the
notion of compensaion adso assumes that a paticipant actudly executes a
compensating action if ingdructed to do so. With two-phase commit, each participant
aso trugts the coordinator to be in control of the protocol—the protocol is inherently
asymmetric because the coordinator knows the outcome before any of the participants.
Since trugt is a generd issue for web services, we assume that some other mechanisms
are put in place to dea with trust in a general sense. In terms of transactions, we need to
integrate with those generd mechanisms to handle trudt. It is unlikely that we can treat
trust as a completely orthogona issue to transactions.

References

[1] K. Govindargan, A. Karp, H. Kuno, D. Beringer, and A. Banerji, “Conversation
Definitions: defining interfaces of web services,” submitted to the 2001 W3C workshop
on web services,

[2] J. Gray and A. Reuter, “Transaction Processing: concepts and techniques,” Morgan
Kaufman Publishers, 1993.

[3] Distributed Transaction Processing: The XA Specification, X/Open Snapshot, 1991.

1.

A Peer-to-Peer Service Interface
For Manageability

Vijay Machiraju, Akhil Sahai
E-Service Management Project
E-Services Software Research Department

HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034
{vijaym, asahai}@hpl.hp.com

Introduction

Variousinterfaces and protocols are being defined for seamless compaosition and inter-
operation of web services. Some of these are used by web services to discover each
other (e.g., UDDI [1]), some of these are used by servicesto express their functiondity
to each other (e.g., WSDL [2]), and some of these are used to invoke operations on
each other (eg., SOAP[3]). While dl of these are essentid for easy composition, there
are till many aspects that services need to agree upon in order to interoperate. One
prominent example of such an agpect is manageahility.

There are two interpretations of manageshility for services. Manageability froma
management system’ s per spective refers to whether a service provides sufficient
information (events, measurements, and state) and control points (lifecycle control,
configuration control, etc) to amanagement system so that it can be effectively
monitored and controlled. There have been many efforts — Common Information Model
from Distributed Management Task Force [4], Manageability Service Broker from
Open Group [5], and Java Management Extensions from SUN [6] to name afew — for
sandardizing the interface and protocol between managed services and management
systems. So far, management systems and these standards have been focused on
managing enterprise gpplications. As web services become more prevaent, cross-
enterprise management of federated services will become increasingly important.

Thereisasecond notion of managesbility — manageability from a peer service's
perspective. Figure 1 shows two peer-to-peer services interacting with each other. An

- 45-

interaction is any form of communication between two services. This could mean a
angle-step transaction (e.g., alogin to a book-sdling service), a sequence of related
transactions (e.g., logging in, adding books to shopping cart, and checking out), or even
business-leve processes perceived by the client that may involve manua steps (e.g., the
process from ordering books to fina delivery of the books). For every step in an
interaction, one of the two services initiates the request and the other executes the
request. We refer to the service that initiates the request as the consumer service and the
one that executes the request as the provider service. The role of a service could change
over the course of an interaction.

From a consumer’ s perspective, a provider service is manageable if the latter provides
aufficient vishility and control over itsdf and over the interactionsiit executes. For
example, aprovider that provides information about the progress of a consumer’s
ongoing interactions or an ability to escaate their speed is more manageable than a
provider that does not. From a provider’s perspective, a consumer serviceis
manageable if it can provide enough information about its service usage back to the
provider. For instance, a consumer that can be queried about its perception or quality of
experience is more managesble than a consumer that cannot be. Manageability

interfaces capture the functiondity that should be offered by providers and consumers

to each other in order to be managesble.

Consumer’s Provider's
Manageability Manageability
Interface . Interface

Y. Interactions ~
<4+—
e
Consumer Provider

Figure 1. Peer-to-peer services, ther roles, and manageability interfaces

There have been no efforts to standardize interfaces and protocols of this nature
between web services. In this paper, we first motivate the need for such interfaces by
explaining their benefits. We then lit a set of eements that should be part of these
interfaces. Findly, we conclude with some suggestions for how to gpproach the
Sandardization.

2. Need for Peer-to-Peer Service Manageability
We envison aworld where services will be capable of advertisng, discovering,

composing, and using each other to execute their functiondity. Providing interfaces for
manageability between serviceswould help in redizing part of thisvison.

- 46 -

In the discovery-phase or pre-compasition phase, aconsumer can use managesbility
interfaces of providers to obtain vauable information about their quaity of service -
performance, availahility, reiability, and service-level guarantees. Brokers and other
discovery services help clients select services. However, the sdlection criteriaare
currently limited to price and functiondity. Standardizing managesbility interfaces will
facilitate negotiation and salection based on awhole new set of features. With this
additiond information, consumer services will be able to assessif they can guarantee
end-to-end qudlity to their own dients taking into account the qudity levels guaranteed
by their provider services. When services are composed, it is not only the functionaity
that gets composed; the service-leves, performance, and availability get composed as
well. Henceit isonly naturd for servicesto expose these details so that a consumer can
make informed decisons before composition.

In the execution phase or post-composition phase, a consumer that uses a manageable
provider has better visibility and control over the latter; and hence will be able to make
better decisions. For example, a consumer that needs faster service can ecdate its
interactions to the next tier of service temporarily. Smilarly, it can request long-lagting
transactions to be shutdown so that they can be executed on a different service.
Consumers will be able to compare different services for their quaity and performance.

Third party rating services can be formed that just collect and sl ratings of various
sarvicesfor their quaity. A need for third party mediators would also arise for
mediating and monitoring compliance of service level agreements between other
sarvices. A red life anadogous example would be the credit rating companies and the
manner in which they settle disputes. However, the dynamicsin case of web services
would be different and so the third party mediators have to monitor the compliance and
take corresponding actions in redl time.

Being managesble is advantageous to the provider too. Manageability isanew
differentiator for service providers. Higher levels of vishility and control can be
provided to valued customers or at higher prices. We have seen various examples of
adhoc manageability offered by various services to be more successful. For example,
Fedex offerstracking of their shipping transactions (example of vishility). Most of the
on-line e-commerce Stes provide some form of a cancellation feature so that a service
or product can be cancelled after being purchased. Web services have aready redized
the importance of accountability and guaranteeing service levels. A standardized
manageability interface helpsin projecting all these features of aweb service,

One of the mgor drawbacks of current instrumentation and management technologies
isthe lack of an end-to-end solution. Once a service crosses a service provider (into a
client or asupplier), he or she has no vishility or control on what happens with the
interactions. Management sysems internd to aservice provider find it difficult to
andyzeif afalure or sarvice-levd violaion is atributed to interna businesslogic or to
asupplier. Having manageghility interfaces on al sarvices hdpsin solving this problem
and in fadilitating cross-enterprise management systems.

- 47 -

Elements of Manageability

Manageshility is measured in terms of two factors— visibility or ability to observe and
monitor, and controllability or aaility to influence and change. One way to classfy the
functiondity offered through a managesbility interface isto differentiate dements of
vighility from dements of control. Another dimension of classfication is service-level
versusinteraction-level. Service-leve interfaces are used to obtain information about or
execute actions on the overdl service. Interaction-level interfaces are used to obtain
information about or control specific interactions between services.

Aswe have dready explained, a service could act as a provider, or as a consumer, or
both. The type of managesability depends on the role of the service. Table 1 shows
examples of functionality that could be offered by a provider to be managesable. Table 2
shows some eements of consumer-sde managesbility interface.

Table 1. Elements of a server-side manageability interface

Service-level Visibility Interaction-level Visibility

Expected time an interaction will take to

Nature of visibility and control supported. S
Y bp execute before submission.

Qudity levels — performance,

availability, and Expected time an interaction will
take whileit isin progress. Track an

reliability — that can be guaranteed by interaction in progress.

the provider.

Quadlity levels currently being Amount of time an interaction took

guaranteed to the consumer. to execute.

History of quaity levels with the History and statistics about past

consume. interactions.

Qudlity levels being guaranteed on
certain types of interactions to the
consumer.

History of qudity levelswith dl the
consumers.

Generic service metrics such as
number of current consumers,
average turn-around time etc.

Service specific metrics — e.g., books
sold per second for a book-sdling
service.

Service-level Control Interaction-level Control

- 48 -

Change current quality levels being
guaranteed to the consumer. For e.g.,
change the consumer from bronze to gold
customer.

Abort an interaction. Suspend an
interaction. Resume a suspended
interaction.

Report a consumer-perceived service-
level violation to the provider. Ask

for an explanation. May result in
compensation according to the
contract.

Change the desired qudity level for
an interaction.

Table 2: Elements of a consumer-side manageability interface

Service-level Visibility Service-level Control
Nature of visibility and control supported. Slow-down the request rate.
Quality levels perceived by the

ConsuMme. Fall-over to a different service.

Qudlity levels currently being

guaranteed to the consumer.

Interaction-level Visibility Interaction-level Control

Perceived quality levels for a particular Re-issue or restart an interaction. Suspend
interaction or a class of interactions. an interaction.

4. Realizing the Vision

Redlizing service managesbility would require involvement and standardization on two
fronts.

1. Defineaset of slandard terms, conversation definitions, and communication
messages to support manageability of web services. Services first need to agree
upon terms such as qudity of service, contracts, and transactions. The next step
would be to define conversations that should be supported by servicesto be
certified managesble. For example, conversations for negotiating quality of service
and for cancdling transactions should be standardized. These conversations should
cover al the types of visihility and control that can be offered by web servicesin a
generic manner. Technologies such as XML, WSDL, and current management
standards such as CIM would be helpful in defining these vocabularies and
conversaions.

2. Standardize extensons to current communication protocols such as SOAP to
include manageshility information. Services could communicate vauable

- 49-

information about interactions to each other by exploiting the messages that they
exchange. For example a message from a service can include expected time of
completion as part of its response. Headers that capture information such as quality
level expected and conversation context can be standardized for every request.
Smilarly, qudity level ddivered, reponse time information, and conversation
context can be part of every response header.

Coordinated efforts are also needed in the area of security for web services. A good
foundation of security isa pre-requisite for services to be able to offer vishility and
control over their functiondity.

5. References

[1] Universal Description, Discovery, and I ntegration, http://www.uddi.org

[2] Web Services Description Language, http://www-106.ibm.com/devel operworks/library /w-wsdl.html

[3] Simple Object Access Protocol, http://www.w3.org/ TR/SOAP/

[4] Common Information Model, http://www.dmtf.org/spec/cims.html

[5] Manageability Services Broker, http://www.opengroup.org/management/msb.htm

[6] Java Management Extensions, http://java.sun.com/products/JavaM anagement/

-50-

