

Using CDL in a UDDI Registry 1.0:
UDDI Working Draft Best Practices Document

Harumi Kuno, Mike Lemon, Dorothea Beringer
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-72
March 29th , 2001*

E-mail: hkuno@hpl.hp.com

web-services,
E-Service
composition,
conversation
policies, XML-
based message
exchange, agent
systems for
e-commerce

Electronic commerce is moving towards a vision of web-service
based interactions, where corporate enterprises use
web-services to interact with each other dynamically. For
example, a service in one enterprise could spontaneously decide
to engage a service fronted by another enterprise. The
Universal Description Discovery and Integration (UDDI)
specifications define a way to publish and discover information
about Web services. The Web Services Description Language
(WSDL) defines a general purpose XML language for describing
the interface and protocol bindings of network services. The
Conversation Definition Language (CDL) provides a standard
way to model the public processes of a service, thus enabling
network services to participate in rich interactions. Together,
UDDI, WSDL, and CDL enable developers to implement web
services capable of spontaneously engaging in dynamic and
complex inter-enterprise interactions. In this document, we
clarify the relationship between CDL, UDDI, and WSDL. In
particular, we describe how together these three components
can be used to create an environment in which services can
spontaneously discover each other and then engage in
complicated interactions.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Page 1

Using CDL in a UDDI Registry 1.0
UDDI Working Draft Best Practices Document

Overview

Electronic commerce is moving towards a vision of web-service based interactions,
where corporate enterprises use web-services to interact with each other dynamically.
For example, a service in one enterprise could spontaneously decide to engage a service
fronted by another enterprise. In order for services to interact with each other
dynamically, they must be able to do three fundamental things.

1. Clients must be able to discover services.
2. A service must be able to describe its abstract interfaces and protocol bindings so

that clients can figure out how to invoke it.
3. A service must be able to describe the kinds of interactions (conversations) that it

supports (e.g., that it expects clients to login before they can request a catalog) so
that it can engage in complex exchanges with its clients.

The Universal Description Discovery and Integration (UDDI)[1-3,6] specifications
address the first problem by defining a way to publish and discover information about
Web services. The Web Services Description Language (WSDL)[4] addresses the
second problem, defining a general purpose XML language for describing the interface
and protocol bindings of network services. The Conversation Definition Language
(CDL)[5,6] addresses the last problem, providing a standard way to model the public
processes of a service, thus enabling network services to participate in rich interactions.
Together, UDDI, WSDL, and CDL enable developers to implement web services capable
of spontaneously engaging in dynamic and complex inter-enterprise interactions.

In this document, we clarify the relationship between CDL, UDDI, and WSDL. In
particular, we describe how together these three components can be used to create an
environment in which services can spontaneously discover each other and then engage in
complicated interactions.

Modeling Web-Service Interactions

Web-services are much more loosely coupled than traditional distributed applications.
This difference impacts both the requirements and usage models for web-services. Web-
services are deployed on the behalf of diverse enterprises, and the programmers who
implement them are unlikely to collaborate with each other during development.
However, the purpose of web-services is to enable business-to-business interactions.
Therefore, web-services must support very flexible, dynamic bindings. Web-services
should be able to discover new services and interact with them dynamically without
requiring programming changes to either service.

The prevalent model for web-service communication is that web-services will publish
information about the specifications that they support. UDDI facilitates the publication
and discovery of web-service information. The current version of WSDL (1.0) is an
XML-based format that describes the interfaces and protocol bindings of web service

Page 2

functional endpoints. WSDL also defines the payload that is exchanged using a specific
messaging protocol; SOAP is one such possible messaging protocol. However, neither
UDDI nor WSDL currently addresses the problem of how a service can specify the
sequences of legal message exchanges (interactions) that it supports. (We use the term
“conversation” to refer to a legal sequence of message exchanges.)

The Conversation Definition Language (CDL) addresses this issue, providing an XML
schema for defining legal sequences of documents that web-services can exchange. CDL
and WSDL are highly complimentary – WSDL specifies how to send messages to a
service and CDL specifies the order in which such messages can be sent. The advantage
of keeping the two distinct is that doing so allows us to decouple conversational
interfaces (represented by CDL) from service-specific interfaces (represented by WSDL).
This means that a single conversation specification can be implemented by any number
of services, independent of the protocols supported by the various implementations.

Usage of CDL
CDL addresses the problem of how to enable E-Services from different enterprises to
engage in flexible and autonomous, yet potentially quite complex, business interactions.
It adopts an approach from the domain of software agents, modeling protocols for
business interaction as conversation policies, but extends this approach to exploit the fact
that E-Service messages are XML-based business documents and can thus be mapped to
XML document types. Each CDL specification describes a single type of conversation
from the perspective of a single participant. A service can participate in multiple types of
conversations. Furthermore, a service can engage in multiple simultaneous instances of a
given type of conversation.

Because a CDL specification describes the messages a service that supports it expects to
receive as well as the messages it can send, other services can use the CDL specification
to programmatically control interaction with that service. In addition, CDL offers a
methodology by which a single third-party controller can leverage “reflected” XML-
based specifications to direct the message exchanges of E-Services and their clients
according to protocols without the service developers having to implement protocol-
based flow logic themselves. A service could register itself with a third-party service or
service infrastructure, specifying CDL documents that it supports. The third-party could
then take on responsibility for directing the service’s conversations, making it possible
for service developers to create services without having to implement explicit
conversation control, such as handling exceptions when the service receives unexpected
messages.

For example, Figure 1 depicts a simple purchase conversation type. The circles represent
ReceiveSend interactions; the boxes represent inbound document types, and the arcs
between the circles represent the transitions between interactions, which are driven by
outbound document types. A service that supports this conversation type expects a
conversation to begin with the receipt of a LoginRQ or a RegRQ document. Once the
service has received one of these documents, then the conversation can progress to either

Page 3

a “logged in” state or a “registered” state, depending on the type of message the service
generates to return to the client.

Authoring CDL Conversation Specifications

There are three elements to a CDL specification:

• Document type descriptions specify the types (schemas) of XML documents that
the service can accept and transmit in the course of a conversation.

• Interactions model the states of the conversation as document exchanges between
conversation participants. CDL currently supports four types of interactions:
Send (the service sends out an outbound document), Receive (the service receives
an inbound document), SendReceive (the service sends out an outbound
document, then expects to receive an inbound document in reply), and
ReceiveSend (the service receives an inbound document and then sends out an
outbound document).

• Transitions specify the ordering relationships between interactions. A transition
specifies a source interaction, a destination interaction, and a document type that
triggers the transition. CDL 1.0 also supports two special transitions: Default
Transition and Exception Transition. A default transition is triggered if a valid
inbound (for a SendReceive interaction) or outbound (for a ReceiveSend
interaction) document is received for a given interaction, but no other transition is
triggered. At most one default transition can be defined per source interaction.

We now examine an XML representation of the conversational pattern depicted in Figure
1, specified using CDL. The root Conversation element specifies a unique name to the
conversation (e.g., a UDDI tModel), and contains two sub-elements: a
ConversationInteraction element that contains a list of Interaction elements, and a
ConversationTransitions element that consists of a list of Transition elements. (The full
specification for Figure 1’s example conversation is listed in Appendix A.)

<?xml version="1.0" encoding="UTF-8"?>
<Conversation conversationType="eSpeakSFS" id="conv123"

loginRQ

regRQloginRQ

loginRS

registerRS

loginRS

catRQ

quoteRQ

poRQ

payRQ

catRS poRS confirmquoteRS

loginRQ

regRQloginRQ

loginRS

registerRS

loginRS

catRQ

quoteRQ

poRQ

payRQ

catRS poRS confirmquoteRS

regRQloginRQ

loginRS

registerRS

loginRS

catRQ

quoteRQ

poRQ

payRQ

catRS poRS confirmquoteRS

Figure 1 Output document types serve as transitions between
ReceiveSend interactions.

Page 4

 name="storefrontConversation">
 <ConversationInteractions>
 +<Interaction . . . >
 +<Interaction . . . >
 . . .
 </ConversationInteractions>
 <ConversationTransitions>
 +<Transition>
</ConversationTransitions>
</Conversation>

The following XML code is a CDL representation of the initial (start) interaction.

<Interaction StepType="ReceiveSend" id="Start" initialStep="true">
 <InboundXMLDocuments>
 <InboundXMLDocument
 hrefSchema="http://conv123.org/LoginRQ.xsd" id="LoginRQ">
 </InboundXMLDocument>
 <InboundXMLDocument
 hrefSchema="RegistrationRQ.xsd" id="RegistrationRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
 hrefSchema=http://conv123.org/ValidLoginRS.xsd
 id="ValidLoginRS">
 </OutboundXMLDocument>
 <OutboundXMLDocument
 hrefSchema="http://conv123.org/RegistrationRS.xsd"
 id="RegistrationRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>
</Interaction>

Note that this interaction is assigned the identifier “Start.” Also, note that each document
type is assigned an identifier (e.g., “LoginRQ”). These identifiers are used when
specifying the source and destination interactions for the conversation’s transitions. The
other interactions would be defined in a similar manner. For example, the following
XML code is a CDL representation of the “LoggedIn” interaction, one of the interactions
immediately following the “Start” interactions.

<Interaction StepType="ReceiveSend" id="Start" initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
 hrefSchema="CatalogRQ.xsd" id="CatalogRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
 hrefSchema=http://conv123.org/CatalogRS.xsd
 id="CatalogRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>

Page 5

</Interaction>

Transitions indicate the progression of the conversation between interactions. For
example, the following XML code specifies that there is a transition between the “Start”
interaction and the “LoggedIn” interaction. If the conversation is in the “Start” state and
the protagonist service outputs a document of type “ValidLoginRS,” then the
conversation will proceed from the “Start” interaction to the “LoggedIn” interaction.

<Transition>
 <SourceInteraction href="Start"/>
 <DestinationInteraction href="LoggedIn"/>
 <TriggeringDocument href="ValidLoginRS"/>
</Transition>

Although CDL specifies the valid inbound and outbound documents for an interaction, it
does not specify how the conversation participants will handle and produce these
documents. The CDL specification of a conversation is thus service-independent, and
can be used (and reused) by any number of services.

Relevant UDDI Structures

A UDDI business registration is an XML document that describes a business entity and
its web services. The UDDI XML schema defines four core types of service information:
business information (such as business name and contact information), business service
information (general technical and business descriptions of web services), binding
information (specific information needed to invoke a service), and service specification
information (associating a service’s binding information with the business service
information it implements).

Programmers and programs can use the UDDI Business Registry to locate technical
information about services, such as the protocols and specifications that they implement.
More importantly, the UDDI Business Registry also serves as a registry for abstract
(service-independent) specifications. Services can refer indirectly to the UDDI
registrations for specifications they implement, which makes it straightforward to identify
the business service information that represents a given service.

The UDDI tModel is a meta-data construct that uniquely identifies reusable service-
related technical specifications for reference purposes. A service publishes
tModelInstanceDetails, which is a list of tModelInfo elements that refer to the tModels
that the service supports. A tModel is composed of a unique key, a name, an optional
description, and a URL for the specification itself.

For example, suppose we wanted to register a CDL specification of the “storefront”
conversation depicted in Figure 1 in a UDDI registry. The following XML code is a
UDDI tModel reference for a CDL specification for a service conversation.

<tModel authorizedName=”XXXX” operator=”YYYY” tModelKey=”ZZZZ”>
 <name>storefrontConversation</name>

Page 6

 <description xml:lang=”en”>
 CDL description of a simple storefront conversation
 </description>
 <overviewDoc>
 <description xml:lang=”eng”>CDL source document.</description>
 <overviewURL>http://foo.org/specs/storefrontCDL.xml</overviewURL>
 </overviewDoc>
</tModel>

This “storefront conversation” tModel can now be referenced by the tModelInstanceInfo
of any service that implements that conversation type:

<businessService>
 (. . .)
 <bindingTemplates>
 <bindingTemplate>
 (. . .)
 <accessPoint urlType=”http”>http://www.foo.com/</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo tModelKey=”ZZZZ”>
 <instanceDetails>
 <overviewDoc>
 http://www.foo.com/overview.html
 </overviewDoc>
 </instanceDetails>
 </tModelInstanceInfo>
 </tModelInstanceDetails>
 (. . .)
 <bindingTemplate>
 (. . .)
 <bindingTemplates>
 <businessService>

Relevant WSDL Structures
As noted before, CDL specifications are conversation-specific. CDL describes the
structures (types) of documents a service expects to receive and produce, as well as the
order in which document interchanges will take place, but does not specify how to
dispatch received documents to the service. This is partially addressed by WSDL.
WSDL documents describe the abstract interface and protocol bindings of a network
service. WSDL specifications that describe abstract protocol interfaces are reusable and
thus are registered as UDDI tModels.

A reusable WSDL document consists of four components: document type, message,
portType, and binding definitions. For example, the “storefront” conversation shown in
Figure 1 requires that a service implementing the “Start” interaction provide some sort of
endpoint that can accept a LoginRQ or RegistrationRQ document and output either a
LoginRS or a RegistrationRS document. The reusable WSDL documents for a SOAP
implementation of the interface to a Login method might look something like the
following:

<?xml version=”1.0”?>

Page 7

<definitions name=”Login”
 targetNamespace=http://foo.com/login.wsdl
 xmlns:tns=http://foo.com/login.wsdl
 xmlns:xsd1=http://foo.com/login.xsd
 xmlns=http://schemas.xmlsoap.org/wsdl>
 <types>
 <import namespace=”xsd1”
 location=”http://foo.com/schemas/loginRQ.xsd”>
 <import namespace=”xsd1”
 location=”http://foo.com/schemas/loginRS.xsd”>
</types>
<message name=”LoginRQ”>
 <part name=”body” element=”xsd1:LoginRQ”/>
</message>
<message name=”LoginRS”>
 <part name=”body” element=”xsd1:LoginRS”/>

<portType name=”LoginPortType”>
 <operation name=”Login”>
 <input message=”tns:LoginRQ”/>
 <output message=”tns:LoginRS”/>
 </operation>
</portType>

<binding name=”LoginSoapBinding”
 type=”tns:LoginPortType:”>
 <soap:binding style=”document”
 transport=http://schemas.xmlsoap.org/soap/http/>
 <operation name=”Login”>
 <soap:operation
 soapAction=http://example.com/GetLastTradePrice/>
 <input>
 <soap:body use=”literal”
 namespace=”http://conv123.org/LoginRQ.xsd”

 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ />
 </input>
 <output>
 <soap:body use=”literal”
 namespace=”http://conv123.org/LoginRS.xsd”

 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ />
 </output>
 </operation>
 </binding>
</definitions>

WSDL associates an endpoint with at most one input and one output document type.
Because the Start interaction accepts both LoginRQ and RegistrationRQ documents, we
must also define an endpoint that accepts RegistrationRQ documents. The reusable
WSDL documents for a SOAP implementation of the interface to this Register method
might look something like the following:

<?xml version=”1.0”?>

Page 8

<definitions name=”Register”
 targetNamespace=http://foo.com/login.wsdl
 xmlns:tns=http://foo.com/login.wsdl
 xmlns:xsd1=http://foo.com/login.xsd
 xmlns=http://schemas.xmlsoap.org/wsdl>
 <types>
 <import namespace=”xsd1”
 location=”http://foo.com/schemas/RegistrationRQ.xsd”>
 <import namespace=”xsd1”
 location=”http://foo.com/schemas/RegistrationRS.xsd”>
</types>
<message name=”RegistrationRQ”>
 <part name=”body” element=”xsd1:RegistrationRQ”/>
</message>
<message name=”RegistrationRS”>
 <part name=”body” element=”xsd1:RegistrationRS”/>

<portType name=”RegisterPortType”>
 <operation name=”Register”>
 <input message=”tns:RegistrationRQ”/>
 <output message=”tns:RegistrationRS”/>
 </operation>
</portType>

<binding name=”RegisterSoapBinding”
 type=”tns:RegisterPortType:”>
 <soap:binding style=”document”
 transport=http://schemas.xmlsoap.org/soap/http/>
 <operation name=”Register”>
 <soap:operation
 soapAction=http://example.com/GetLastTradePrice/>
 <input>
 <soap:body use=”literal”
 namespace=”http://conv123.org/RegistrationRQ.xsd”

 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ />
 </input>
 <output>
 <soap:body use=”literal”
 namespace=”http://conv123.org/RegistrationRS.xsd”

 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ />
 </output>
 </operation>
 </binding>
</definitions>

These documents can then be registered as tModels, and referred to by a service’s
tModelInstanceInfo, as was done with the CDL example specification above.

Discussion
A key advantage of specification languages such as CDL and WSDL is that they pave the
way for the creation of service frameworks that will enable service implementers to
offload the responsibility for conversation-related tasks to infrastructure. For example, a

Page 9

service developer could create WSDL specifications documenting their service’s
endpoints and CDL specifications that document the legal sequences of document
exchanges that their service can support. These specifications could then be registered
as UDDI tModels, and referred to by services’ businessService entries in the UDDI
registry. A service could then present such specifications to a third-party Conversation
Controller service, which would provide such functionality as document type validation,
conversational exception handling, conversation tracking, and message dispatching.

Although CDL and WSDL complement each other nicely in this regard, there are a
number of issues that must be addressed before such a framework could be implemented.
In the remainder of this section, we discuss two of these issues, and propose ways in
which WSDL or CDL could be modified to become more compatible.

Cardinality of Input and Output Document Types
CDL captures the logic of a service’s public processes, and defines an interaction as
consisting of the exchange of a single input (or output) document for a single output (or
input) document. Associating a CDL interaction with multiple input (or output)
document types indicates that the interaction may result in the production of any one of
the input (output) document types. For example, the start interaction of our CDL
example is capable of outputting either a LoginRS or a RegistrationRS document. This
powerful and extensible way to describe conversational interactions abstracts external
process logic from application logic.

WSDL, as noted above, captures strongly-typed application logic, and does not provide a
natural way for service developers to specify that a service endpoint can accept or emit
any one of a number of document types. For example, in the above WSDL code, a
service endpoint can take as input a single LoginRQ message and output a single LoginRS
message, or it can take as input a single RegistrationRQ message and output a single
RegistrationRS message. If we wanted to use WSDL to document a service endpoint that
was capable of outputting a message of either of these types, we would have to create a
composite complexType such as the following code.

<complexType name=”Composite”>
 <choice>
 <element name=”LoginRS” minOccurs=”1” maxOccurs=”1”
 type=”tns:LoginRSType”/>
 <element name=”RegistrationRS” minOccurs=”1” maxOccurs=”1”
 type=”tns:RegistrationRSType”/>
 </choice>
</complexType>

This is not a natural way to express the concept because ideally we would like to abstract
conversation-specific logic from application-specific logic. It should be possible for
some conversational infrastructure to check the type of the incoming message against a
conversational specification and dispatch it to an appropriate service endpoint simply by
looking at some document type identifier in the message header. However, wrapping
multiple document types in a complex type means that either the conversational
infrastructure must look at the message content (opening the “envelope”) to determine the

Page 10

actual type or else the service developer must assume responsibility for these tasks.

One solution for this problem would be to extend WSDL so as to be able to specify
multiple alternative input and output document types. Another alternative would be to
constrain service developers with an injunction that endpoints cannot produce multiple
alternative input and output document types. Or, perhaps conversation frameworks will
be implemented to recognize and deal with complex types. Finally, perhaps CDL could
be extended with a null transition and modified to allow at most one input document type
and at most one output document type to be associated with an interaction.

Mapping endpoints to interactions
Another issue is that we need a mechanism to map WSDL endpoints to CDL interactions.
For example, suppose that a client wishes to engage in a business exchange with a
service. Using the CDL specifications to which the service’s tModelInstanceDetails
refer, the client can identify the document types that the service will accept as
conversation initiators. Using the WSDL specifications (also referred to by the service’s
tModelInstanceDetails), the client can identify service endpoints that can accept those
document types as input and produce appropriate document types as output. However,
suppose that more than one such service endpoint exists, and that the service developer
wants to associate just one of them with a particular state of a conversation. We then
would need some means of associating specific WSDL port/binding tModels with
specific interaction elements of CDL conversation specification tModels. This need
could be addressed easily by the specification of a mapping language that associates the
two.

Acknowledgements

We would like to thank Alan Karp, Kannan Govindarajan and Gregory Pogossiants for
their comments and suggestions regarding this work.

References

 [1] Ariba, International Business Machines Corporation, Microsoft Corporation,

UDDI Technical White Paper, Sep 6, 2000.
 [2] Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D., UDDI

Programmer's API 1.0, Sep 20, 2000.
 [3] Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D., UDDI Data

Structure Reference V1.0, Sep 30, 2000.
 [4] Web page: Web Services Description Language (WSDL) 1.0. URL:

http://msdn.microsoft.com/xml/general/wsdl.asp
 [5] Hewlett-Packard, Co. Service Framework Specification Version 2.0. 2001.
 [6] HP E-Speak Operations, Conversation Definition Language Specification for

UDDI version 1.0, Nov, 2000.

Page 11

Appendix A: Example CDL Specification

The following XML document is an example of a CDL specification for a conversation
supported by a storefront service (example taken from [5]). Figure 2 sketches the transition
table expressed in this specification.

<?xml version="1.0" encoding="UTF-8"?>
<Conversation conversationType="eSpeakSFS" id="conv123"
 name="simpleConversation">
 <ConversationInteractions>
 <Interaction StepType="ReceiveSend" id="Start" initialStep="true">
 <InboundXMLDocuments>
 <InboundXMLDocument

hrefSchema="http://conv123.org/LoginRQ.xsd" id="LoginRQ">
 </InboundXMLDocument>
 <InboundXMLDocument

hrefSchema="RegistrationRQ.xsd" id="RegistrationRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/ValidLoginRS.xsd"
id="ValidLoginRS">

 </OutboundXMLDocument>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/RegistrationRS.xsd" id="RegistrationRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="LoggedIn"
initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument

hrefSchema="http://conv123.org/CatalogRQ.xsd" id="CatalogRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/CatalogRS.xsd" id="CatalogRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Registered"

initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument

hrefSchema="http://conv123.org/LoginRQ.xsd" id="LoginRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/ValidLoginRS.xsd"
id="ValidLoginRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>

Page 12

 </Interaction>
 <Interaction StepType="ReceiveSend" id="Catalogued"

initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/QuoteRQ.xsd" id="QuoteRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/QuoteRS.xsd" id="QuoteRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Quotation"
initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument

hrefSchema="http://conv123.org/PurchaseOrderRQ.xsd"
id="PurchaseOrderRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/InvoiceRS.xsd"
id="InvoiceRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Invoiced"
initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/AuthorizePaymentRQ.xsd"

id="AuthorizePaymentRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument

hrefSchema="http://conv123.org/ConfirmationRS.xsd"
id="ConfirmationRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="end" initialStep="false">
 <InboundXMLDocuments/>
 <OutboundXMLDocuments/>
 </Interaction>
 </ConversationInteractions>
 <ConversationTransitions>
 <Transition>
 <SourceInteraction href="Start"/>
 <DestinationInteraction href="LoggedIn"/>
 <TriggeringDocument href="ValidLoginRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Start"/>

Page 13

 <DestinationInteraction href="Registered"/>
 <TriggeringDocument href="RegistrationRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Registered"/>
 <DestinationInteraction href="LoggedIn"/>
 <TriggeringDocument href="ValidLoginRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="LoggedIn"/>
 <DestinationInteraction href="Catalogued"/>
 <TriggeringDocument href="CatalogRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Catalogued"/>
 <DestinationInteraction href="Quotation"/>
 <TriggeringDocument href="QuoteRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Quotation"/>
 <DestinationInteraction href="Invoiced"/>
 <TriggeringDocument href="InvoiceRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Invoiced"/>
 <DestinationInteraction href="End"/>
 <TriggeringDocument href="ConfirmationRS"/>
 </Transition>
 </ConversationTransitions>
</Conversation>

