[} cickano

Using CDL in a UDDI Registry 1.0:
UDDI Working Draft Best Practices Document

Harumi Kuno, Mike Lemon, Dorothea Beringer
Software Technology Laboratory

HP Laboratories Palo
HPL-2001-72
March 29th / 2001*

E-mail: hkuno@hpl.hp.com

web-services,
E-Service
composition,
conversation
policies, XML-
based message
exchange, agent
systems for
e-commerce

* Internal Accession Date

Alto

Electronic commerce is moving towards a vision of web-service
based interactions, where corporate enterprises use
web-services to interact with each other dynamically. For
example, a service in one enterprise could spontaneously decide
to engage a service fronted by another enterprise. The
Universal Description Discovery and Integration (UDDI)
specifications define a way to publish and discover information
about Web services. The Web Services Description Language
(WSDL) defines a general purpose XML language for describing
the interface and protocol bindings of network services. The
Conversation Definition Language (CDL) provides a standard
way to model the public processes of a service, thus enabling
network services to participate in rich interactions. Together,
UDDI, WSDL, and CDL enable developers to implement web
services capable of spontaneously engaging in dynamic and
complex inter-enterprise interactions. In this document, we
clarify the relationship between CDL, UDDI, and WSDL. In
particular, we describe how together these three components
can be used to create an environment in which services can
spontaneously discover each other and then engage in
complicated interactions.

Only Approved for External Publication

o) Copyright Hewlett-Packard Company 2001

Using CDL in aUDDI Registry 1.0
UDDI Working Draft Best Practices Document

Overview
Electronic commerce is moving towards avison of web-service based interactions,
where corporate enterprises use web-sarvices to interact with eech other dynamicaly.
For example, aservice in one enterprise could spontaneoudy decide to engage a service
fronted by another enterprise. In order for services to interact with each other
dynamicdly, they must be able to do three fundamentd things.
1. Clients must be able to discover services.
2. A service must be able to describe its abstract interfaces and protocol bindings so
that clients can figure out how to invokeit.
3. A sarvice must be able to describe the kinds of interactions (conversations) that it
supports (e.g., thet it expects clients to login before they can request a catalog) so
that it can engage in complex exchanges with its dients.

The Universa Description Discovery and Integration (UDDI)[1-3,6] specifications
address the firgt problem by defining away to publish and discover information about

Web services. The Web Services Description Language (WSDL)[4] addresses the
second problem, defining a genera purpose XML language for describing the interface
and protocol bindings of network services. The Conversation Definition Language
(CDL)[5,6] addresses the last problem, providing a stlandard way to mode the public
processes of a service, thus enabling network servicesto participate in rich interactions.
Together, UDDI, WSDL, and CDL enable developers to implement web services capable
of spontaneoudy engaging in dynamic and complex inter-enterprise interactions.

In this document, we clarify the relationship between CDL, UDDI, and WSDL. In
particular, we describe how together these three components can be used to create an
environment in which services can spontaneoudy discover each other and then engagein
complicated interactions.

Modeling Web-Service Interactions

Web-services are much more loosely coupled than traditiona distributed gpplications.
This difference impacts both the requirements and usage models for web-services. Web-
services are deployed on the behalf of diverse enterprises, and the programmers who
implement them are unlikely to collaborate with each other during development.
However, the purpose of web-servicesisto enable business-to-business interactions.
Therefore, web-services must support very flexible, dynamic bindings. Web-services
should be able to discover new services and interact with them dynamicaly without
requiring programming changes to either service.

The prevaent modd for web-service communication is that web-services will publish
information about the specifications that they support. UDDI facilitates the publication
and discovery of web-service information. The current verson of WSDL (1.0) isan
XML-based format that describes the interfaces and protocol bindings of web service

Page 1

functiona endpoints. WSDL aso defines the payload thet is exchanged using a specific
messaging protocol; SOAP is one such possible messaging protocol. However, neither
UDDI nor WSDL currently addresses the problem of how a service can specify the
sequences of legal message exchanges (interactions) that it supports. (We usetheterm
“conversation” to refer to alegal sequence of message exchanges.)

The Conversation Definition Language (CDL) addresses thisissue, providing an XML
schemafor defining legal sequences of documents that web-services can exchange. CDL
and WSDL are highly complimentary — WSDL specifies how to send messagesto a
service and CDL specifies the order in which such messages can be sent. The advantage
of keeping the two digtinct is that doing so alows us to decouple conversationa

interfaces (represented by CDL) from service-specific interfaces (represented by WSDL).
This means that a sSingle conversation specification can be implemented by any number

of services, independent of the protocols supported by the various implementations.

Usage of CDL
CDL addresses the problem of how to enable E-Services from different enterprisesto
engage in flexible and autonomous, yet potentialy quite complex, business interactions.
It adopts an approach from the domain of software agents, modeling protocols for
business interaction as conver sation policies, but extends this gpproach to exploit the fact
that E- Service messages are XM L-based business documents and can thus be mapped to
XML document types. Each CDL specification describes a single type of conversation
from the pergpective of asingle participant. A sarvice can participate in multiple types of
conversations. Furthermore, a service can engage in multiple smultaneous instances of a
given type of conversation.

Because a CDL specification describes the messages a service that supportsit expects to
receive as wdll as the messages it can send, other services can use the CDL specification
to programmaticaly control interaction with that service. In addition, CDL offersa
methodology by which asingle third-party controller can leverage “reflected” XML-
based specifications to direct the message exchanges of E-Services and their clients
according to protocols without the service devel opers having to implement protocol-
based flow logic themsalves. A service could regigter itself with athird-party service or
sarvice infrastructure, specifying CDL documents that it supports. The third-party could
then take on respongbility for directing the service' s conversations, making it possible
for service developersto creste services without having to implement explicit
conversation control, such as handling exceptions when the service receives unexpected

messages.

For example, Figure 1 depicts a smple purchase conversation type. The circles represent
ReceiveSend interactions; the boxes represent inbound document types, and the arcs
between the circles represent the trangitions between interactions, which are driven by
outbound document types. A service that supports this conversation type expects a

conversation to begin with the receipt of aLoginRQ or a RegRQ document. Oncethe
service has received one of these documents, then the conversation can progress to either

Page 2

a‘“logged in” date or a“registered” state, depending on the type of message the service
generates to return to the client.

catRQ payRQ

loginRQ | re9RQ

ORS confirm,

registerRS’Q [
=" loginRS

PORQ

quoteRQ

loginRQ

Figure 1 Output document types serve astransitions between
ReceiveSend interactions.

Authoring CDL Conver sation Specifications

There are three dements to a CDL specification:
Document type descriptions specify the types (schemas) of XML documents that
the service can accept and transmit in the course of a conversation.

Interactions model the states of the conversation as document exchanges between
conversation participants. CDL currently supports four types of interactions:
Send (the service sends out an outbound document), Receive (the service receives
an inbound document), SendReceive (the service sends out an outbound
document, then expects to receive an inbound document in reply), and
ReceiveSend (the service receives an inbound document and then sends out an
outbound document).

Transitions specify the ordering relationships between interactions. A trangtion
specifies a source interaction, a destination interaction, and a document type that
triggersthe trangtion. CDL 1.0 aso supports two specid trangtions. Default
Transition and Exception Transition. A default transition istriggered if avaid
inbound (for a SendReceive interaction) or outbound (for a ReceiveSend
interaction) document is received for a given interaction, but no other trangtionis
triggered. At most one default trangtion can be defined per source interaction.

We now examine an XML representation of the conversationd pattern depicted in Figure
1, specified usng CDL. The root Conver sation eement specifies a unique name to the
conversation (e.g., aUDDI tModd), and contains two sub-dements a

Conver sationlnteraction eement that containsalist of Interaction eements, and a
ConversationTransitions eement that conssts of alist of Transition dements. (Thefull
specification for Figure 1's example conversation is listed in Appendix A.)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Conversati on conversati onType="eSpeakSFS" i d="conv123"

Page 3

name="st or ef r ont Conver sati on" >

<Conver sati onl nt eracti ons>
+<Interaction . . . >
+<Interaction . . . >

</ Conver sati onl nt eracti ons>
<Conver sati onTransiti ons>
+<Tr ansi ti on>
</ Conver sati onTransiti ons>
</ Conver sati on>

The following XML codeisa CDL representation of the initid (start) interaction.

<Interaction StepType="ReceiveSend" id="Start" initial Step="true">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
href Schema="http://conv123. or g/ Logi nRQ xsd" i d="Logi nRQ'>
</ 1 nboundXM.Docunent >
<l nboundXM_Docunent
hr ef Schema="Regi strati onRQ xsd" id="Regi strati onRQ'>
</ | nboundXM.Docunent >
</ | nboundXM.Docunent s>
<Qut boundXM.Docunent s>
<Qut boundXM.Docunent
hr ef Schema=htt p://conv123. org/ Val i dLogi nRS. xsd
i d="Val i dLogi nRS" >
</ Qut boundXM.Docunent >
<Qut boundXM.Docunent
href Schema="http://conv123. or g/ Regi strati onRS. xsd"
i d="Regi strati onRS">
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunent s>
</lnteraction>

Note that this interaction is assgned the identifier “Start.” Also, note that each document
typeisassgned an identifier (eg., “LoginRQ”). Theseidentifiers are used when
specifying the source and destination interactions for the conversation’ strangtions. The
other interactions would be defined in asmilar manner. For example, the following

XML codeisaCDL representation of the “Loggedin” interaction, one of the interactions

immediately following the “ Start” interactions.

<Interaction StepType="Recei veSend" id="Start" initial Step="fal se">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
hr ef Schema=" Cat al ogRQ. xsd" i d="Cat al ogRQ"' >
</ | nboundXM.Docunent >
</ I nboundXM_Docunent s>
<Qut boundXM.Docunent s>
<Qut boundXM_Docunent
hr ef Schema=htt p:// conv123. or g/ Cat al ogRS. xsd
i d="Cat al ogRS" >
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunent s>

Page 4

</Interaction>

Trangtionsindicate the progression of the conversation between interactions. For
example, the following XML code specifies that there is atrangtion between the * Start”
interaction and the “Loggedin” interaction. If the conversation isin the“ Start” state and
the protagonist service outputs a document of type “VaidLoginRS,” then the
conversation will proceed from the “ Start” interaction to the “Loggedin” interaction.

<Transition>
<Sourcel nteraction href="Start"/>
<Desti nati onl nteraction href="Loggedl n"/>
<Tri ggeri ngDocument href="ValidLogi nRS"/>
</ Transition>

Although CDL specifies the vaid inbound and outbound documents for an interaction, it
does not specify how the conversation participants will handle and produce these
documents. The CDL specification of a conversation is thus service-independent, and
can be used (and reused) by any number of services.

Relevant UDDI Structures

A UDDI business regigration isan XML document that describes a business entity and
itsweb services. The UDDI XML schema defines four core types of service information:
business information (such as business name and contact information), business service
information (generd technica and business descriptions of web services), binding
information (Specific information needed to invoke a service), and service specification
information (associating a service' s binding information with the business service
information it implements).

Programmers and programs can use the UDDI Business Regidtry to locate technica
information about services, such as the protocols and specifications that they implement.
More importantly, the UDDI Business Registry dso serves as aregistry for abstract
(service-independent) specifications. Services can refer indirectly to the UDDI
regidtrations for specifications they implement, which makesit straightforward to identify
the business service information that represents a given service.

The UDDI tModél is a meta-data congtruct that uniquely identifies reusable service-
related technical specifications for reference purposes. A service publishes
tModdIngtanceDetails, which isalist of tMode Info dements that refer to the tModels
that the service supports. A tModd is composed of a unique key, a name, an optiona
description, and a URL for the specification itsdf.

For example, suppose we wanted to register a CDL specification of the “ storefront”
conversation depicted in Figure 1 in aUDDI registry. Thefollowing XML codeisa
UDDI tModd reference for a CDL specification for a service conversation.

<t Model aut hori zedNane=" XXXX" operat or="YYYY” t Mdel Key="2727Z" >
<nane>st or ef r ont Conver sat i on</ nane>

Page 5

<description xm :|ang="en”>
CDL description of a sinple storefront conversation

</ descri ption>

<over vi ewbDoc>
<description xm : | ang="eng” >CDL source docunent.</description>
<overvi ewdRL>htt p://foo. org/ specs/ storefront COL. xm </ over vi ewURL>

</ over vi ewDoc>

</t Model >

This* storefront conversation” tModel can now be referenced by the tMode I nstancel nfo
of any service that implements that conversation type:

<busi nessServi ce>
. . .)
<bi ndi ngTenpl at es>
<bi ndi ngTenpl at e>
(. . .)
<accessPoi nt url Type="http”>http://ww. f 0o. com </ accessPoi nt >
<t Model | nst anceDet ai | s>
<t Model | nst ancel nf o t Model Key="22727" >
<i nst anceDet ai | s>
<over vi ewbDoc>
http: //wwv. f co. com overvi ew. ht m
</ overvi ewDoc>
</instanceDet ai | s>
</t Model | nst ancel nf o>
</t Model | nst anceDet ai | s>
(. . .)
<bi ndi ngTenpl at e>
(. . .)
<bi ndi ngTenpl at es>
<busi nessServi ce>

Relevant WSDL Structures

As noted before, CDL specifications are conversation specific. CDL describesthe
structures (types) of documents a service expects to receive and produce, as well asthe
order in which document interchanges will take place, but does not specify how to
dispatch received documents to the service. Thisis partially addressed by WSDL.
WSDL documents describe the abstract interface and protocol bindings of a network
service. WSDL specifications that describe abstract protocol interfaces are reusable and
thus are registered as UDDI tModéls.

A reusable WSDL document congists of four components. document type, message,
portType, and binding definitions. For example, the “ storefront” conversation shown in
Figure 1 requires that a service implementing the “ Start” interaction provide some sort of
endpoint that can accept a LoginRQ or RegistrationRQ document and output either a
LoginRS or a RegistrationRS document. The reusable WSDL documents for a SOAP
implementation of the interface to a Login method might look something like the
fallowing:

<?xm version="1.0""?>

Page 6

<definitions name="Logi n”
t ar get Nanespace=htt p://foo. com | ogi n. wsdl
xm ns:tns=http://foo.conm | ogin.wsdl
xm ns: xsdl=http://foo.com | ogin.xsd
xm ns=http://schemas. xm soap. or g/ wsdl >
<t ypes>
<i nport nanmespace="xsdl”
| ocati on="http://foo.com schemas/| ogi nRQ. xsd” >
<i nport nanmespace="xsdl”
| ocati on="http://foo.com schemas/| ogi nRS. xsd” >

</types>
<nmessage nane="Logi nRQ’ >
<part name="body” el ement="xsdl: Logi nRQ’/>
</ message>
<nessage nane="Logi nRS" >
<part nanme="body” el ement="xsdl: Logi nRS"/>

<port Type nanme="Logi nPort Type”>
<operati on name="Logi n” >
<i nput nessage="tns: Logi nRQ' />
<out put message="tns: Logi nRS"/ >
</ operati on>
</ port Type>

<bi ndi ng name=" Logi nSoapBi ndi ng”
type="tns: Logi nPort Type: " >
<soap: bi ndi ng styl e="docunent”
transport=http://schemas. xn soap. or g/ soap/ http/ >
<operati on name="Logi n” >
<soap: operation
soapActi on=http://exanpl e. coml Get Last Tr adePri ce/ >
<i nput >
<soap: body use="literal”
nanmespace="http://conv123. or g/ Logi nRQ. xsd”

encodi ngStyl e=http://schenmms. xnml soap. or g/ soap/ encodi ng/ />
</i nput >
<out put >
<soap: body use="literal”
nanespace="http://conv123. or g/ Logi nRS. xsd”

encodi ngStyl e=htt p://schenmas. xnl soap. or g/ soap/ encodi ng/ />
</ out put >
</ oper ati on>
</ bi ndi ng>
</ definitions>

WSDL associates an endpoint with a most one input and one output document type.
Because the Sart interaction accepts both LoginRQ and RegistrationRQ documents, we
must aso define an endpoint that accepts RegistrationRQ documents. The reusable
WSDL documents for a SOAP implementation of the interface to this Register method
might look something like the following:

<?xm version="1.0"7?>

Page 7

<definitions nane="Regi ster”
t ar get Nanespace=htt p://foo. com | ogi n. wsdl
xm ns:tns=http://foo.conm | ogin.wsdl
xm ns: xsdl=http://foo.com | ogin.xsd
xm ns=http://schemas. xm soap. or g/ wsdl >

<t ypes>
<i nport nanmespace="xsdl”
| ocation="http://foo.com schenmas/ Regi strati onRQ. xsd” >

<i nport nanmespace="xsdl”
| ocation="http://foo.com schenmas/ Regi strati onRS. xsd” >

</types>
<nmessage nanme="Regi strati onRQ’ >
<part name="body” el ement="xsdl: Regi strati onRQ' />
</ message>
<nmessage nane="Regi strati onRS’>
<part nanme="body” el enment="xsdl: Regi strati onRS"/>

<port Type nanme="Regi sterPort Type” >
<operati on nanme=" Regi ster”>
<i nput nessage="tns: Regi strati onRQ' />
<out put message="tns: Regi strati onRS"/ >
</ operati on>
</ port Type>

<bi ndi ng nane=" Regi st er SoapBi ndi ng”
type="t ns: Regi st er Port Type: " >
<soap: bi ndi ng styl e="docunent”
transport=http://schemas. xn soap. or g/ soap/ http/ >
<operati on nanme=" Regi ster”>
<soap: operation
soapActi on=http://exanpl e. coml Get Last Tr adePri ce/ >
<i nput >
<soap: body use="literal”
nanmespace="http://conv123. or g/ Regi strati onRQ. xsd”

encodi ngStyl e=http://schenmms. xnml soap. or g/ soap/ encodi ng/ />
</i nput >
<out put >
<soap: body use="literal”
nanespace="http://conv123. or g/ Regi strati onRS. xsd”

encodi ngStyl e=htt p://schenmas. xnl soap. or g/ soap/ encodi ng/ />
</ out put >
</ oper ati on>
</ bi ndi ng>
</ definitions>

These documents can then be registered as tModels, and referred to by aservice's
tModd Instancel nfo, as was done with the CDL example specification above.

Discussion
A key advantage of specification languages such as CDL and WSDL isthat they pave the
way for the creation of service frameworks that will enable service implementersto
offload the respongibility for conversationrelated tasks to infrastructure. For example, a

Page 8

service developer could create WSDL specifications documenting their service's
endpoints and CDL specifications that document the legal sequences of document
exchanges that their service can support. These specifications could then be registered
as UDDI tModels, and referred to by services businessService entriesin the UDDI
registry. A service could then present such specifications to a third-party Conversation
Controller service, which would provide such functiondlity as document type vaidetion,
conversationd exception handling, conversation tracking, and message dispatching.

Although CDL and WSDL complement each other nicdly in thisregard, there are a
number of issues that must be addressed before such a framework could be implemented.
In the remainder of this section, we discuss two of these issues, and propose waysin
which WSDL or CDL could be modified to become more compatible.

Cardinality of Input and Output Document Types

CDL capturesthe logic of aservice' s public processes, and defines an interaction as
conggting of the exchange of asingle input (or output) document for asingle output (or
input) document. Associating a CDL interaction with multiple input (or output)
document typesindicates that the interaction may result in the production of any one of
the input (output) document types. For example, the Sart interaction of our CDL
exampleis capable of outputting either aLoginRS or a RegistrationRS document. This
powerful and extensible way to describe conversationa interactions abstracts externd
process logic from application logic.

WSDL, as noted above, captures strongly-typed gpplication logic, and does not provide a
natura way for service developers to specify that a service endpoint can accept or emit
any one of anumber of document types. For example, in the above WSDL code, a
service endpoint can take asinput a single LoginRQ message and output a single LoginRS
message, or it can take as input a Single RegistrationRQ message and output asingle
RegistrationRS message. If we wanted to use WSDL to document a service endpoint that
was capable of outputting a message of either of these types, we would have to create a
composite complexType such as the following code.

<conpl exType nanme=" Composi te”>
<choi ce>
<el enment nanme="Logi NRS” m nOccurs="1" maxOccurs="1"
type="tns: Logi nRSType”/ >
<el ement nanme="Regi strati onRS” m nOccurs="1" maxOccurs="1"
type="tns: Regi strati onRSType”/ >
</ choi ce>
</ conpl exType>

Thisisnot anatura way to express the concept because ideally we would like to abstract
conversation-specific logic from application-specific logic. It should be possible for
some conversationd infrastructure to check the type of the incoming message againgt a
conversationd specification and dispatch it to an appropriate service endpoint smply by
looking a some document type identifier in the message header. However, wrapping
multiple document types in a complex type means thet either the conversationa
infrastructure must look at the message content (opening the “envelope’) to determine the

Page 9

actua type or ese the service developer must assume responsibility for these tasks.

One solution for this problem would be to extend WSDL s0 asto be able to specify
multiple dternative input and output document types. Another aternative would be to
congtrain service developers with an injunction that endpoints cannot produce multiple
dternative input and output document types. Or, perhaps conversation frameworks will
be implemented to recognize and deal with complex types. Findly, perhgps CDL could
be extended with anull transition and modified to dlow a most one input document type
and at most one output document type to be associated with an interaction.

M apping endpointsto interactions

Anocther issue is that we need a mechanism to map WSDL endpoints to CDL interactions.
For example, suppose that a client wishes to engage in a business exchange with a
sarvice. Usng the CDL specifications to which the service' stModel I nstanceDetails
refer, the client can identify the document types that the service will accept as
conversation initiators. Using the WSDL specifications (also referred to by the service's
tModelInstanceDetails), the client can identify service endpoints that can accept those
document types as input and produce appropriate document types as output. However,
suppose that more than one such service endpoint exists, and that the service devel oper
wants to associate just one of them with a particular state of a conversation. We then
would need some means of associating specific WSDL port/binding tMode s with
gpecific interaction eements of CDL conversation specification tModels. This need
could be addressed eadily by the specification of amapping language that associates the
two.

Acknowledgements

We would like to thank Alan Karp, Kannan Govindargan and Gregory Pogossiants for
their comments and suggestions regarding this work.

Refer ences

[1] Ariba, International Business Machines Corporation, Microsoft Corporation,
UDDI Technical White Paper, Sep 6, 2000.

[2] Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D., UDDI
Programmer's API 1.0, Sep 20, 2000.

[3] Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D., UDDI Data
Sructure Reference V1.0, Sep 30, 2000.

[4] Web page: Web Services Description Language (WSDL) 1.0. URL:
http://msdn.microsoft.com/xml/genera /wsdl.asp

[5] Hewlett-Packard, Co. Service Framework Specification Version 2.0. 2001.

[6] HP E-Speak Operations, Conversation Definition Language Specification for

UDDI version 1.0, Nov, 2000.

Page 10

Appendix A: Example CDL Specification
The following XML document is an example of a CDL specification for a conversation
supported by a storefront service (example taken from [5]). Figure 2 sketches the trandtion

table expressed in this specification.

<?xm version="1.0" encodi ng="UTF-8"?>
<Conver sati on conversati onType="eSpeakSFS" i d="conv123"
nanme="si npl eConver sati on">
<Conver sati onl nteracti ons>
<Interaction StepType="ReceiveSend" id="Start" initial Step="true">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
href Schema="http://conv123. or g/ Logi nRQ. xsd" i d="Logi nRQ"' >
</ | nboundXM_Docunent >
<l nboundXM.Docunent
hr ef Schema=" Regi strati onRQ. xsd" i d="Regi strati onRQ'>
</ | nboundXM.Docunent >
</ | nboundXM.Docunent s>
<Qut boundXM.Docunent s>
<Qut boundXM.Docunent
hr ef Schema="http://conv123. or g/ Val i dLogi nRS. xsd"
i d="Val i dLogi nRS" >
</ Qut boundXM_Docunent >
<Qut boundXM.Docunent
hr ef Schema="http://conv123. or g/ Regi strati onRS. xsd" i d="Regi strati onRS">
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunent s>
</|nteraction>
<Interaction StepType="Recei veSend" id="Loggedl n"
initial Step="fal se">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
href Schema="http://conv123. or g/ Cat al ogRQ. xsd" i d="Cat al ogRQ' >
</ | nboundXM.Docunent >
</ | nboundXM.Docunent s>
<Qut boundXM.Docunent s>
<Qut boundXM.Docunent
hr ef Schema="http://conv123. or g/ Cat al ogRS. xsd" i d="Cat al ogRS" >
</ Qut boundXM.Docunent >
</ Qut boundXM.Docunent s>
</Interaction>
<lInteraction StepType="Recei veSend" i d="Regi stered"
initial Step="fal se">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
href Schema="http://conv123. or g/ Logi nRQ. xsd" i d="Logi nRQ"'>
</ | nboundXM_Docunent >
</ | nboundXM_Docunent s>
<Qut boundXM-Docunent s>
<Qut boundXM_Docunent
hr ef Schema="http://conv123. or g/ Val i dLogi nRS. xsd"
i d="Val i dLogi nRS" >
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunent s>

Page 11

</l nteraction>
<Interaction StepType="Recei veSend" i d="Cat al ogued"
initial Step="fal se">
<l nboundXM_Docunent s>
<l nboundXM_Docunent
href Schema="http://conv123. or g/ Quot eRQ. xsd" i d="Quot eRQ"' >
</ | nboundXM_Docunent >
</ | nboundXM_Docunent s>
<Cut boundXM_Docunent s>
<Cut boundXM_Docunent
href Schema="http://conv123. or g/ Quot eRS. xsd" i d="Quot eRS" >
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunment s>
</Interaction>
<lInteraction StepType="Recei veSend" id="Quotati on"
initial Step="fal se">
<| nboundXM_Docunent s>
<| nboundXM_Docunent
hr ef Schema="http://conv123. or g/ Pur chaseOr der RQ xsd"
i d="Pur chaseOr der RQ' >
</ | nboundXM_Docunent >
</ | nboundXM_Docunent s>
<CQut boundXM_Docunment s>
<Qut boundXM_Document
hr ef Schema="http://conv123. org/ | nvoi ceRS. xsd"
i d="1nvoi ceRS" >
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunment s>
</l nteraction>
<Interaction StepType="ReceiveSend" id="|nvoiced"
initial Step="fal se">
<l nboundXM_Docunent s>
<l nboundXM_Document
hr ef Schema="http://conv123. or g/ Aut hori zePaynment RQ. xsd"
i d="Aut hor i zePaynment RQ' >
</ | nboundXM_Docunent >
</ | nboundXM_Docunent s>
<Cut boundXM_Docunent s>
<Cut boundXM_Docunment
hr ef Schema="http://conv123. org/ Confirmati onRS. xsd"
i d="Confirmati onRS" >
</ Qut boundXM_Docunent >
</ Qut boundXM_Docunment s>
</l nteraction>
<Interaction StepType="ReceiveSend" id="end" initial Step="fal se">
<| nboundXM_Docunent s/ >
<Cut boundXM_Docunent s/ >
</l nteraction>
</ Conver sati onl nt eracti ons>
<ConversationTransitions>
<Transition>
<Sourcelnteraction href="Start"/>
<Desti nati onl nteracti on href="Loggedl n"/>
<Tri ggeri ngDocunent href="ValidLogi nRS"/>
</ Transition>
<Transition>
<Sourcelnteraction href="Start"/>

Page 12

<Desti nati onl nteracti on href="Regi stered"/>
<Tri ggeri ngDocunent href="Regi strati onRS"/>

</ Transition>

<Transition>
<Sour cel nteracti on href="Regi stered"/>
<Desti nationl nteracti on href="Loggedl n"/>
<Tri ggeri ngDocunent href="ValidLogi nRS"/>

</ Transition>

<Transition>
<Sourcel nteracti on href="Loggedl n"/>
<Desti nati onl nteracti on href="Catal ogued"/ >
<Triggeri ngDocunent href="Catal ogRS"/ >

</ Transition>

<Transition>
<Sour cel nteracti on href="=Cat al ogued"/>
<Desti nationlnteraction href="Quotation"/>
<Tri ggeri ngDocunent href="Quot eRS"/>

</ Transition>

<Transition>
<Sour cel nteracti on href="Quotati on"/>
<Desti nati onl nteracti on href="1nvoi ced"/>
<Triggeri ngDocunent href="1nvoi ceRS"/>

</ Transition>

<Transition>
<Sourcel nteraction href="Invoi ced"/>
<Desti nati onl nteraction href="End"/>
<Tri ggeri ngDocunent href="Confirmati onRS"/ >

</ Transition>

</ ConversationTransitions>
</ Conver sati on>

Page 13

