

An Optimal Dynamic Programming Model for
Algorithm Design in Simultaneous Auctions

Andrew Byde
Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2001-67
March 30th , 2001*

auction, decision
theory, dynamic
programming,
algorithm

In this paper we study algorithms for agents participating in
multiple simultaneous auctions for a single private-value good;
we use stochastic dynamic programming to derive formal
methods for optimal algorithm specification; we study a number
of algorithms of complementary complexity and effectiveness,
and report preliminary tests on them. The methods and
analysis in this paper extend naturally to more complicated
scenarios, such as the purchase of multiple complementary
goods, although different problem areas bring their own
challenges with respect to computational complexity.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

An Optimal Dynamic Programming Model for
Algorithm Design in Simultaneous Auctions.

A. Byde
HP Labs, Bristol

In this paper we study algorithms for agents participating in multiple simultaneous auctions for a
single private-value good; we use stochastic dynamic programming to derive formal methods for
optimal algorithm specification; we study a number of algorithms of complementary complexity
and effectiveness, and report preliminary tests on them.

The methods and analysis in this paper extend naturally to more complicated scenarios, such
as the purchase of multiple complementary goods, although different problem areas bring their
own challenges with respect to computational complexity.

Additional Key Words and Phrases: Auction, Decision Theory, Dynamic Programming, Algorithm

1. INTRODUCTION

As the quantity of business done on-line rises, there is not only a need for in-
frastructure to support e-transactions, but also a need to understand how best to
select trading partners from among many options. Agents need tools, rules and
algorithms to help them optimize their choices within fleeting time-spans, so as to
balance risk against potential payoff: A multiplicity of relatively frictionless trad-
ing opportunities requires tools to help traders understand what constitutes a good
deal, and what does not.

To study optimal rational practice in such environments, we start by looking at
auctions, which are already a common trade mechanism, and benefit from often
having simple formal specifications. It is our belief that the methods and analysis
in this paper extend naturally to more complicated scenarios, such as the purchase
of multiple complementary goods, although different problem areas bring their own
challenges with respect to computational complexity. In future work we will seek
to explore this problem from the perspective of service composition.

The organization of this paper is as follows: In the remainder of this section
we discuss the applicability of existing auction theory to the problem under con-
sideration, and we discuss certain assumptions which are intrinsic to the rest of
the paper. In Section 2 we discuss Dynamic Programming generally (Section 2.1),
and its adaptation to multiple auction scenarios (Section 2.2). Having described
the formal framework, in Section 3, we specify several algorithms, and in Section 4
report preliminary work towards empirical investigations of algorithm effectiveness.
Section 5 is for Conclusions.

1.1 Auction theory

Bidding strategies for agents participating in auctions have traditionally been stud-
ied from a Game Theoretic perspective, mostly in order to address questions of

2 · A. Byde

economic design (see e.g. [McAfee and McMillan 1987] or [Klemperer 1999] for an
overview).

There are several problems with the existing literature on auction theory as it
applies to the sort of real-life simultaneous on-line auctions described above.1

(1) Lack of information. In practice an agent knows very little about its envi-
ronment compared to typical assumptions. For example, it will typically have
no idea what other agents are participating in the auctions in which it desires
to trade, and will have no idea what other auctions those agents may them-
selves be engaged in. Given the fact that many auction participants consider
anonymity important, an agent may not even know if two observed bids are
from the same opponent.

(2) Rationality. The problem domain, even in simplified form, is sufficiently
large as to make the set of strategies that a given agent may chose to follow
intractable. This makes the Nash-equilibrium calculations that are the core of
most game-theoretic analyses unfeasible in practice, especially given the lack
of information described in (1). An agent cannot realistically hope to solve
for equilibrium strategy except in very simple circumstances, and even if the
equilibrium calculations could be solved, there is no guarantee that the other
agents involved would be able to calculate it.

(3) Simultaneity. Auction theory typically considers complete auctions, possibly
in sequence. The novelty here is that we consider parallel games, which end
asynchronously and overlap in time. One could argue that such a multitude
of auctions is simply a more complicated auction. In that case, such auctions
have not hitherto been considered, and so we consider them here.

1.2 Belief modeling

Despite our comments regarding lack and uncertainty of information, if an agent
is to behave non-trivially, then it needs some beliefs regarding (for example) the
auctions in which it is participating, or the other agents participating in those
auctions.

In this paper we choose to focus on closing price distributions, since they are
(assumed to be) directly observable, and hence unambiguous. To be precise, to
each auction i, and each price p we assign a number δP price

i (p), the agent’s belief
regarding the prior probability of auction i closing at price p, and write P price

i (p)
for the prior probability that auction i will close at price greater than or equal to p,
P price

i (t) =
∑

t′≥t δP price
i (t) We assume that these probabilities Pi(t) are mutually

independent with respect to i.2 In practice the beliefs regarding these probabilities

1See [Binmore and Vulkan 1999] for a discussion of the application of Game Theory to automated
negotiation.
2The main reason for assuming independence is to simplify the model enough to make it practical.
The model can be improved by conditioning closing price probabilities on the number or set of
auctions open at each moment in time, on historically observed prices and on the agent’s behaviour.
However, the larger a model is, the longer it takes to build it up from market observations, and the
more computationally complex it is. Thus more complicated models are intrinsically less dynamic
than simpler models, and the marginal increases in effectiveness derived from an improved belief
model could easily be outweighed by losses in effectiveness due to low responsiveness to changing

Algorithm Design for Multiple Simultaneous Auctions · 3

would be built up using some weighted average from observations of actual closing
prices.

The main disadvantage of this approach is the fact that an agent should be able,
in principle, to use more sophisticated information - such as beliefs regarding the
population of opponents - to improve the expected return on its choices. The main
reason for restricting attention to closing prices is that most other forms of belief -
such as opponent models - require inference over the space of strategies in order to
be used (or derived from observed bids). As mentioned in (2) above, we consider
this inference highly problematic in general, and so we avoid it.

It may be that there are effective methods for doing this inference, or for deriving
models which are predictive of market behaviour without inferring strategy at all.
Such methods are not considered here.

1.3 Relevant Work

This work follows on from [Preist et al. 2001], which developed out of [Preist et al.
2001].

[Gjerstad and Dickhaut 1998] uses a belief-based modeling approach to generat-
ing appropriate bids in a double auction. Their work is close in spirit to ours, in
that it combines belief-based learning of individual agents’ bidding strategies with
utility analysis. However, it is applied to a single double auction marketplace, and
does not allow agents to bid in a variety of auctions. [Vulkan and Preist 1999] uses
a more sophisticated learning mechanism that combines belief-based learning with
reinforcement learning. Again, the context for this is a single double auction mar-
ketplace. Unlike Gjerstad’s approach, this focuses on learning the distribution of
the equilibrium price. Finally, [Garcia et al. 1998] is clearly relevant. They consider
the development of bidding strategies in the context of the Spanish fishmarket tour-
nament. Agents compete in a sequence of Dutch auctions, and use a combination
of utility modeling and fuzzy heuristics to generate their bidding strategy. Their
work focuses on Dutch rather than English auctions, and on a sequence of auctions
rather than potentially parallel auctions. However, the insights they have devel-
oped may be applicable in our domain also. We hope to investigate this further in
the future.

2. DYNAMIC PROGRAMMING FOR SIMULTANEOUS AUCTIONS

2.1 General Framework

In this section we briefly consider an abstract Dynamic Programming (DP) frame-
work, before restricting to the case of auctions. The theory in this subsection is
well documented in the literature. See e.g. [Bertsekas 1995], [Ross 1983], [White
1969] and [Whittle 1982; Whittle 1983].

The DP approach is structured around states and actions; states represent the
way things are, or appear to be to the agent; actions are choices the agent can make.
In any state there is an allowed set of actions, but state transitions are typically
only stochastically related to actions, so that a given action in a given state will

market conditions.

4 · A. Byde

result, with specified probability, in one of a set of possible subsequent states. The
probabilities determining which state follows which as a result of which action, are
known as transition probabilities. Let us write S for the set of states in which the
agent may find itself, A(s) for the set of actions which the agent may take when in
state s ∈ S, and P(s, a, s′) for the probability that the state s′ results from taking
action a in state s.

This framework is given value by associating to each state-action-state transition,
a reward r(s, a, s′). The task of the agent, and our task in this paper, is to choose
an action for each state so as to maximize the expected total reward. Formally,
we define a policy to be a choice of action for each state: π(s) ∈ A(s), and to each
policy associate the value function Vπ : S → R giving the expected return to an
agent of being in state s, given that in all future states it obeys the policy π.

In full generality this definition is problematic, since futures - chains of state-
to-state transitions - may, in theory, be infinite. The auction problem we consider
here, however, is much simpler than the general case: we assume a fixed upper
bound on the duration of the process and associate non-zero rewards only to the
terminal states corresponding to winning an auction.

If we take the risk-neutral view that a possible payoff of r with likelihood p of
occurring, is identical to an immediate payoff of p · r, then the value Vπ of policy
π will be defined to be the sum over all futures, of the probability of that future
occurring, multiplied by the terminal reward. We will employ this risk-neutral
interpretation of “expected return”, although alternative risk assumptions could be
made and will be studied in further work.

2.1.1 A Recursive Formula for Vπ. Rather than attempt to evaluate such a sum
explicitly, we use the following recursive formula for Vπ known as the Bellman
equation [Bellman 1957]

Vπ(s) =
∑

s′
P(s, π(s), s′)

(

Vπ(s′) + r(s, π(s), s′)
)

. (1)

The intuitive justification for (1) is as follows: With probability P(s, π(s), s′) the
result of action π(s) in state s is state s′, which has value Vπ(s′); the transition

itself generates reward r(s, π(s), s′), so that the event s
π(s)−−−→ s′ adds value Vπ(s′)+

r(s, π(s), s′) to the state s. Summing this over all possible successors s′ of s gives
the expected value of state s, (1). Given that all chains of state transitions are
bounded above by some constant K, the optimal policy for a given decision problem
(specification of S, A, P and r) is generated inductively on maximal future-length
by selecting the value of π(s) to maximise the right-hand side of (1).

We refer the reader interested in formal details to the many Dynamic Program-
ming references in the Bibliography.

2.2 Adaptation of the Framework to Multiple Simultaneous Auctions

The general DP framework is broad enough to encompass any auction design imag-
inable, but analysis becomes more complicated the more complicated the market
rules are. In this section we restrict the space of decision problems considered so
as to make the recursive formula (1) susceptible to inductive solution.

Algorithm Design for Multiple Simultaneous Auctions · 5

The general DP structures specialize in the following way:

2.2.1 Time. Time t is a real number in the range [0,K], and increases in steps
of size h. We write T for this set: T = {0, h, 2h, . . . K}. In practice, the actual
value of K is irrelevant - it simply needs to be “big enough”. If an agent has a
purchasing deadline, this forms a suitable value for K.

2.2.2 Auctions. There is a finite set of auctions labeled with integers: S0 =
{1, 2, . . . |S0|}. The auctions studied in this paper will be the following slightly
non-standard version of the English auction.3

(1) Price is a specified function of time. At each time step, all agents may shout.
(2) If exactly one agent shouts, it will be awarded the good at the current price.
(3) If more than one agent shouts, the auction proceeds to the next time step.
(4) If no agents shout, the good will be assigned at random among the agents which

shouted in the previous time step.

This differs from a standard English auction4 in that there is no “active” or
“highest” bid. Alternatively the rules can be interpreted as saying that the auc-
tioneer keeps a private record of the currently active bid which is revealed only
when no new bids arrive.

For a specified agent, we combine representations of prices and valuations for the
good sought into a utility ui(t) for each auction i. This is the utility that the agent
would derive at time t if it were to win auction i. The implicit assumptions here
are that the price of a good and the agent’s value of it are determined as functions
of time.5

2.2.3 States and Actions. The set of states will be S = 2S0 × T . A given state
(S, t) with S ⊂ S0 and t ∈ T can be interpreted as a moment in time, and the
collection of auctions still open at that time. Since we have assumed that auction
prices are determined functions of time, this approach is formally equivalent to (but
notationally much simpler than) defining states in terms of price tuples.

At each moment in time, and in each auction still open at that time, one may
either bid or not bid. Thus a full action space would contain an assignment of
’bid’ or ’not-bid’ to each auction: A((S, t)) = 2S . (States of the form (∅, t) are all
terminal, with value zero.) In practice we often trim this space considerably, as will
be seen later on.

2.2.4 Transition Probabilities. These are derived from the belief model that the
agent maintains regarding closing prices. As discussed Section 1, there are many

3We consider the English auction in particular, because it is by far the most common auction
form in use.
4Note that auctions with a fixed closing time are not standard English auctions, and are notori-
ously difficult to analyse because of the possibility of “last-minute” bidding.
5The more controversial of these two assumptions is that prices are a function of time. This is
clearly the case for Dutch auctions. For English auctions, it corresponds to the imposition of a
fixed price increment in each round. Even for very complicated auction structures, this is often
considered appropriate (e.g. to prevent collusion: [Kelly and Steinberg 2000] suggests an interval
[ε, 2ε) for potential bid increments; we insist on a single possible increment (which can change
with time)). In any case this assumption is not un-reasonable, and greatly simplifies the formulae.

6 · A. Byde

conceivable belief models that an agent could use to infer the likelihood of auction
closure from the current state. In this paper we have chosen to focus on one of
the simplest: We suppose that the agent maintains a function Pi(t) representing its
prior belief regarding the probability that auction i will be open at time t. Given
this assumption, the likelihood of auction i closing between time step t and t + h,
conditional on it being open at time t is (believed to be)

δPi(t)
Pi(t)

=
Pi(t)− Pi(t + h)

Pi(t)
,

independent of which other auctions are open, and independent of the agent’s ac-
tion.

To simplify formulae in what follows, we make the following definitions:

PS(t) =
∏

i∈S

Pi(t) δPS(t) =
∏

i∈S

δPi(t)

PS(t) is therefore the probability that the auctions in S are all still open at time
t, and δPS(t) is the probability that all of the auctions in S close between time t
and t + h.

The transition probability from state (S, t) to (S′, t + h) is

P
(

(S, t), (S′, t + h)
)

=
PS′(t + h)δPS\S′(t)

PS(t)
(2)

2.3 Recursive Formulae for Vπ in English auction case

2.3.1 General bidding.

When confronted with multiple English auctions, an agent can choose to bid in
any or none of all of the auctions which are open: A((S, t)) = 2S . If it bids in more
than one auction, it faces the risk of obtaining more than one good. But this risk
might be worth it when prices are extremely low.

To consider this general case6, it is necessary to define the utility of purchasing
multiple goods. The obvious definition requires us to split up the utilities ui(t) into
the agent’s valuation of the good v(t), and auction prices pi(t); if the agent bids in
auctions B, at least one of which closes, and if the set of auctions which close is
S \ T , then the agent’s reward is

r(B, (S, t), (T, t + h)) = v(t)−
∑

i∈B\T

pi(t) = v(t)− p(B \ T).

Feeding this and (2) into (1) gives, for the value V B(S, t) of bidding in auctions

6We ignore the possibility that an agent obtains a good without bidding because it was in at the
last round, and dropped simultaneously with all other participants. Such possibilities could be
modeled, but would complicate formulae that are already complicated enough.

Algorithm Design for Multiple Simultaneous Auctions · 7

B when in state (S, t),

V B(S, t) =
∑

B*T⊂S

δPS\T (t)PT (t + h)
PS(t)

(

v(t)− p(B \ T)
)

+
∑

B⊂T⊂S

δPS\T (t)PT (t + h)
PS(t)

V (T, t + h)
(3)

The above and subsequent formulae are simplified by introducing an adjusted
value function

Wπ(S, t) = PS(t)Vπ(S, t).

When re-stated in terms of W , (3) becomes

WB(S, t) =
∑

B*T⊂S

δPS\T (t)PT (t + h)
(

v(t)− p(B \ T)
)

+
∑

B⊂T⊂S

δPS\T (t)W (T, t + h)
(4)

The optimal value function itself is defined to be the value of pursuing the best
option:

W (S, t) = max
B⊂S

WB(S, t).

It is straightforward to check, using these formulae that the value functions obey
the following monotonicity properties:

W (S, t) ≥ W (S, t′) if t′ > t,

V (S, t) ≥ V (S′, t) if S′ ⊂ S,
(5)

which correspond to the intuitions that an agent’s expected return can only
improve if it is allowed more “options” (more time in the first case, more auctions
in the second).

2.3.2 Single Auction Bidding.

In practice, we shall only allow the agent to bid in at most one auction at a time.
By avoiding the possibility of over-buying we can avoid some of the conceptual
difficulties regarding valuation (i.e. are two goods actually more valuable than one
because of re-sale opportunities) which tend to open the problem up to a much
broader scope.

Restricting A((S, t)) = S, the recursive formula (4) becomes

W i(S, t) = δPi(t)PS\i(t)ui(t)

+
∑

i∈T⊂S δP (S \ T, t)W (T, t + h)

W (S, t) = maxi∈S W i(S, t)

(6)

This equation can be rather neatly interpreted: the term involving ui is the po-
tential immediate payoff from bidding in auction i, weighted by the probability

8 · A. Byde

that this auction closes immediately. The other term, which is implicitly condi-
tioned (via the definition of W) on auction i not closing immediately, measures the
value of all possible ways of being locked out of the other auctions, weighted by the
corresponding likelihood.

The task of maximization is therefore essentially that of balancing the potential
immediate payoff against the possibility of being locked out from desirable auctions.

3. ALGORITHMS

In this section we specify several algorithms that an agent might use as an actual
bidding strategy in a multiple simultaneous English auction problem.

3.1 DP algorithms

3.1.1 The Optimal algorithm. The first of our algorithm specifications is

OPTIMAL:

(1) Calculate and store the optimal adjusted value function
W (S, t) for all t ∈ T and all S ⊂ S0, using (6).
(2) In any state, bid in whichever auction the corresponding
optimal policy specifies.
(3) If auctions open unexpectedly, recalculate W.7

3.1.2 Bounded State Spaces. The difficulty in implementing OPTIMAL is obvious:
its potential complexity. With as few as 30 auctions there are more than a billion
subsets S, for each of which the agent must store a separate value function W .
However, as the number of auctions over which it reasons increases, the effectiveness
of OPTIMAL is likely to plateau rapidly, so that the increase in expected surplus from
reasoning over 30 auctions rather than, say 10 auctions, is likely to be insignificant
compared to the value derived from reasoning over 10 auctions as opposed to 1.

This intuition indicates a general method for tackling the complexity of OPTIMAL.
Formally, we calculate and store an approximation W C(S, t) to the value function,
for each S in a fixed collection C of subsets of S0. For subsets S not in C, we define

W C(S, t) = max
S⊃S′∈C

PS\S′(t)W C(S′, t) (7)

(a definition which is defensible in light of (5): the right hand side of (7) is a known
lower bound for W (S, t).) The recursion relation defining W C(S, t) for S ∈ C is
derived from (6):

W C,i(S, t) = δPi(t)PS\i(t)ui(t)

+WC(S, t + h) +
∑

j∈S\i δPj(t)W C(S \ j, t + h)

W C(S, t) = maxi∈S W C,i(S, t).

(8)

7If the problem is sufficiently large that re-planning time is too high, then we can easily adjust
OPTIMAL not to re-plan: New auctions can simply be ignored. Notice also that it is un-necessary
to re-plan if an auction doesn’t open when it said it would (although we cannot expect the agent’s
return to be particularly good if it had planned on bidding in the offending auction).

Algorithm Design for Multiple Simultaneous Auctions · 9

Each potential C now generates an algorithm of its own by substitution of W C

for W in the definition of OPTIMAL. This algorithm will be called OPTIMAL-C.8

OPTIMAL-C:
(1) Given C, calculate and store the optimal adjusted value
function W C(S, t) for all t ∈ T and all S ⊂ S0, using (6).
(2) In any state, bid in whichever auction the corresponding
optimal policy specifies.

In practice, we expect that C will almost always be defined using rules or heuristics
which can apply as well to new auctions as old, so that it will be possible to define
a complex re-planning rule as well.

One simple answer to the question of how to select a suitable collection C has
already been implicitly provided: we can choose C to be the collection of all subsets
of S0 whose size is bounded above by some fixed constant k. Since, for fixed k, this
gives the bound |C| = O(|S0|k), this approach is polynomial-scalable with respect
to problem size.

BOUNDED-k:

Is the same as OPTIMAL-C where C is the set of subsets of S0 of
size less than or equal to k, with re-planning whenever an
auction opens unexpectedly.

3.2 Non-DP algorithms

The space of conceivable algorithms is of course much larger than those which can
be derived from the DP structure by throwing information away.

3.2.1 Greedy. The most obvious (perhaps) is

GREEDY:

Bid in whichever auction has the currently lowest price (greatest
utility).9

Greedy is included here for comparison purposes: It is extremely easy to code,
and does not depend on any beliefs about the auctions in which it participates. As
such, if it is found to be competitive with any of the above algorithms, its ease of
implementation and robustness to lack of knowledge make it far preferable.

3.2.2 Committed. The problem with GREEDY, as demonstrated in Section 4.3, is
that it tends to jump out of an auction whenever a new auction opens, which in
certain circumstances can lead to it never purchasing a good.

8It is easy to show that the collection of algorithms { OPTIMAL-C : C ∈ S0} is partially ordered by
effectiveness, according to the subset structure of S0: If C1 ⊂ C0 then OPTIMAL-C0 is at least as
effective as OPTIMAL-C1 in every problem instance.
9GREEDY is not the same as BOUNDED-0, which chooses the biggest of ui(t)δPi(t)/Pi(t), i.e. the
auction with the currently highest value of utility multiplied by probability of immediate closure.

10 · A. Byde

An alternative to being greedy which is still computationally maneagable is to
make a commitment to an auction, which changes only if the price in that auction
rises higher than the agent’s valuation:

COMMITTED:

(1) Among the open auctions, determine (on the basis of beliefs
P price

i (t)) the one with highest expected return.
(2) Bid in the auction chosen in step (1) unless the price
reaches the valuation of the good.
(3) If the price in the auction chosen in step (1) exceeds the
valuation of the good, go to step (1) again.

4. TESTING

To test the relative effectiveness of the algorithms specified in Section 3 we propose
a full range of analysis; formal mathematical analysis; simulation of “realistic”
decision problems that an agent might be expected to encounter; implementation
in agents that compete in simulated economies; deployment into real products that
are tested in actual marketplaces. Each transition from formality to deployment re-
introduces factors which were removed from the model in order to make it tractable;
whether these factors are significant enough to undermine algorithmic efficiency
remains to be seen.

In this section we report preliminary results at the level of decision problem
simulation: We generate a large number of specifications of Pi(t) and ui(t), and
for each compare the value generated by OPTIMAL to that generated by GREEDY.
In some sense this should measure the maximum gain over the “trivial” greedy
behaviour that can be obtained from applying the DP framework: We expect that
the algorithms OPTIMAL-C will (roughly speaking) interpolate between these two.

4.1 General Experimental Setup

In these experiments, all auctions share a common price distribution, and have
prices rising by one unit per unit time.10 For the closing price distribution we
choose the distribution of the second highest of n uniform random variables on
[0, M]. The point is that if n agents each have valuation selected at random from
[0,M], and compete in a single English auction using their dominant strategy, the
closing price will have this distribution. A formula for the probability that any
given auction closes at price greater than or equal to x is thus defined to be

P price(x) = 1− n
(x

M

)n−1
+ (n− 1)

(x
M

)n
, (9)

where x ∈ [0, M], and M , n are constants.
The private information of an agent consists of a valuation v for the good, and

a deadline time d by which the good must have been purchased. This value of d is
the “end-of-time” K from Section 2.2.1 beyond which the agent need not reason.

10These assumptions, can be seen as homogeneity assumptions: it doesn’t matter which auction is
which. These properties favour the greedy algorithm by removing variation which OPTIMAL would
otherwise exploit.

Algorithm Design for Multiple Simultaneous Auctions · 11

|S0| \ Param. changes none M = 60
M = 60
v = 40

M = 20
v = 20

d = 150
v = 20

2 3.466 3.516 0.517 1.287 0.083
3 4.090 5.132 1.047 2.423 0.174
4 4.658 5.470 1.426 2.951 0.312
5 5.374 6.095 2.058 3.653 0.462
6 4.957 6.597 2.320 3.932 0.640
7 5.423 6.625 2.633 3.884 0.748

Table 1. Average difference in expected utility between OPTIMAL and GREEDY as a function of |S0|
for Experiment “Poisson Opening Times”

Given the constants v, d, M and n, each instance of the decision problem is then
generated by selecting an opening-time sequence ti, after which Pi and ui are given
by

ui(t) =
{

0 if t < ti or t > ti + M
max(v − t + ti, 0) t ∈ [ti, ti + M]

Pi(t) =







1 if t < ti
P price(t− ti) if t ∈ [ti, ti + M]
0 if t > ti + M

(10)

4.2 Poisson Opening Times

In this scenario, auction opening times ti are given as a Poisson arrival process.
Starting at time −M11, we iteratively generate start times for auctions by selecting
ti − ti−1 from an exponential distribution:

P (ti − ti−1 ≥ t) = e−t/λ (11)

for some fixed constant λ. Thus the probability that any auctions open in a given
time interval depends only on the length of the interval.

A basic set of parameters chosen for this experiment was

n = 4
M = 40
v = 70
d = 100
λ = 32

(12)

Table 1 contains the results of generating 2000 random opening time sequences
in this manner. The first row records the changes, if any, made to the parameters
specified in (12), while the remaining rows record the difference between the values
Vπ(S0, 0) for the optimal and greedy policies, categorized according to |S0|. The
main observation here is that the effectiveness of OPTIMAL relative to GREEDY in-
creases with the number of auctions that overlap the interval, and hence with the
degree of simultaneity.

Our intuition tells us that for massively parallel scenarios, the abundance of cheap

11This is the last time which an auction is guaranteed to be closed by the time the agent starts
trading at time 0.

12 · A. Byde

|S0| \ d 50 100 120 150 200
1 0.000 0.000 0.000 0.000 0.000
2 0.786 3.321 3.321 3.321 3.321
3 1.285 2.095 5.293 5.293 5.293
4 2.975 0.162 1.538 5.946 6.671
5 3.934 1.182 0.234 2.842 7.715
6 4.515 2.541 0.665 0.957 6.143
7 4.872 3.705 1.677 0.291 3.751
8 5.085 4.617 2.752 0.507 2.081
9 5.255 5.330 3.745 1.136 1.171
10 4.592 0.548
11 0.432
12 0.536

Table 2. Difference in expected utility between OPTIMAL and GREEDY as a function of |S0| and d
for Experiment “Equal Opening Times: 1”

|S0| \ d 100 120 150
3 3.458 5.293 5.293
4 1.628 3.343 6.355
5 2.488 2.306 4.671
6 5.657 2.488 3.064
7 8.344 4.012 2.712
8 11.701 5.864 2.392
9 16.271 8.438 3.148
10 11.746

Table 3. Difference in expected utility between OPTIMAL and GREEDY as a function of |S0| and d
for Experiment “Equal Opening Times: 2”

deals will shrink this difference to zero (in the limit). To investigate this particular
trend, we conducted another experiment:

4.3 Evenly Spread Opening Times

In this scenario, auction opening times are evenly spread throughout the agent’s op-
erational period. In the first experiment, opening times were spread evenly through-
out [0, d−M] so that all auctions started after the agent’s start time, and finished
before its deadline. The results of this experiment are in Table 2, and the depen-
dence of expected utility on |S0| for d = 150 is shown in Fig 1.

In the second experiment, they were spread evenly throughout [−M, d], so as to
make the agent’s environment more homogeneous with respect to time. The results
of this experiment are in Table 3, and the dependence of expected utility on |S0|
for d = 120 is shown in Fig 2.

The results of these experiments engender several observations:

(1) The fact that we never experimented with |S0| > 12 is an indication of the
exponentially increasing complexity of the algorithms involved. Planning for
two auctions took about 15 milliseconds, but even on a top-of-the-range desktop
PC, planning for the 12 auction case took an un-optimized12, but nevertheless

12Coded in Java.

Algorithm Design for Multiple Simultaneous Auctions · 13

0

Efficiency

Greedy

Optimal

1098765432

10

8

6

4

2

Fig. 1. The effectiveness of GREEDY and OPTIMAL relative to expected return for a single auction,
as a function of |S0| for Experiment “Equal Opening Times: 1” with d = 120.

not wasteful13 implementation of OPTIMAL more than 288 hours.
(2) As can be seen in the two figures, GREEDY goes through an initial phase in which

its efficiency improves relative to OPTIMAL, before dropping off.
It pays to drop out of an auction to bid in a cheaper one when the agent has
several chances to get a good cheaply, so we expect an initial boost to GREEDY’s
efficiency.
However, as the number of auctions continues to rise, the initial window in
which GREEDY plays before dropping out (for the next such window) shrinks
rapidly; the probability that the auctions will close in this window decreases
faster than the increasing potential benefit of obtaining the good at these low
prices, and so expected return decreases. This fact is clearly dependent on the
shape of the closing price distribution, but we hypothesize that this will often
be the case.

(3) GREEDY does not fare so badly with increasing |S0| when all auctions close before
its deadline. The reason for this is transparent: it always plays the entirety
of the last auction (unless it has already obtained a cheap good), and so its
expected utility is bounded below by that of playing in a single auction. In the

13Set Theory was implemented using bit-arithmetic

14 · A. Byde

−4

Efficiency

Greedy

Optimal

109876543

10

8

6

4

2

0

−2

Fig. 2. The effectiveness of GREEDY and OPTIMAL relative to expected return for a single auction,
as a function of |S0| for Experiment “Equal Opening Times: 2” with d = 120.

second experiment it has no such “safety-net” and so does considerably worse.

5. CONCLUSIONS AND FUTURE WORK

We have described an application of Dynamic Programming to the problem of
algorithm design for bid selection in multiple simultaneous auctions. We have
conducted some preliminary experiments at the formal level to test the marginal
utility of using theoretically perfect algorithms over greedy but easily computable
algorithms, and find that this marginal utility increases with increasing problem
size. The dilemma that this finding presents is that as problem size increases, all
of the DP algorithms described become more complex: the better the algorithm,
the faster it becomes intractable.

There is much room for future work here, including at least the following imper-
atives:

(1) We must understand the form that these algorithms take when considering
complex, compound purchasing requirements involving multiple goods which
complement one another.

(2) We must widen the belief framework to incorporate correlations between auc-
tion closing prices, both between concurrent auctions, and over time.

Algorithm Design for Multiple Simultaneous Auctions · 15

(3) We must run comprehensive empirical studies, at all implementation levels. In
particular, it is essential to understand the consequences of an agent holding
false or misleading beliefs regarding the degree of correlation between auction
closing price distributions: how much does an agent suffer from the simplifying
assumption that prices are uncorrelated?

(4) As a particular case of the last point, it is important to begin to ask how
populations of agents using these algorithms develop as a result of competition
amongst themselves, if their models are built up dynamically.

We intend to return to at least some of these questions in future work.

REFERENCES

Bellman, R. E. 1957. Dynamic Programming. Priceton University Press.
Bertsekas, D. P. 1995. Dynamic Programming and Optimal Control. Athena Scientific.
Binmore, K. and Vulkan, N. 1999. Applying game theory to automated negotiation.

Netnomics 1, 1–9.
Garcia, P., Giminez, E., Godo, L., and Rodriguez-Aguilar, J. 1998. Possibilistic-based

design of bidding strategies in electronic auctions. In Proc. 13th Biennial European Con-
ference on Artificial Intelligence (1998).

Gjerstad, S. and Dickhaut, J. 1998. Price formation in double auctions. Games and
Economic Behaviour 22, 1, 1–29.

Kelly, F. and Steinberg, R. 2000. A combinatorial auction with multiple winners for
universal service. Management Science 46, 586–596.

Klemperer, P. 1999. Auction theory: A guide to the literature. Journal of Economic
Surveys 13, 3 (July), 227–286.

McAfee, R. P. and McMillan, J. 1987. Auctions and bidding. Journal of Economic
Literature 25, 699–738.

Preist, C., Bartolini, C., and Philips, I. 2001. Algorithm design for agents which par-
ticipate in multiple simultaneous auctions. In F. Dignum and U. Cortes Eds., Agent
Mediated Electronic Commerce III , Lecture Notes in AI. Springer Verlag.

Preist, C., Byde, A., and Bartolini, C. 2001. Economic dynamics of agents in multiple
auctions. To appear at Autonomous Agents 2001.

Ross, S. 1983. Introduction to Stochastic Dynamic Programming. Academic Press.
Vulkan, N. and Preist, C. 1999. Automated trading in agents-based markets for commu-

nication bandwidth. In Proc. UKMAS (1999).
White, D. J. 1969. Dynamic Programming. Holden-Day, San Francisco.
Whittle, P. 1982. Optimization over Time, Volume 1. Wiley.
Whittle, P. 1983. Optimization over Time, Volume 2. Wiley.

