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Abstract

In this paper, the ability of a Binary Neural Network comprising only
neurons with zero thresholds and binary weights to map given samples of a
Boolean function is studied. A mathematical model describing a network
with such restrictions is developed. It is shown that this model is quite
amenable to algebraic manipulation. A key feature of the model is that
it replaces the two input and output variables with a single \normalized"
variable. The model is then used to provide apriori criteria, stated in terms
of the new variable, that a given Boolean function must satisfy in order to
be mapped by a network having one or two layers. These criteria provide
necessary, and in the case of a 1-layer network, suÆcient conditions for
samples of a Boolean function to be mapped by a Binary Neural Network
with zero thresholds. It is shown that the necessary conditions imposed
by the 2-layer network are, in some sense, minimal.
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1 Preliminaries

The classical feedforward neural network architecture comprises layers of neu-
rons. Each neuron has a pair (w; t) associated to it, where w and t are called
its weight vector and threshold, respectively. The output of the neuron for an
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input x is given by sgn(w �x � t) which is +1 when w �x > t and �1 otherwise.
The quantity w � x is called the activation of the neuron.

In this paper, we will examine the particular case of a feedforward archi-
tecture where the threshold, t, associated with every neuron is zero, and the
weight vectors are binary, with each component chosen from f�1; 1g. We
will study the performance of such networks in mapping Boolean functions
f : f�1; 1gn ! f�1; 1gm; where n and m are integers greater than or equal
to one. Networks with binary weights have been studied in literature [1, 2, 4, 6],
for obvious reasons. Firstly, it is a matter of theoretical curiosity whether net-
works comprising neurons with such restrictions on their weights have reasonable
function mapping capabilities. Secondly, as is noted in [1, 2, 4, 6], such networks
would have considerably simpler implementations, especially in hardware, and
thus would be implementations of choice in cases where their performance proves
satisfactory.

Our added restriction - that the thresholds all be zero - in some sense reduces
these to the \simplest" class of networks. It is therefore of interest to know what
performance they can o�er. In this paper, we demonstrate that these restrictions
on the weights and thresholds can be exploited fully to develop a model for
the network that is very amenable to algebraic manipulation. The key feature
of the model that enables comparisons between 1 and 2-layer networks is the
replacement of the two input and output variables with a single \normalized"
variable. We then derive constraints placed upon this normalized variable by
1 and 2-layer networks, thereby comparing their function mapping capabilities.
We then provide apriori criteria, stated in terms of the new variable, that a
given Boolean function must satisfy in order to be mapped by a network having
one or two layers. These criteria provide necessary, and in the case of a 1-layer
network, suÆcient conditions for samples of a Boolean function to be mapped
by a Binary Neural Network. We stress that our model relies crucially on the
thresholds being zero. Thus this added restriction pays o� well in facilitating
analysis.

In general, the network will have L layers, with the lth layer, 1 � l � L;
comprising of ml neurons. We will assume, for reasons explained below, that for
1 � l � L�1, ml is odd. The network input is fed to its �rst layer neurons. For
2 � l � L � 1, each neuron in the lth layer receives as input the outputs of all
the neurons in the (l � 1)st layer and it feeds its output to every neuron in the
(l+1)st layer, and so on. The network output is taken from the Lth layer. There
are no interconnections between neurons within a layer. The weight vector of
the ith neuron, 1 � i � ml, in the lth layer is denoted wl

i.
Let there be K samples of the Boolean function that are to be mapped,

given by

Xk = (Xk1 : : : Xkn) 7! Yk = (Yk1 : : : Ykm); 1 � k � K;

where Xk 2 f�1; 1gn and Yk 2 f�1; 1gm. When the input to the network is
Xk, denote the output of the i

th neuron of the lth layer by ylki and the collective
outputs of the lth layer neurons by ylk = (ylk1 : : : y

l
kml

). For the network to map
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the kth sample correctly, we must have that yLk = Yk. This, of course, implies
that mL = m.

A brief explanation about the notation above and throughout the paper. We
will use boldfaced letters to denote vector quantities. The scalar components
of these vector quantities will be denoted using the same letters in plain script,
with an extra subscript. Superscripts on these quantities will always denote
the layer of the network that the quantity pertains to. The �rst subscript will
index the sample of the Boolean function, and the second will index the neuron
under consideration within a particular layer. The exception is weight vectors,
which have no subscript indexing the sample since we assume them �xed for all
samples.

Proposition 1.1 A feedforward neural network with each neuron using a sgn
transfer function, operating on a domain of odd dimension, and threshold set to
zero, can map only odd functions, i.e., functions f that satisfy f(�X) = �f(X).

Proof. Since sgn itself is an odd function, and the thresholds are all zero,
it follows that the output of an individual neuron in the �rst layer is an odd
function of its input since

sgn(w � �X) = �sgn(w �X):

The case w �X = 0 is precluded by the condition that the dimension of the space
be odd. Furthermore, ml is odd for 1 � l � L� 1 precluding zero activation to
neurons in higher layers. Now, since the composition of odd functions remains
odd, the network as a whole will have an odd transfer function. 2

The conditions of the above proposition should not be considered very con-
straining if we are willing to work with extended functions as explained below.

Lemma 1.2 Any function f de�ned on f�1; 1gn can be uniquely extended to an
odd function, fo, de�ned on a domain of odd dimension such that the restriction
of fo to f�1; 1gn agrees with f .

Proof. If n is even, we can embed f�1; 1gn into f�1; 1gn+1 by the following
relation

i : f�1; 1gn ,! f�1; 1gn+1

(v) 7! (v; 1)

Now we can extend f to fo as follows. If v 2 i(f�1; 1gn), set fo(v) = f(i�1(v)).
Else, i�1(�v) is de�ned and set fo(v) = �f(i�1(�v)): Then fo is odd and its
restriction to f�1; 1gn, compatible with the map i, agrees with f .

If n is odd (and f is not an odd function), we can repeat the above procedure
twice to de�ne fo on f�1; 1gn+2. 2

Henceforth, we will assume that we are working with functions (extended if
necessary) that satisfy the hypothesis of Prop. 1.1. Practically, this means we
might have to add dummy inputs to the network.
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De�nition 1.3 De�ne the variables Zlki; 1 � l � L+1; 1 � k � K; 1 � i � mL

by the following relations
Z1
ki = YkiXk; (1.1)

and for 2 � l � L+ 1,

Zlki = (sgn(wl�1
1 � Zl�1ki ) : : : sgn(wl�1

ml�1
� Zl�1ki )): (1.2)

Proposition 1.4 For a network with �xed weights, the following are equivalent:

(i). The network performs the mappings Xk 7! Yk; 1 � k � K:

(ii). The network performs each of the mappings Z1
ki 7! (� : : : 1 : : : �); 1 � k �

K; 1 � i � mL; where a \ � " denotes a `don't care' and the 1 is in the
ith position. By this we mean that if Z1

ki is supplied as the input to the
network, the ith neuron of the Lth layer will output a `1.'

(iii). ZL+1ki = (� : : : 1 : : : �); 1 � k � K; 1 � i � mL; where again the 1 is in the
ith position.

Proof. (i) ) (ii) For the �rst layer neurons, we have

y1ki = sgn(w1
i �Xk); 1 � k � K; 1 � i � m1: (1.3)

For the second layer onwards,

ylki = sgn(wl
i � y

l�1
k ); 2 � l � L; 1 � k � K; 1 � i � ml: (1.4)

In particular, for the Lth layer, we have

yLki = sgn(wL
i � y

L�1
k ); 1 � k � K; 1 � i � mL: (1.5)

But since the function we are mapping is Boolean, yLki = �1: Furthermore, sgn
is an odd function. Therefore, we can multiply both sides of the above equation
by yLik to obtain

yLkiy
L
ki = yLkisgn(w

L
i � y

L�1
k ); 1 � k � K; 1 � i � mL; (1.6)

or,
1 = sgn(wL

i � (y
L
kiy

L�1
k )); 1 � k � K; 1 � i � mL: (1.7)

Since yL�1k is, in turn, an odd function of yL�2k and so on, we can use Equa-
tion 1.4 for L � 1 � l � 2 to obtain, for the indices L � 1 � l � 2; 1 � k �
K; 1 � i � mL; 1 � j � ml;

yLkiy
l
kj = sgn(wl

j � (y
L
kiy

l�1
k )); (1.8)

and using Equation 1.3, we obtain for the indices 1 � k � K; 1 � i � mL; 1 �
j � m1;

yLkiy
1
kj = sgn(w1

j � (y
L
kiXk)): (1.9)



5

The desired result now follows by noting that (yLkiXk) = Z1
ki:

(ii) ) (iii) This is immediate from the statement of (ii) and Equation 1.2.
(iii) ) (i) We have ZL+1ki = (� : : : 1 : : : �); 1 � k � K; 1 � i � mL: But using

Equation 1.2, this implies that sgn(wL
i �Z

L
ki) = 1: Multiplying both sides of the

above equation by Yki, we get

sgn(wL
i � YkiZ

L
ki) = Yki; 1 � k � K; 1 � i � mL: (1.10)

Now using Equation 1.2 iteratively to go down L � 1 � l � 2, we get, for the
indices L� 1 � l � 2; 1 � k � K; 1 � i � mL;

YkiZ
l
ki = (sgn(wl�1

1 � YkiZ
l�1
ki ) : : : sgn(wl�1

ml
� YkiZ

l�1
ki )): (1.11)

In particular,

YkiZ
2
ki = (sgn(w1

1 � YkiZ
1
ki) : : : sgn(w

1
ml

� YkiZ
1
ki))

= (sgn(w1
1 �Xk) : : : sgn(w

1
ml

�Xk));

since YkiZ
1
ki = YkiYkiXk = Xk. But this means that that output of the �rst

layer when the input is Xk is YkiZ
2
ki. Plugging this into Equation 1.2 and

iterating for 2 � l � L, we see that the output of the (L� 1)st layer is YkiZ
L
ki.

Now, using Equation 1.10, we get the desired result. 2

Some explanation is in order here. Proposition 1.4 basically says that in a
binary network with zero thresholds, we can replace the two variables X and
Y, for the input and output respectively, by a single \normalized" variable Z.
The network maps Xk to Yk i� it maps Z1

ki to (� : : : 1 : : : �). In other words, if
we provide the network with an input Z1

ki, the i
th neuron of the Lth layer will

output a `1,' and this statement holds true for 1 � k � K and 1 � i � mL:
Thus, we can normalize the input-output samples such that the output is always
normalized to +1 and we are left with only a normalized input Z. More is true:
Zlki; 2 � l � L will form the output of the (l � 1)st layer when the input to the
�rst layer is Z1

ki.
We end this section with a proposition, stated without proof, that we will

need later.

Proposition 1.5 For n � 1 and v 2 f�1; 1gn, de�ne Sv = fx 2 f�1; 1gn jx �
v > 0g: Let v1;v2 2 f�1; 1gn. Clearly, if Sv1

T
Sv2 6= ;, v1 6= �v2.

2 Mapping Criteria

In this section, we state two theorems that provide necessary and, in the case
of a 1-layer binary network, suÆcient conditions for a set of samples to be
mapped by a binary network. We will focus on 1 and 2-layer binary networks.
To understand the di�erence in mapping capabilities of 1 and 2-layer binary
networks, we shall study their performance over the same set of samples.

The theorem that completely characterizes the Boolean functions that can
be mapped by a 1-layer binary network is given below.
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Theorem 2.1 A 1-layer binary network can map K samples fXk;Ykg1�k�K
of a Boolean function i� for every i; 1 � i � m1; 9w

1
i such that fZ1

kig1�k�K �
Sw1

i

.

Proof. From (ii), Proposition 1.4, we know that mapping the ith component of
the output for the kth sample correctly is equivalent to performing the mapping
Z1
ki 7! (� : : : 1 : : : �). To correctly map the ith components of the outputs of

each of the K samples, we would then need to �nd a binary weight vector w1
i

for the ith neuron that satis�es w1
i � Z

1
ki > 0; 1 � k � K. In other words,

fZ1
kig1�k�K � Sw1

i

. To correctly map all the K samples, we would need the
above to be true for all the m1 neurons. 2

Notice that Theorem 2.1 states the constraint in terms of the single variable
Z, instead of two separate input and output variables. The same is true for the
theorem that states the constraints placed on a Boolean function by a 2-layer
network, which is stated below.

Theorem 2.2 A 2-layer binary network can map K samples fXk;Ykg1�k�K
of a Boolean function only if for all i; 1 � i � m2 and every pair k1; k2 where
1 � k1; k2 � K, the points Z1

k1i
;Z1

k2i
satisfy

Z1
k1i

6= �Z1
k2i

: (2.1)

Proof. From (ii), Proposition 1.4, we know that for the samples to be mapped,
we need

w2
i � Z

2
ki > 0; 1 � k � K; 1 � i � m2: (2.2)

Since w2
i = (w2

i1 : : : w
2
im1

), and Z2
ki = (sgn(w1

1 �Z
1
ki) : : : sgn(w

1
m1

�Z1
ki)), we can

rewrite Equation 2.2 as

w2
i1sgn(w

1
1 � Z

1
ki) + : : :+ w2

im1
sgn(w1

m1
� Z1

ki) > 0; (2.3)

for the indices 1 � k � K; 1 � i � m2:
But since w2

i 2 f�1; 1gm1 ; and sgn is an odd function, we can rewrite the
inequalities for the same indices as below

sgn(w01

1 � Z
1
ki) + : : :+ sgn(w01

m1
� Z1

ki) > 0: (2.4)

where w01
j = �w1

j if w2
ij = �1 and w01

j = w1
j if w2

ij = +1.
Since each term in the above inequalities is equal to �1, at least dm1=2e

terms must be equal to +1 for the inequalities to hold. This forces at least
dm1=2e dot-products out of fw01

j �Z
1
kig1�j�m1

to be positive for 1 � k � K; 1 �

i � m2. Thus, at least dm1=2e out of fw01
jg1�j�m1

lie in SZ1
ki

for 1 � k �
K; 1 � i � m2. Invoking the \pigeonhole principle" of combinatorics now tells
us that any two sets SZ1

k1i

; SZ1
k2i

; 1 � k1; k2 � K; 1 � i � m2 have a non-empty

intersection. Now Proposition 1.5 gives us the result. 2

Proposition 2.3 Let (Xk ;Yk)1�k�K be samples of an odd function f (i.e.,
f(�X) = �f(X)). Then for every pair k1; k2; where 1 � k1; k2 � K, we have
that Z1

k1i
6= �Z1

k2i
:
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Proof. We have constructed the points Z1
ki by the rule Z

1
ki = Yki�Xk; where Yki =

�1: Thus for two distinct inputsXk1 andXk2 , Z
1
ik1

= �Z1
ik2

if eitherXk1 = Xk2

and Yik1 = �Yik2 or Xk1 = �Xk2 and Yik1 = Yik2 . Clearly the �rst case is a
degenerate one and the only possibility is the second. But that would contradict
the hypothesis that f is odd. 2

Thus, Theorem 2.2 and Proposition 2.3 indicate that the constraints placed
upon a sample set by a 2-layer binary network and deducible using our model
are, in some sense, minimal. More precisely, the analysis that we have carried
out cannot possibly give us a weaker constraint for implementation by a L-layer
network for L � 3 than it did for L = 2, since the latter is already the equivalent
of insisting that the function be odd. Furthermore, if n = 3, it can be veri�ed
that all odd functions can be mapped by a 2-layer binary network, so that in
that case the constraint of Theorem 2.2 is indeed the best possible we can arrive
at by any means.

We conclude this section with an example demonstrating the use of the
criteria developed in this paper.

Example 2.4 Let n = 3;m = 1 and consider the following function on f�1; 1g3:

X1 = (�1; 1; 1) X2 = (1;�1; 1) X3 = (1; 1;�1);
X4 = (�1;�1;�1) X5 = (1;�1;�1) X6 = (�1; 1;�1)
X7 = (�1;�1; 1) X8 = (1; 1; 1)

Y1 = Y2 = Y3 = Y4 = +1; Y5 = Y6 = Y7 = Y8 = �1:

The values of the fZ1
k1g1�k�8 are

Z1
11 = Z1

51 = (�1; 1; 1); Z1
21 = Z1

61 = (1;�1; 1);
Z1
31 = Z1

71 = (1; 1;�1); Z1
41 = Z1

81 = (�1;�1;�1):

The Z1
k1 do not satisfy the conditions of Theorem 2.1. To see this, note that

the Z1
k1's are not linearly separable from their complement in f�1; 1g3. This

rules out a 1-layer implementation of the Boolean function.
However, the Z1

k1 do satisfy the condition of Theorem 2.2, i.e., they do
not contain any set of antipodal elements. Thus, a 2-layer implementation is
plausible. Using the symmetry of the Z1

k1, we determine that the mapping can
be performed using a 2-layer binary network with three �rst layer neurons and
a single second layer neuron with the two following possible sets of weights (and
appropriate reorderings thereof) -

w1
1 = (�1;�1; 1) w1

2 = (1;�1;�1) w1
3 = (�1; 1;�1)

w2
1 = (1; 1; 1) w1

1 = (1; 1;�1) w1
2 = (�1; 1; 1)

w1
3 = (1;�1; 1) w2

1 = (�1;�1;�1)

There is a geometric interpretation for the placement of the points Z1
ki for

�xed i. For the samples to be mapped by a 1-layer network, the Z1
ki must be

linearly separable from their complement on the n-cube. For the 2-layer case,
the above is the constraint on the Z2

ki, which when translated into a constraint
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on the Z1
ki says it is enough that they not have any antipodal elements (a much

weaker constraint and one that is satis�ed automatically if they satisfy linear
separability).

3 Conclusion

In this work, we have shown that networks with weights in f�1; 1g and zero
thresholds provide the tangible advantage of enabling us to work with a single
variable replacing the two variables corresponding to the sample inputs and
outputs. This single variable then provides a good comparison of the function
mapping capabilities of networks having di�erent number of layers. Using the
constraints that a network places upon this single variable, we have clearly
dilineated the advantage of adding a second layer over the �rst. The constraints
placed on the variable have a geometric interpretation in terms of dichotomies
of the hypercube, which is noted. Furthermore, it is shown that within the
model developed, the e�ect of adding a third layer could not possibly weaken
the constraints that were placed by the second layer.
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