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Abstract

It is well known that a 2-layer perceptron network with threshold neurons is incapable of
forming arbitrary decision regions in input space, while a 3-layer perceptron has that capability.
In this paper, the e�ect of replacing the output neuron in a 2-layer perceptron by a bithreshold
element is studied. The limitations of this modi�ed 2-layer perceptron are observed. Results on
the separating capabilities of a pair of parallel hyperplanes are obtained. Based on these, a new
2-layer neural paradigm based on increasing the dimensionality of the output of the �rst layer
is proposed and is shown to be capable of forming any arbitrary decision region in input space.
Then a type of logic called bithreshold logic, based on the bithreshold neuron transfer function,
is studied. Results on the limits of switching function realizability using bithreshold gates are
obtained.
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I. Introduction

Multi Layer Perceptrons (MLPs) have demonstrated very promising performance as compared to
classical Von Neumann machines in several areas like function approximation, pattern recognition,
speech recognition, etc. An excellent concise introduction to this �eld can be found in [7]. More
classical treatises on the foundations of this subject are [9, 10, 12].

The classical MLP is made up of layers of neurons. Each neuron has a pair (w; t) associated to it,
where w and t are called its weight vector and threshold, respectively. Let x be the input vector to a
neuron, of the same dimension as w. Then the output of the neuron is de�ned by

fw;t(x ) =

�
+1; if w:x > t
�1; if w:x � t:

The quantity w:x is called the activation of the neuron. Each neuron in a layer receives as input the
outputs of all the neurons in the previous layer and it feeds its output to every neuron in the next
layer and so on. There are no interconnections between neurons within a layer. The output layer
consists of only one neuron, called the output neuron.

� c
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The network as a whole performs a \classi�cation" of Rn by mapping every vector in Rn to a +1
or a -1. The subset of Rn that is mapped to +1 is called the network's decision region. In general, a
subset of Rn is said to be classi�able by a network if it can be made the decision region of the network
(usually by appropriately changing the weight vectors).

It is known that a MLP with 3-layers is a universal classi�er, i.e., it can form any arbitrary decision
region in input space. Many studies on the limitations of a 2-layer network in this regard have been
done. We shall �rst study the 2-layer network in some detail.

Let there be m neurons with a �xed ordering in the �rst layer operating on a set of n-dimensional
inputs. Geometrically, each of the neurons has a hyperplane associated with it given by

H
w;t = fx : w:x = tg:

This hyperplane then divides Rn into two halfspaces

H+
w;t = fx : w:x > tg and H�

w;t = fx : w:x � tg;

also called its positive and negative halfspace, respectively. For the rest of the paper, we will continue
to use the above notation to denote hyperplanes and their positive and negative halfspaces. The m
such hyperplanes corresponding to the m �rst layer neurons exhaustively divide Rn into disjoint basic
convex polytopes. Let the pair fwj ; tjg be associated with the jth neuron in the �rst layer. Then each
basic convex polytope is given by an intersection of m halfspaces as

Cl =

m\
j=1

H
ij
wj;tj

; 1 � l � 2m;

where ij = � depending on l and j. The index l is bounded by 2m because m hyperplanes can divide
Rn into at most 2m regions. Each basic convex polytope Cl has a unique (for the ordering of neurons)
m-dimensional Boolean representation given by cl = (cl1; : : : ; clm) where clj = +1 if ij = +; and
clj = �1 if ij = �.

We can view the outputs of the �rst layer neurons collectively as a m-dimensional vector. Then,
cl forms the output vector of the �rst layer neurons when an input vector falls in the region Cl.
Let Qm denote the set of vertices of the m-cube f�1; 1gm. Since cl 2 Qm , there is a 1-1 (but not
necessarily onto) mapping from the set of basic convex polytopes fClg to Q

m given by g : Cl 7! cl. In
e�ect, it is this mapping that is performed by the �rst layer of the network. In general, the image of
this map, im(g), is not all of Qm . The vertices of the m-cube that lie in im(g) are then the possible
inputs to the output neuron.

Now the output neuron also has a unique hyperplane associated with it given by

H
wo;to

= fc : wo:y = tog;

where y is a generic m-dimensional vector. This hyperplane divides Qm into two sets of vertices, one
falling in H+

wo;to
and the other in H�

wo;to
. Thus, if the output neuron receives as its input a vertex v

in H+
wo;to

, the network outputs +1. If, on the other hand, the output neuron receives as its input a

vertex v in H�
wo;to

, the network outputs �1. The network's decision region is given by the union of

all the basic convex polytopes whose Boolean representations fall in H+
wo;to

.
From this discussion, it is clear that a certain decision region is implementable by a 2-layer network

if the vertices of Qm corresponding to the individual convex polytopes that comprise this region are
linearly separable from their complement in im(g).

De�nition 1 Let Qm denote the set of vertices of a m-cube. A dichotomy fQm+ ; Qm� g of Qm is
said to be linearly separable if there exists a pair fw; tg such that

Qm+ � H+
w;t and Qm� � H�

w;t:

The problem of ascertaining whether or not an arbitrary dichotomy of Qm is linearly separable
is known to be hard [2]. This implies that the problem of determining whether or not an arbitrary
decision region is implementable by a 2-layer network is hard as well.
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II. Available results on 2 and 3-layer classi�ability

At �rst, it was thought that the decision regions of 2-layer perceptrons could only be convex poly-
topes. Later, nonconvex decision regions were shown to be 2-layer classi�able, but the condition of
connectedness was added [6]. However, it was demonstrated later that even unions of disconnected
convex regions could be 2-layer classi�able [8]. Subsequently, CoRD (Convex Recursive Deletion)
regions have been shown to be 2-layer classi�able [13]. The reader should not, however, believe that
there is any chance of traditional 2-layer networks having the capability to form arbitrary decision
regions in input space, as is equivalent to saying that every dichotomy of Qm is linearly separable. We
can �nd many counterexamples - for m > 1, a simple one being the dichotomy fQm+ ; Qm� g with
Qm+ comprising just a pair of antipodal points. However, it is easily shown that any arbitrary decision
region in input space is 3-layer classi�able [7]. It is perhaps this result that has led to a somewhat
diminished interest in the problem of 2-layer classi�ability. There is, however, a result by Cybenko [4]
that proves that 2-layers are suÆcient to approximate arbitrary decision regions in input space.

III. The bithreshold neuron model

While threshold models for neurons are most widely used in existing literature, there has also been
some e�ort devoted to studying multi-threshold neuron models. For example, in [11], expressions for
the separating capacity of a multi-threshold gate acting upon several points which are assumed to be
in general position have been derived. For our purposes, these results will not be very useful since the
points that we seek to separate are not in general position, but are vertices of Qm . We will focus our
attention on the simplest case of a multi-threshold neuron, namely, the bithreshold neuron (BN). A
BN is de�ned by a triple (w; t1; t2), where t1 < t2 with its output fw;t1;t2 given by (see also Figure 1)

fw;t1;t2 =

�
+1; if t1 < w:x � t2;
�1; otherwise.

Geometrically, the bithreshold neuron has two separating surfaces that de�ne its decision region,
as opposed to just one separating surface that de�ned the decision region of the traditional threshold
neuron. These are in the form of two parallel hyperplanes given by

H
w;t1

= fx : w:x = t1g and H
w;t2

= fx : w:x = t2g:

The decision region is the intersection of the positive halfspace H+
w;t1

of the �rst hyperplane cor-

responding to the lower threshold limit and the negative halfspace H�
w;t2

of the second hyperplane
corresponding to the upper threshold limit. We denote this decision region by Pw;t1;t2 where

Pw;t1;t2 = H+
w;t1

\H�
w;t2

:

We denote the complement of the decision region by

Nw;t1;t2 = H�
w;t1

[H+
w;t2

:

De�nition 2 Let fQm+ ; Qm� g be a dichotomy of Qm . It is said to be P-separable if there exists
a triple fw; t1; t2g such that Qm+ � Pw;t1;t2 and Qm� � Nw;t1;t2 . It is said to be N-separable if
Qm+ � Nw;t1;t2 and Qm� � Pw;t1;t2 . A dichotomy of Qm is said to be bithreshold-separable if it is
either P-separable or N-separable (or both).

Proposition 1 P-separability does not imply N-separability and vice versa.

Proof. Let Q3+ be the set of two diagonally opposite points of the same face and Q3� be its com-
plement. Then, the dichotomy fQ3+; Q3�g is P-separable but not N-separable, while the dichotomy
fQ3�; Q3+g is N-separable but not P-separable. 2



4

           +1

-1

Activation

N
eu

ro
n 

O
ut

pu
t

t1 t2

Figure 1: The transfer function for the bithreshold neuron model. This type of characteristic can be obtained by tying
the outputs of two open-collector ampli�ers, one of which compares the input with t1 and the other with t2.
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IV. The Capabilities of a 2-layer Perceptron with a BN Out-

put

We now study the capabilities of a 2-layer perceptron in which the output neuron has been replaced
by a bithreshold neuron. The rest of the network remains as earlier. Such a network will be said to
have a BN output and will be referred to as a modi�ed 2-layer perceptron.

The basic theorem which we use to tackle the problem of separating sets of vertices using two
hyperplanes is stated below. Even though we only need the use of this theorem where S and S0 are
known to be subsets of Qm , we will prove it for the more general case where they are arbitrary �nite
subsets of Rm . In what follows, let C(S) denote the convex polytope de�ned by points in S and A(S)
denote the aÆne subspace de�ned by the points of S.

Theorem 1 Let S and S0 be �nite subsets of Rm . If jSj � m� 1, and S0 \C(S) = �, there exists a
bithreshold neuron de�ned by a triple fw; t1; t2g such that S � Pw;t1;t2 and S0 � Nw;t1;t2 :

Proof. Firstly, note that if jSj < m � 1, we could add points to S that are arbitrarily close to those
already in S to make jSj = m � 1. Thus, without loss of generality, we assume that jSj = m � 1.
Let jS0j = k. There are k hyperplanes uniquely de�ned by the k sets of m points formed by adding
only one of the k points in S0 to the m -1 points in S. Take a point p in Rm not lying on any of these
k hyperplanes. Now along with the m -1 points in S it forms a set of m points. Let the hyperplane
uniquely de�ned in Rm by these m points be H

a;b. This hyperplane then does not pass through any of
the k points of S0, if they do not lie in A(S). Then two hyperplanes given by H

a;b�� and Ha;b+�, where
� is less than the perpendicular distance from H

a;b of the nearest point in S0, perform the desired
partition. All the m -1 points of S lie in Pa;b+�;b��; while all the k points in S0 lie in Na;b+�;b��;.

If any of the points belonging to S0 lie in A(S), then H
a;b will pass through them also. In that

case, we can perform the above procedure with S replaced by a set S1 that contains m�2 points from
S and one more point not on A(S). We ensure that the distance from A(S1) of the point of S left
out is less than that of any point in S0. This is always possible since S0 \ C(S) = �. This completes
the proof. 2

Lemma 1 Let v 2 Qm and V � Qm with v =2 V . Then v =2 C(V ).

Proof. Since this is a geometric statement, we can relabel the vertices in Qm such that v = (1; : : : ; 1).
Clearly, C(V ) � C(Qm n v). Now consider the hyperplane H

v;m�� where 0 < � < 2. Then clearly,

v 2 H+
v;m�� and the entire set of vertices Qm n v lies in H�

v;m��, and therefore so do C(Qm n v) and
C(V ). Thus the hyperplane H

v;m�� has separated v from C(V ). By the Hahn-Banach Theorem [1],
the vertex v cannot lie in C(V ). 2

Theorem 2 The modi�ed 2-layer perceptron can implement any decision region in Rn that is formed
by the union of � (m� 1) basic convex polytopes, where m is the number of neurons in the �rst layer.

Proof. Follows immediately from Theorem 1 and Lemma 1 by letting Qm+ comprise the vertices of
Qm corresponding to the stated basic convex polytopes and Qm� be their complement. 2

Corollary 1 The modi�ed 2-layer perceptron can classify any decision region in Rn that is formed by
the union of � 2m � (m� 1) basic convex polytopes in Rn , where m is the number of neurons in the
�rst layer.

Proposition 2 A linearly separable dichotomy of Qm is always N and P-separable.

Proof. Let fw; t1; t2g be the triple associated with the BN. The result follows by making t1� t2 > 2m
and performing partitions of Qmwith just one of the two separating hyperplanes. This also implies
that decision regions implementable by a standard 2-layer network are always implementable by a
2-layer network with a BN output. Moreover, there are bithreshold-separable dichotomies of Qm that
are not linearly separable, resulting in decision regions that can be implemented by a modi�ed 2-layer
perceptron but not by a traditional 2-layer perceptron (see also Figure 2). 2



6

��������
��������
��������

�����
�����
�����
�����
�����
�����

(-1,1,1) (1,1,1)

(-1,1,1)

(1,1,-1)(-1,-1,-1)

                       (1,-1,-1)

(-1,1,-1)

Figure 2: Example of a decision region in 2-dimensional input space implementable by a 2-layer network with 3 �rst
layer neurons and a bithreshold neuron output (without further addition of �rst layer neurons to the existing network)
that is not implementable by a 2-layer perceptron with 3 �rst layer neurons with threshold output. The vertices of the
3-cube that correspond to the basic convex polytopes are also indicated in the �gure.

Lemma 2 Let S be a set of points lying on a hyperplane H
a;b. Let S0 be a set of points such that

S0 \H
a;b = �. Then fS; S0g is bithreshold-separable.

Proof. The set of parallel hyperplanes H
a;b�� and H

a;b+� will perform the required separation by
setting � < d where d is the perpendicular distance from H

a;b of the closest point in S0. 2

Proposition 3 For m = 1; 2, all dichotomies of Qm are bithreshold-separable. For all m � 3, there
exist dichotomies of Qm that are not bithreshold-separable.

Proof. The cases m = 1; 2 are trivial. Consider m = 3. For a particular labelling of the vertices, the
dichotomy fQm+ ; Qm� g where Qm+ = f(�1;�1;�1); (�1; 1; 1); (1;�1; 1); (1; 1;�1)g and Qm� is its
complement, is not bithrehold-separable. There are in all four such dichotomies corresponding to the
eight di�erent ways of labelling the cube and equating the dichotomies obtained by labelling w.r.t. a
vertex and its antipodal vertex. To see this, observe that the m-cube has a natural \layering" of its
vertices, such that the ith layer, 0 � i � m, comprises those vertices which have exactly i -1's in their
coordinates. A dichotomy that is not bithreshold-separable for m � 3 is obtained by letting Qm+ be
the union of layers having even parity, and Qm� be the union of layers having odd parity (see also
Figure 3(a)). 2

V. A 2-layer paradigm capable of forming arbitrary decision

regions

A Theoretical Framework

Consider a dichotomy fQm+ ; Qm� g of Qm . By Theorem 1, we know that if jQm+ j � (m � 1) or
jQm+ j � 2m �m+ 1, the dichotomy is bithreshold-separable. For m� 1 < jQm+ j < 2m �m+ 1; we
cannot guarantee the bithreshold-separability of fQm+ ; Qm� g. Let jQm+ j = p, with m � 1 < p <
2m �m+ 1. Let v = (v1; : : : ; vm) be a generic vertex of Qm . We now de�ne a map
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emk : Qm ,! Qm+1

v 7! v0 = (v1; : : : ; vm; vk):

Here vi is the k
th component (1 � k � m) of the vertex v. Thus, the map emk appends to each of

the vertices in Qm+ its own kth component mapping it to a vertex in Qm+1.
Now consider the sequence of maps

Qm
emk
,! Qm+1

e
m+1

k

,! : : :
e
p

k

,! Qp+1:

The image of the set Qm+ under this sequence of maps is a set of vertices of Qp+1 of cardinality
p. But by Theorem 1, this set is bithreshold-separable from its complement in Qp+1. This is the
theoretical framework that leads to our neural architecture.

B The New Network Paradigm

Consider the 2-layer modi�ed MLP with a BN as its output neuron. Let there be mneurons in its
�rst layer, each of them receiving n-dimensional inputs. The hyperplanes corresponding to the m �rst
layer neurons form C(m;n) basic convex polytopes in Rn , where C(m;n) is given by [16]

C(m;n) =

min(m;n)X
i=0

�
m
i

�
=

�
2m; m � n;Pn

i = 0
�
m

i

�
; m > n:

Then consider a decision region comprising a union of p basic convex polytopes. If p � m� 1 or
p � 2m �m+ 1, it can be realized by the 2-layer modi�ed MLP by force of Theorem 1.

If m� 1 < p < 2m�m+1 , to the �rst layer of mneurons, add a neuron de�ned by the same pair
fw,tg as the jth existing neuron of the �rst layer. Thus now, we have m+1 neurons in the �rst layer.
The added neuron's output is identical to the jth existing neuron's output.

Geometrically, it means that the hyperplane separating surface of the added neuron exactly co-
incides with the hyperplane separating surface of the jth existing neuron. Thus, by addition of this
neuron, no new regions are formed in the input space. The input space partitioning into basic con-
vex polytopes remains exactly the same as before. In particular, the required decision region still
comprises the union of only p basic convex polytopes.

But now, the output BN receives as input the vertices of Qm+1, instead of Qm as earlier. From
these vertices, the BN is required to separate p vertices corresponding to the p convex polytopes whose
union is our desired decision region.

Repeat this addition of neurons. With each successive addition, the output BN is required to
separate out p vertices from a higher dimensional cube. In particular, after p �m + 1 neurons have
been added to the �rst layer, the output BN is required to separate out p vertices in Qp+1 from their
complement. This it can accomplish, by force of Theorem 1. Thus, we will have to add at most
p�m+1 neurons to the �rst layer to implement a decision region that is the union of p basic convex
polytopes in Rn . This paradigm is illustrated for the case of n = 2;m = 3; p = 4 in Figure 3.

C Upper bound on the number of �rst layer neurons

Let m be the minimum number of hyperplanes required to obtain the p basic convex polytopes whose
union is the desired decision region. Then thesem hyperplanes form C(m;n) regions which correspond
to C(m;n) vertices of the m -cube. It is these vertices only that will be possible inputs to the output
BN. From these C(m;n) it will have to separate out p vertices from all the others.

In the worst case, p = C(m;n)=2, for if p > C(m;n)=2 we can take the complement of our decision
region and separate out the C(m;n)� p vertices corresponding to this union of complementary basic
convex polytopes. Then we have to have at most p + 1 = C(m;n)=2 + 1 neurons in the �rst layer.
Thus, the number of neurons in the �rst layer is bounded by C(m;n)=2 + 1 where m is the minimum
number of hyperplanes required to form the basic convex polytopes whose union is our desired decision
region. Note that the result holds for any arbitrary choice of basic convex polytopes.
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Figure 3: A demonstration of the new network architecture. (a) A decision region not implementable with a 2-layer
network by just replacing the output neuron with a BN. This network has 3 �rst layer neurons. (b) Add two neurons
to the �rst layer whose decision regions coincide with the �rst and third existing neurons (signi�ed by the two darker
lines). The partitions of input space remain the same, and the new vertices of the 5-cube that correspond to the desired
decision region are separable from their complementary set by force of Theorem 1.
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VI. Bithreshold Logic

In this section we shall examine whether the logic that can be implemented by bithreshold gates
- bithreshold logic - o�ers any considerable advantages over threshold logic. To this end, we will
estimate the number of Boolean switching functions that are implementable with a single BN.

There is a well known upper bound on the number of implementable threshold Boolean switching
functions of mBoolean variables de�ned on r points (r � 2m) given by [15]

Bm
r � 2

m�1X
i=0

�
r�1
i

�
:

Similarly, we seek an estimate of the number of Boolean switching functions of m variables de�ned on
r points and realizable by a single bithreshold gate. By comparing the two, we can get an idea of the
enhancement in switching function realization capacity o�ered by the bithreshold gate.

Let the r points in Qm on which the switching function is de�ned be u1; : : : ;ur. Transform each
point u in Rm to a point in Rm+1 given by u0 = (u;�1). Now consider the hyperplane in Rm+1 given
by

H
u

0

i
;0 = f(x; t) : x:ui � t = 0g;

where the mweights plus the threshold make up the m+ 1 dimensions.
Then in Rm+1, points lying in the positive halfspace H+

u
0

i
;0 of this hyperplane represent values of

w and t that would make the threshold function at ui negative and points in the negative halfspace
represent values of w and t that would make the threshold function at ui positive. Each of the r
points gives a similar hyperplane. To calculate the number of threshold functions all we have to do is
to count the regions into which the r hyperplanes divide the whole of Rm+1 [16].

The number of bithreshold functions is arrived at in a slightly di�erent manner. Two points in
di�erent regions correspond to threshold functions di�ering on at least one of the r points. Consider
a point in any of the regions. This corresponds to a threshold function. We can also view it as a
hyperplane in Rm . Now, consider a point in another region. This also corresponds to a hyperplane
in Rm which di�ers from the �rst on at least one of the r vertices of the cube in the sense that at
least one of the r vertices is not on the same side of both of these hyperplanes.

Now if these two points had di�ered only in their t coordinate, then the two hyperplanes in
Rm corresponding to them would have been parallel, i.e., together they would have represented a
bithreshold function. Thus, directed line segments in Rm+1 parallel to the t axis represent bithreshold
functions. Two directed line segments represent the same bithreshold functions i� the two segments
begin in the same region and also end in the same region. We seek to estimate the number of such
directed line segments.

We now make the following estimate. If there are Bm
r such regions in m+ 1 dimensions and they

are uniformly distributed, roughly Bm
r

1
m+1 will be \stacked up" in any one coordinate. Thus for each

of the Bm
r regions, roughly Bm

r

1
m+1 can be reached by just changing the t coordinate. So in all we

have roughly Bm
r

m+2

m+1 of such directed line segments parallel to the t axis.
Thus, the number of di�erent switching functions of m variables de�ned on r points and imple-

mentable by a single bithreshold gate is � Bm
r

m+2

m+1 as compared to Bm
r by a single threshold gate.

Proposition 4 If r > 3m, single bithreshold gate realizability is unlikely.

Proof. The proof is similar to Winder's [15] proof of the result for a single threshold gate. We know
that

Bm
r <

2rm

m!
< rm:

Also, the total number of switching functions on r points is 2r. So we can estimate the ratio

S =
�
2rm

m!

�m+2

m+1 2�r

(Using Stirling's approximation) =
h

2rmp
2�m(m

e
)m

im+2

m+1

2�r
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Taking log to the base 2 and letting � = r=m,

logS = ��m+ m+2
m+1

h
1 +m log�e� log 2�m

2

i
= m[��+ m+2

m+1 log�e+
m+2

m(m+1) [1�
log 2�m

2 ]]

as m �!1;
S = 2fexp[��+ log�e]gm

which goes to zero for � > 3. 2

Proposition 5 If a switching function is randomly de�ned on r randomly chosen points, then as
m�! 1, the probability of the function being realizable by a single bithreshold gate �! 1 for r < 2m;
0 for r > 2m; and 1=2 for r = 2m.

Proof. We seek to show that

Bm
r

m+2

m+1 =2r
m!1
�! 1 for � < 2;

Bm
r

m+2

m+1 =2r
m!1
�! 0 for � > 2;

Bm
r

m+2

m+1 =2r
m!1
�! 1=2 for � = 2:

Firstly, observe that m+2
m+1 goes to 1 as m �! 1. Thus the ratios we seek to evaluate as m �! 1

are the same as the ratios of Bm
r =2r for the limits in question. But these are just the corresponding

ratios for single threshold gate realizability, and so the result we seek to prove for bithreshold gate
realizability is the same as the existing ones for threshold gate realizability [15]. 2

This result tells us that the capabilities of a bithreshold gate are asymptotically the same as a
threshold gate. This may seem slightly surprising at �rst, but is actually not so in light of Cover's [3]
results on the separating capacities of surfaces. Cover showed that the natural separating capacity of
a surface with m degrees of freedom is 2m. If however, there are k independent constraints on the
surface, its separating capacity reduces to 2m� k.

We may view a pair of hyperplanes in Rm as a single surface with 2m degrees of freedom. However,
if we insist that the hyperplanes be parallel, then after we have �xed the �rst hyperplane, we have
only one degree of freedom left for the second hyperplane - its distance from the �rst. This leads to
a total of m+ 1 degrees of freedom, which � m for large m . The result can easily be extended to
multi-threshold gates as well.

However, for practical applications with smaller number of inputs, the bithreshold gate provides a
signi�cantly improved capability. Perhaps more importantly, it allows us to separate certain geometric
structures of the hypercube, like its major diagonals, which could not be separated with a threshold
gate.

VII. Conclusion

In this paper, we have shown that a bithreshold neuron, when used as the output neuron of a 2-layer
network, signi�cantly improves its classi�cation capability. We provided a new paradigm for a 2-layer
network based on increasing the dimensionality of the input to the output neuron. In most neural
learning paradigms, the number of neurons in the various layers and their interconnections remain
�xed while the weights vary. In our paradigm, we vary the number of neurons in the �rst layer as
well. This paradigm can achieve universal classi�cation capability for a 2-layer network. We also
studied the realizability of Boolean functions using bithreshold gates and showed that asymptotically,
threshold and bithreshold gates have the same capacity.
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