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Abstract

The paper introduces Voting EM, an online learn-
ing algorithm of Bayesian network parameters
that builds on the EM(η) algorithm suggested
by (Bauer et al., 1997). We prove convergence
properties of the algorithm in the mean and vari-
ance, and demonstrate the algorithm’s behavior
on synthetic data. We show the relationship be-
tween Maximum-Likelihood (ML) counting and
Voting EM. We demonstrate that Voting EM is
able to adapt to changes in the modelled envi-
ronment and to escape local maxima of the like-
lihood function. Voting EM also handles both
the complete and missing data cases. We use the
convergence properties to further improve Vot-
ing EM by automatically adapting the learning
rateη. The resultant enhanced Voting EM algo-
rithm converges more quickly and more closely
to the true CPT parameters; further, it adapts
more rapidly to changes in the modelled environ-
ment.

1 INTRODUCTION

Bayesian networks (BNs) have gained wide popularity in
the Artificial Intelligence community over the past few
years. BNs can be used for general-purpose classifica-
tions, monitoring of systems, prediction of events, analyses
of data and more (Heckerman et al., 1995). Researchers
from disparate fields have suggested possible applications
of BNs ranging from illness classification in medicine (An-
dreassen et al., 1999) to geological analysis and predic-
tion (Pedersen et al., 1998).

The parameters of a BN are determined by the use of expert
opinion or by learning from data (Heckerman, 1995)(Pearl,
1988). The former has the benefit of the life experience
of the expert, but often is either too expensive or not ac-
curate enough to set the probabilities of the network. The

latter, that is learning from data, is problematic in that data
are not always available at the time the BN is constructed.
This lack of data at the time of construction can be ad-
dressed either by waiting for a batch of data, and perform-
ing offline learning on the dataset, or by learning the pa-
rameters from data as they are generated and continually
adapting, namely online learning. A challenge for both
approaches, frequently encountered in real systems, arises
when the environment being modelled by the BN changes,
either slowly or abruptly, in time or in characteristic.

Online learning of BN parameters has been discussed by
(Spiegelhalter & Lauritzen, 1990) and in the work of
(Bauer et al., 1997). In this paper, we present a modi-
fied version of the online learning algorithm introduced in
(Bauer et al., 1997), which we show can be used to learn
the parameters of a BN up to a fixed and known accuracy.
We call this algorithm Voting EM and prove convergence
of the estimates of the network parameters both in the mean
and in the variance. The advantages of Voting EM are that
it adapts to changes in the modelled environment and can
escape local maxima of the likelihood function. We further
demonstrate that Voting EM is a simple approximation to
the general incremental EM suggested by (Neal & Hinton,
1998), adapted for the BN parameter learning problem.

In the earlier referenced works on online learning, the issue
of how to optimally weight the accumulating data is left
open. With a fixed learning rate, we show that Voting EM
converges, but with non-zero error, to the true parameters.
When the learning rate is small, convergence is achieved
with small error but at a slow rate. When the learning
rate is large, convergence is fast, but the variance is large.
We therefore propose a dynamic learning rate, exploiting
these convergence properties of Voting EM, that adapts to
changes in the modelled environment, avoids local maxima
traps, and provides fast convergence to the true parameters
with reduced error.

Similar paradigms for adapting the learning rate have been
suggested in in the field of control and guidance (Bar-
Shalom & Fortmann, 1988) and in the Neural network con-
text (Barkai et al., 1995)(Murata et al., 1996). In the Neural



network references, the update of the learning rate is error
driven. These algorithms, like the dynamic learning rate
variance of Voting EM, balance the trade off between fast,
but potentially only local convergence, and accurate global
convergence.

The rest of this paper is organized as follows: in section
2, we define notations and brief description of the EM(η)
algorithm. In section 3, we describe and analyze Voting
EM and compare it to online ML counting and incremen-
tal EM introduced in (Neal & Hinton, 1998). In section
4, we improve Voting EM by presenting an algorithm that
automatically adapts the learning rate. Finally we summa-
rize our contributions and discuss directions for future work
Throughout the paper, we demonstrate the algorithms using
a synthetic BN.

2 NOTATION AND BRIEF DESCRIPTION
OF THE EM( η) ALGORITHM

A Bayesian network is a graphical model that encodes
causal relationships among a set of variables, the strength
of those relationships reflected in a set of probabilistic pa-
rameters. The task at hand is to learn the parameters of the
network from a set of data. This implementation assumes
a fixed structureS of the network and that the variables are
discrete valued. The learning is then the estimation of the
conditional probability tables (CPT) entries of the network.
The notation we use follows that of (Bauer et al., 1997).
Let Zi be a node in the network that takes any value from
the set{z1, ..., zri}. Let Pai be the set of parents ofZi in
the network that takes one of the configurations denoted by
{pai

1, ..., pai
qi}. An entry in the CPT of the variableZi is

given by:

θijk = P (Zi = zk
i |Pai = paj

i )

We are given a set of (new or previously seen) data cases
D = {y1, ..., yN}, and we have a current set of parameters,
θ̄, that define the network. The data are either complete,
that is all values of the variables are given, or in-complete.

The updating of the network parameters is achieved by the
following maximization:

θ̃ = argmaxθ[F (θ)]
= argmaxθ[ηLD(θ)− d(θ, θ̄)]

(1)

whereLD(θ) is the normalized log likelihood of the data
given the network,d(θ, θ̄) is a distance between the two
models andη is the learning rate. The distance that we use
in our implementation is the Chi squared distance (which is
an approximation of the KL divergence). Using a first order
Taylor approximation forF and solving the maximization
under the constraint that

∑
k θijk = 1 for ∀i, j, the follow-

ing approximate solution is derived in (Bauer et al., 1997):

θ̃ijk = θ̄ijk + η(
Eθ̄[zk

i , paj
i |D]

P̂ (paj
i )

− Eθ̄[paj
i |D]

P̂ (paj
i )

· θ̄ijk) (2)

Where

Eθ[zk
i , paj

i |D] =
1
N

N∑

l=1

P (zk
i , paj

i |yl, θ) (3)

andP̂ (paj
i ) is an estimate ofPθ̃(Pai = paj

i ) given as:

P̂ (paj
i ) = Eθ̄[paj

i |D] =
1
N

N∑

l=1

P (paj
i |yl, θ̄)

This parameterized update rule, denoted EM(η) by (Bauer
et al., 1997), can be used in both a batch and online learn-
ing mode. In batch mode, there are multiple data cases in
D; iterating the update rule amounts to running an EM like
algorithm (this reduces to EM ifη is chosen to be 1). The
Expectation step is computing the expectations as shown in
Eq. 3, and the Maximization step is computing the update
of the probability table entries as shown in Eq. 2. In the
batch case, (Bauer et al., 1997) show that different values
of η result in different speeds of convergence of this algo-
rithm.

3 VOTING EM- DESCRIPTION AND
ANALYSIS

Adapting the EM(η) algorithm to the online learning case
is straightforward. The evidence becomes just a single in-
stance of the network and for each new evidence vector, the
network’s parameters are all updated according to the rule:

θT
ijk =





θT−1
ijk + η[P (zk

i ,paj
i |yT ,θT−1)

P̂ (paj
i )

− P (paj
i |yT ,θT−1)

P̂ (paj
i )

· θT−1
ijk ],

for P̂ (paj
i ) 6= 0

θT−1
ijk ,

otherwise.
(4)

WhereP̂ (paj
i ) is the estimated probability of the parents

given the evidence and the previous estimated network and
is given by the following:

P̂ (paj
i ) = P (paj

i |yT , θT−1) (5)

The learning rateη controls how much we rely on the past.
As η approaches 1, the past is weighted less, and the update
of the parameters is based more on the present data. As
η approaches zero, the network parameters change slowly
from the previous model. (Bauer et al., 1997) prove that the



convergence rate to a local maximum is faster than regular
EM for the batch mode whenη is greater than 1, and prove
convergence for anyη between 0 and 2. However, conver-
gence was not proved for the online case. In fact, in the
online case, forη greater then 1, probabilities can become
negative. In this paper, we prove convergence of the Voting
EM algorithm only whenη is constrained to be less than 1.

3.1 ANALYSIS OF THE ONLINE LEARNING
RULE

In the following analysis, if we assume that there is no
missing data in the evidence vectorsyT , Eq. 4 reduces to:

θT
ijk =





η + (1− η)θT−1
ijk ,

for P (paj
i |yT ) = 1 andP (zk

i |yT ) = 1
(1− η)θT−1

ijk ,

for P (paj
i |yT ) = 1 andP (zk

i |yT ) = 0
θT−1

ijk ,

otherwise
(6)

This update rule is interpreted as follows. If the parents of
Zi are observed in theirj’th configuration and ifZi is equal
to its k’th value, increase the value ofθijk. If the parents
are observed in theirj’th configuration butZi is not equal
to its k’th value, decrease the current value. If the parents
of nodeZi are not observed to be in theirj’th configuration,
do nothing.

When there are missing data, the updated probabilities
change less than in the complete case. For sufficiently long
sequences of data, missing data have diminishing influence
on the estimate, and the following properties generally still
apply. For the case of hidden nodes (that is nodes that are
never observed), these theorems do not hold. Neal and Hin-
ton (Neal & Hinton, 1998), however, have shown empiri-
cally that estimation of the parameters using an online EM
approach with hidden variables yields good results in many
cases.

We call the online update method of Eq. 4 in the missing
data case, and Eq. 6 in the fully observed case, the Voting
EM algorithm. The expression of Eq. 6 shows the reason
for this name. Incoming data cause a change ofη in the cor-
responding probabilities; the observation of the child and
parents in a certain configuration is a ’vote of confidence’
for that state of the nodes, and is rewarded byη, while the
other states of the child (with the same parent configura-
tion) are reduced in importance by the same weight.

Given the sequence of full evidence data from the network
D = {y1, ..., yn, ...} the following theorem characterizes
the asymptotic behavior of the online update rule. With no
loss of generality, assume thatP (paj

i |yt, θ
t) = 1 for all

t = {1, .., n, ...}, that is the parents are always observed

in their j’th configuration. For ease of notation, we denote
θt

ijk asXt and rewrite Eq. 6 as:

Xt = (1− η)Xt−1 + η · It (7)

whereIt is an indicator function given as:

It =
{

1 with probability θijk = c∗

0 with probability 1− c∗ (8)

The process{It} is an independent identically distributed
(i.i.d) random process. For each instancet, It is a Bernoulli
random variable equal to 1 with probabilityc∗, which is
the true probabilityθijk of the Bayesian network, that is
c∗ = P (Xi = xk

i |Pai = paj
i ).

Theorem 1 Given a discrete Bayesian Network S, a se-
quence of full observation vectorsD, the update rule given
in Eq. 7 and the constraint0 < η ≤ 1, the following prop-
erties hold:

1. Xt is a consistent estimate ofc∗, i.e. E[Xt] = c∗ as
t →∞.

2. The variance of the estimateXt is finite and has a
limiting value ofV ar[Xt] = σ2 = η

2−η · c∗(1 − c∗)
ast →∞

3. For t →∞ the following inequality holds:P (|Xt −
c∗| ≥ qσ) ≤ 1

q2 , whereq ≥ 0

Proof: Taking the expectation of the recursion in Eq. 7,
noting thatE[It] = c∗ yields:

E[Xt] = (1− η)E[Xt−1] + η · c∗ (9)

This is a regular difference equation that can be solved us-
ing the Z-transform or by using regular algebraic recursion
methods. The solution to the recursion is given by:

E[Xt] = (1− η)tX0 + (1− (1− η)t) · c∗, t ≥ 0
(10)

whereX0 is the initial value ofθijk.

Obviously this converges only for0 < η ≤ 1, and
limt→∞(E[Xt]) = c∗, which proves property 1.

Proof of the second property uses a similar approach. The
steps to derive the recursion for the variance are given in
detail in (Starks & Woods, 1994). The final result is:

V ar[Xt] =
η

2− η
· c∗(1− c∗) · (1− (1− η)2t+2) (11)

Again, takingt to∞ results in

limt→∞V ar[Xt] = η
2−η · c∗(1− c∗)



The third property is simply an application of Chebychev
inequality toXt ast approaches∞. 2

From the theorem we see that in the mean, the online up-
date rule approaches the true CPT values. The parameterη
controls the rate of convergence. Eq. 10 and 11 imply that
η = 1 yields the fastest convergence, but also that there is
no reference to the past estimations. Whenη = 1, the esti-
mate of the probability oscillates between 0 and 1 based on
whether, in the current sample,Zi is equal to itsk’th value.
For smallerη’s the convergence is slower, but change is
smoother and less sensitive to the current sample.η can be
understood as a ’forgetting bias’ of the learning algorithm:
the bigger it is, the less is remembered from past observa-
tions.

The effect ofη on the variance is opposite to its effect on the
convergence rate. The smaller theη is, the smaller the vari-
ance of the estimate. Whileη = 1 yields the fastest con-
vergence, it yields the largest variance. Therefore a smallη
eventually yields a solution closer to the true CPT parame-
ter.

It is important to note that the variance does not converge
to 0; the estimated CPT entries oscillate around the true
CPT’s. Further, the magnitude of this variance depends on
the value of the true probability entry (c∗). The variance is
maximal forc∗ = 0.5, and decreases as the probability ap-
proaches 1 or 0. Figure 1 shows the standard deviation(the
square root of the variance) of the estimate as a function of
c∗ for different values ofη. Although oscillation around the
true probability seems undesirable, it has two advantages.
First, a small but finite variance allows the algorithm to get
out of a local maximum, given new evidence. Secondly, it
allows adaptation to a changing environment, withη, the
learning rate, controlling the speed of adaptation. Note that
the ability to escape local maxima is not guaranteed and de-
pends on the size ofη relative to the shape of the likelihood
function.

The third property of the theorem gives the confidence in-
tervals of the estimated CPT’s with respect to the variance
of the estimate. This property can help in the choice of
an acceptableη when using the Voting EM algorithm. We
use this property in the adapting learning rate algorithm of
section 4.

3.2 EXPERIMENT

To test the algorithm we create a BN consisting of one
parent node and two children. We generate 2000 sets of
variable values according to the probabilities shown in Fig-
ure 2. We then construct a test network with the same
structure and randomly selected initial CPT values, and ex-
ecute the online update algorithm, using the complete syn-
thesized data. We also vary the learning rateη. Figure 3
illustrates the results, showing two of the estimated param-
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Figure 1: Effect ofη andc∗ on the standard deviation of
the estimated probability

eters as a function of the number of samples used. For all
of the parameters, the test network moves in the direction
of the true network. Each subfigure displays the results for
two values ofη. With the largerη the change from the
initial guess to the real probability is faster than that with
the smallerη. However, after converging (in the mean) to
the true probability, the estimates with the largerη remain
noisier than the estimates with the smallerη.

Figure 2: BN used in experiments

3.3 MAXIMUM LIKELIHOOD ESTIMATION
AND VOTING EM

There is a close relation between Voting EM and the ML
estimator of discrete BN parameters. The ML estimator for
each of the CPT entry after seeingT samples, in the case
of no missing data is simply given by:

θT
ijk =

NT
ijk

NT
ij

(12)

whereNT
ijk is the number of times thei′th node was ob-

served to be equal to itsk′th value and the parents equal
to theirj′th configuration, andNT

ij is the number of times
the parents were equal to theirj′th configuration.T is the
total number of observations.

The ML estimate can be computed exactly for everyT in
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Figure 3: Results of online learning illustrated for 2 param-
eters. Thick straight line is the true probability, dashed and
solid lines are Voting EM usingη = 0.01,0.05 respectively.

an incremental way using the following update rule:

θT
ijk =





1
NT

ij
+ (1− 1

NT
ij

)θT−1
ijk ,

for P (paj
i |yT ) = 1 andP (zk

i |yT ) = 1
(1− 1

NT
ij

)θT−1
ijk ,

forP (paj
i |yT ) = 1 andP (zk

i |yT ) = 0
θT−1

ijk ,

otherwise
(13)

Note that this rule has the same form as the update rule
in Eq. 6, with the replacement of the fixedη by a varying
form of 1

NT
ij

. The effective learning rate not only varies in

time, but is also specific for each row in the CPT’s of the
BN. Further, note that each additional observation of the
parents in a particular configuration effects a progressively
smaller update on the CPT entries of the child node.

Voting EM is analogous to a ’fixed memory’ version of the
ML estimate. In Voting EM, the fixedη can be seen as
having a similar effect of fixing ofNij , which amounts to
looking back in time only far enough such that the count
of observations isNij . Although in the static network case
this simplifying assumption in Voting EM results in a noisy
estimation, it is beneficial when the network parameters
change over time. The ML approach adapts poorly to these
changes, basically averaging the values before and after
a change. Voting EM, on the other hand, with its shorter
memory, adapts more quickly to the change.

In case of missing data, the ML estimator does not work

in the form presented above and can be replaced by the in-
cremental EM presented by (Neal & Hinton, 1998). The
quantity 1

NT
ij

is replaced by the estimated sufficient statis-

tics of that node. This is equivalent to the replacement of
the indicator function in Eq. 8 by the inferred probability
of the parents given the evidence in Eq. 4. Again, Voting
EM behaves as a fixed memory version of the incremental
EM.

4 ADAPTIVE LEARNING RATE FOR
VOTING EM

Choosing an appropriate learning rateη for Voting EM
algorithm is one of the shortcomings of the algorithm.
Choosingη small yields a small variance in the estimation,
but the convergence is slow. On the other hand, a largeη
yields fast but noisy convergence. Another shortcoming is
thatη is constant for all of the network parameters. A good
learning rate for some parameters might prove a poor one
for others. For example, when the priors of the parent node
are biased towards one value, other values rarely appear. A
small η results in good estimates of the CPTs for the of-
ten observed values, but the CPT’s for the rarely observed
events hardly move from the initial condition. Choosing a
largeη solves this problem for the rarely observed values,
but the often observed values display large oscillations. An
adaptive learning rate addresses the first shortcoming. A
different learning rate per row of the CPTs, much like the
ML estimation, addresses the second problem.

Adaptive learning rates have been demonstrated success-
fully in several works related to Neural networks (Barkai
et al., 1995)(Murata et al., 1996): several options of adap-
tation have been used depending on the function being ex-
plored. We use a similar approach which follows from the
properties of Voting EM algorithm. Intuitively, for Voting
EM, the learning rate should be reduced when convergence
is reached. On the other hand, the learning rate should
be increased when there is a large error between the esti-
mated parameter and its mean value, which happens when
there is a local maximum or when the modelled environ-
ment changes. A large error can be inferred using the third
property of Voting EM. To achieve a better estimation while
maintaining the ability to adapt to changes in the network
parameters or escape from local maximum we propose a
heuristic scheme in which an initially largeη is adjusted
over time. Lettingt denote the number of timesPai = paj

i

since the last timeηij changed, the proposal for varyingη
is as follows:

For eachPai = paj
i , thej′th configuration of the parents

of nodei do the following steps:

• Initialize the following:

– SetP [Xi = xk
i |Pai = pai

j ] = θt
ijk to some



initial value fork = 1, ..., ri

– Setηij to some value between 0 and 1. A high
value can be initially set.

– Sett = 0.

• Given an observation vectoryT , if Pai = paj
i do the

following:

1. Estimateθt+1
ijk using the update rule of Eq. 7,

whereη is replaced byηij .

2. If |θt+1
ijk −E[θt+1

ijk ]| > q · σij then
increaseηij ,
sett = 0

Else if (1− ηij)t < threshold
decreaseηij

sett = 0
Else sett = t + 1

3. Read the next observation and repeat steps 1-2.

Note that E[θt+1
ijk ] and σij are the mean and variance

of the estimated parameter.q is a positive number. q
determines the confidence in the decision to increaseη;
from the Chebychev inequality this confidence is equal to
1− 1

q2 .threshold is specified by the user and reflects the ac-
ceptable convergence of the parameters. The rate at which
η is increased or decreased is also specified by the user, and
is discussed in the next section.

Key to this heuristic is that the learning rate both increases
and decreases. From the first two properties outlined in
theorem 1, the convergence of the mean and variance is
a function of (1 − η)t, where t is the number of times
Pai = paj

i . This expression goes to0 as t approaches
∞. Instead of waiting for infinite data, we test against the
parameterthreshold to determine if convergence has ap-
proximated with parameterized precision. If it has been, we
decrease the learning rate. As more evidence is presented,
the learning rate for all the parameters becomes smaller and
smaller, but remains finite. This means that the property of
being able to adapt (or break out of a local maximum) is
maintained, but the adaptation is slower.

If a learning rate is too slow in adapting, we should increase
it. The theorem’s third property implies the ability to de-
tect changes that are faster than the current learning rate
can address. By taking the absolute difference between the
present estimate and its mean and comparing it to the con-
fidence interval defined byq · σij , we can assert, with con-
fidence1 − 1

q2 , that there has been a change that warrants
increasing the learning rate.

In practice the mean and variance of the parameters are ap-
proximated. The mean can be estimated by a running av-
erage (to be reset every timeηij is increased). Although it
is not an unbiased estimate of the mean, it is a consistent
one. The variance can be estimated using the closed form

analytical form of Eq. 11, using the ’worst case’ true prob-
ability entry of0.5 (see figure 1) which can be offset by a
smaller choice ofq.

4.1 EXPERIMENTAL RESULTS

We demonstrate the improved Voting EM using the same
synthetic BN structure shown in Figure 2. We use three dif-
ferent cases: the BN parameters are static, change abruptly
or slowly over time, corresponding to a static modelled
environment and abrupt or slow changes in the modelled
environment. Figure 4 show the adaptive Voting EM in
the static case. Compared to Figure 3, the convergence is
quicker and closer to the true CPT, and is comparable with
the online ML estimation.

Figures 5(a)(b) show the results for the other two cases, for
both the adapting Voting EM and the incremental ML esti-
mation. As expected, the ML estimation adapts poorly to
the changes in parameters. Although in the abrupt change
case, it does start to adapt to the new parameters (and would
adapt given infinite samples), in the case of slowly (but con-
stantly) changing parameters, it cannot follow the changes.
In contrast, the adapting Voting EM follows the abrupt
change quickly and converges to a close value. Voting EM
is also able to follow the slowly varying changes with good
accuracy.

Figure 6 demonstrates how the learning rateη changes over
time for the abrupt change case. The learning rate de-
creases constantly, until the change occurs (after 2000 sam-
ples). It increases rapidly shortly thereafter in response to
the change, only to decrease again after no more changes
are detected. Note that the change isη is not continuous
in contrast to the learning rate update schedules used in
(Barkai et al., 1995) and (Murata et al., 1996) which are
continuous. The increase and decrease rate chosen in the
experiments were exponential. Although (Barkai et al.,
1995) showed that exponential was problematic for some
adaptive learning rate, it works in this case because the
learning rate is not updated at every step but at varying
length intervals. Asηij becomes smaller, the intervals be-
tween the updates become longer, therefore even an expo-
nential update ofηij is still within the limits set by (Barkai
et al., 1995).

5 CONCLUSIONS AND FUTURE WORK

We have presented Voting EM, an online learning al-
gorithm for Bayesian network parameters, based on the
EM(η) algorithm suggested by (Bauer et al. 97). We have
shown its convergence properties, and explained its rela-
tionship with the paradigm of Maximum-Likelihood count-
ing. We have demonstrated the advantages of the Voting
EM algorithm, namely its ability to continuously adapt to
changes in the modelled environment and to escape local
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Figure 4: Adaptive learning rate for Voting EM. Thick line
is the true probability. Solid line is the adaptive Voting EM,
dashed line is the ML estimate

maxima of the likelihood function. In addition, by adding
a mechanism to automatically adjust the learning rateη, we
have obtained a new version of Voting EM that converges to
the true value of the CPTs, and does so more quickly than
the base version. It also adapts more quickly to changes
in the modelled environment. We intend to explore further
the relation between the value of the learning rate and the
ability to escape local maxima of the likelihood function
for both the static and the variable learning rate cases.

The synthetic data experiments described in this paper
show convergence and adaptation with relatively scarce se-
quential learning data. This suggests to us that Voting EM
may be useful in real-world applications with those char-
acteristics. We intend to evaluate Voting EM as part of a
classification application, run against a corporate mail fire-
wall, aimed at fault detection (Bronstein et al., 2001). We
also intend to explore further how Voting EM performs in
classification situations with abundant unlabelled learning
data.
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(a) Sudden change in environment (b) Slow change in environment

Figure 5: Adaptive learning rate for Voting EM in changing environments. Thick line is the true probability. Solid line is
the adaptive Voting EM, dashed line is the ML estimate.
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Figure 6: The learning rateηt of one of the parameter for the sudden change in environment example 5(b).


