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Abstract

The problem of optimal sequential decision for individual sequences, relative to a class
of competing off-line reference strategies, is studied for general loss functions with memory.
This problem is motivated by applications in which actions may have “long term” effects, or
there is a cost for switching from one action to another. As a first step, we consider the case
in which the reference strategies are taken from a finite set of generic “experts.” We then
focus on finite-state reference strategies, assuming finite action and observation spaces. We
show that key properties that hold for finite-state strategies in the context of memoryless loss
functions, do not carry over to the case of loss functions with memory. As a result, an infinite
family of randomized finite-state strategies is seen to be the most appropriate reference class
for this case, and the problem is basically different from its memoryless counterpart. Based
on Vovk’s exponential weighting technique, infinite-horizon on-line decision schemes are
devised. For an arbitrary sequence of observations of length n, the excess normalized loss
of these schemes relative to the best expert in a corresponding reference class is shown to
be upper-bounded by an O(n~1/3) term in the case of a finite class, or an O([(Inn)/n]'/?)
term for the class of randomized finite-state strategies. These results parallel the O(n~1/?)
bounds attained by previous schemes for memoryless loss functions. By letting the number
of states in the reference class grow, the notion of finite-state predictability is also extended.
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1 Introduction

The sequential decision problem [1, 2] concerns a temporal sequence of observations z =
129 - -+ x, for which corresponding actions biby--- b, result in instantaneous losses £(by, )
for each time instant ¢, 1 <t < n, where £(-,-) denotes a non-negative function. The instanta-

neous loss contributions from each action-observation pair yield a cumulative loss

n

Ly(z") = Zﬂ(bt,xt) .

t=1

A sequential (or “on-line”) decision algorithm (or “strategy”) is a sequence of actions byby - - - by,
in which the actions b; are (possibly random) functions of the previous observations z'~! only.
The goal in the sequential decision problem is to find an on-line strategy that approximates,
in the long run and for an arbitrary individual sequence of observations, the performance of
the best strategy in a given reference class. The best competing strategy is determined in
hindsight (or “off-line”), with full knowledge of the given sequence of observations. The excess
loss incurred by the on-line strategy over the best competing strategy is termed the regret.
Universal lossless data compression is clearly a special case of the sequential decision problem,
where b; is a conditional probability assignment p(-|z!~!) for z; and £(b;, z;) = — log p(z|z~1).
The regret corresponds to the pointwise redundancy of a sequential probability assignment
scheme with respect to a class of models. Other instances of the sequential decision problem
include gambling, prediction, and portfolio selection (see, e.g., [2]).

In the original formulation of the sequential decision problem [1], the reference class is
given by all constant strategies, and the best constant strategy is termed the Bayes response.
In [3], Ziv and Lempel extend this class in the context of universal compression of individual
sequences, to include all finite-state (FS) encoders. A similar approach is used in [4] to study
binary prediction, leading to the notion of FS predictability. This work is extended in [5] for
general loss functions. In the FS setting, rather than being constant, the competing reference
strategy is allowed to vary according to b; = ¢(s¢), where s; is a state in an F'S machine (FSM)
with state set S, driven by a next-state function sy11 = f(s¢,x). The functions g and f, and
the initial state s1, are optimized off-line, with full knowledge of ™. The (normalized) loss over
an infinite sequence (n — oo) is considered, and a (generalized) F'S predictability results from

letting |S| tend to infinity. Notice that, for given f and s;, the loss incurred with g takes the



form

Ly(a") =3 D> nlz,s)lg(s),) (1)

seSzeA

where for an observation z (in a discrete alphabet A) and a state s € S, n(x,s) denotes the
number of times z; = x and sy = s, t = 1,2,...,n. Thus, the optimal g consists of using, for
each state, the Bayes response corresponding to the sub-sequence of observations occurring at

that state, namely
g(s) = argminyc g B, [0(b, x)|s] (2)

where B is the action space and the expectation on z is taken with respect to the conditional

empirical distribution

2ls) = n(z,s)
p( | ) Em’eAn(xlvs)

The function defined in (2) is deterministic and depends on z™ only through the empirical

, €A, seS. (3)

distribution (3). Equation (1) also suggests a probabilistic analogy, in which the data are
drawn from an FS source {p(z|s), z € A, s € S}, with the next-state function f still dictating
the evolution of the state. In that case, the expected loss for any strategy by = p(z'~1,b' 1)

(not necessarily FS) is given by

ﬁp,u =

> Pi(s, D) Ey[l(b, )|s] (4)

n
t=1s€SbeB
where P;(s,b) is the joint probability (with respect to {p(z|s)} and {u;}) that (s, b) =
(s,b). Again, the expected loss in (4) is minimized over p by the deterministic FS strategy
pe(xt =1 671 = g(s;), where g is as in (2) and the expectation is with respect to the FS source.

The theory of learning with expert advice [6, 7, 8, 9] is a natural extension of the above
framework, where the class of reference competing strategies is viewed as a set of experts. In
this setting, an on-line strategy is expected to combine the (possibly random) advice of the
experts, incurring a loss that approaches that of the best performing expert for each individual
sequence.

The classical formulation of the sequential decision problem does not address cases in which
the instantaneous losses also depend on past action-observation pairs. Such losses may capture
the cost of switching from one action to another (e.g., transaction costs incurred in portfolio

selection [10, 11], or energy spent in control systems), or the long term effect (“memory”) of



an action at a given time. For a loss function with limited memory of the form £(b;_1, by, ),

the cumulative loss takes the form

n

Ly(z") = Zg(bt—labt,l“t) (5)

t=1
where by represents some initial action. For a randomized strategy, the average loss (with
respect to the ensemble of randomly selected actions) takes the form

n
Ly(z") = > Y Pr(b—1 =b,b =b)e(t,b,zy). (6)

b bEB t=1
The scenario in which there is a cost for switching from one action to another is akin to
the metrical task system (MTS) problem (see, e.g., [12]), but differs fundamentally from it in
that in the MTS problem it is assumed that the action b; precedes z;. Connections between the
MTS problem and the sequential decision problem are investigated in [13]. As for the case of
actions with long term effects, an example is given by the following (inverse) filtering problem:
Given a filter H(z) = hg + h1z~ !, and a (noisy) filter output sequence ™ (the observations),
the actions b; are aimed at finding the most likely input sequence b1 b, - - - b, that “explains” z"

in the sense that £,(z") is minimized, where
g(btfl, bt, :I?t) = [It - (hObt + hlbtfl)]Z .

In other applications, e.g., prefetching in computer memory architectures, the memory may
be much longer. In this example, the goal is to prefetch an address from main memory into a
faster memory (“cache”) ahead of time, in order to prevent stall time by the CPU when accessing
this address. The sequence of observations is given by the address sequence, and the action b,
consists in prefetching one (or several) address(es). While this problem has been studied as one
of prediction (see, e.g., [14]), such formulation aims at predicting the next memory reference,
rather than at having it already in cache at the time it is requested. Clearly, the loss (e.g., the
CPU stall time caused if the address z; is not in cache at the time it is requested) will depend
not only on by, but on the entire sequence of actions b1bs - - - b. Based on an opportunity cost
analysis, it is argued in [15] that a reasonable loss function for the prefetching application takes

the form

e(blaan"'abtaxt) = Zci(bt—iaxt) (7)
i=0



where the contribution Cj(b;—;, x¢) of the action b;_; to the loss incurred at time ¢ is considered
“in isolation” and assumed additive. This contribution does not extend beyond a given non-
negative window size v (the memory length). For this simplified loss, it is shown in [15] that an
on-line algorithm that uses the parsing rule of [3] to build a decision tree, performs essentially
as well as the best F'S strategy determined in hindsight.

In this paper, we reformulate the sequential decision problem studied in [5] to cover also
loss functions with memory. We will focus on general loss functions of the form (5) and (6),
for which the instantaneous losses £(V,b,z), /,b € B, © € A, are bounded by a given constant;
extension to longer memories is relatively straightforward. Our main result will require finite
observation and action spaces A and B, respectively; in cases in which no assumptions are
required, our notation will nevertheless assume a discrete alphabet A.

Notice that the theory of Markov decision processes (MDP’s; see, e.g., [16]) is an analogous
generalization (in the direction of loss functions with memory) of the probabilistic setting, in
which the data are drawn from an FS source (as in Equation (4)). In an MDP, the process at
time ¢ is considered to be at some state o; in a countable state space, and a decision maker
chooses an action by = b € B, at a cost L(oy,b). As a result, the process evolves to state o411
according to (action-dependent) transition probabilities {py(ost1|ot)}. In an average cost per
stage problem, for a given initial state oy, the decision maker aims at a (possibly randomized)
strategy {y} that minimizes the normalized expected loss over n stages, n — oo, where the
expectation is taken with respect to the transition probabilities and to {y}. In particular, if
or = (bi—1,8t), st € S, and py((b, s¢41)|(V', s¢)) = p(ser1|se) for all ' € B, where {p(s|s’)} are
transition probabilities defined on S, then the normalized asymptotic expected loss takes the

form

Ly = 1i£sogp% S S B(s Kb L((s, ), b) (8)

t=1s€S b beB
where P;(s,b',b) is the joint probability (with respect to {p(s|s’)} and {u:}) that (s, b 1,bt) =
(s,0/,b). The connection with loss functions with memory in a probabilistic setting follows,
since (8) gives the normalized value of the expected loss (6) as n — oo, in case the data is

drawn from an FS source with conditional probabilities {p(z|s), z € A, s € S} and the state

LFor continuous spaces, probability distributions should be appropriately replaced by density functions, and

summations by integrals.



sequence evolves according to the next-state function f, where
L((s,b)),b) 2 L(s,b.,b =" plz|s)e(b',b,z) (9)
r€EA

and

p(sls) = > plals). (10)

z:s=f(s',x)

Sequential strategies for loss functions with memory and arbitrary observation sequences
are considered in [17] in a broader setting, closely related to MDP’s. However, the problem
in [17] is formulated in the framework of Blackwell’s so-called “approachability-excludability”
theory [18], in which conditions to approach a certain performance region regardless of the
observations are studied for vector loss functions. While for memoryless loss functions it is
possible to define a loss vector and performance regions that measure the regret (see, e.g., [1]),
this does not appear to be the case for loss functions with memory.

A sensible generalization of the notion of regret used in [5], requires the determination of
a set of reference FS off-line strategies (or experts). First, we consider the case in which the
experts are generic (i.e., no FSM structure is imposed), and the set of experts is finite. This case
covers the deterministic F'S off-line strategies that lead to the generalized predictability of [5].
Inspired by [6] in the setting of prediction with expert advice, we devise on-line strategies that
perform essentially as well as any expert in a finite set, for an arbitrary sequence of observations.
Specifically, we present an infinite horizon on-line scheme whose normalized excess loss vanishes
at arate O ([(ln \)/n]"/ 3), where X denotes the cardinality of the expert set. This result parallels
the case of memoryless loss functions, for which the normalized excess loss for learning schemes
with expert advice (as well as for classical schemes by Hannan [1], Blackwell [18], and others) is
upper-bounded by an O(n~'/2) term. While the learning algorithm of [6] (see also [8] and [9])
suggests to (randomly) select an expert at each time ¢ based on its performance on z'~!, here
the main problem is to overcome the effect of b;_; in the instantaneous loss at time ¢, as this
action may not agree with the expert selected at that time.

Next, we consider FSM experts. In the memoryless loss case, the “ultimate” performance
yardstick for FSM experts in [5] is restricted to deterministic FSM’s. This restriction is natural,
since it is shown in [5] that, as |S| — oo, allowing randomization of f does not improve the

(generalized) predictability of an individual sequence. Moreover, for a deterministic next-state



function f, the optimal strategy defined in (2) is deterministic. However, key properties that
hold for FSM expert models in the case of memoryless loss functions break as a result of an
additional dependency on the previous action, which complicates the problem. For loss functions
with memory, the loss incurred by the expert model b; = g(s;) on an individual sequence z"
takes the form

Lg(a™) = L(bo, g(s1),21) + D Y nlw,s's)e(g(s"), 9(s), ) (11)

s',s€S xEA

where n(z,s's) denotes the number of occurrences in 9, z3,...,x, of an observation z at
state s, which in turn is preceded by state s’. Although the loss still depends on z™ through
occurrence counts, it turns out that the minimizing expert ¢ in (11) need not be deterministic
as in (1). Thus, we cannot restrict the analysis to finite expert sets. Furthermore, we cannot
rule out randomized next-state functions, which allow for statistical dependencies between the
expert’s actions. When the next-state function is randomized, without loss of generality, g can
be assumed deterministic. An infinite horizon on-line algorithm is derived for that case, with a
regret that vanishes at a rate O ([(ln n)/n]*/ 3). While our results for the finite expert set case
apply to generic experts, here we make heavy use of the FSM structure of the experts.

Next, by letting the number of states in the reference class grow, the FS predictability
of [4] (and [5]) is further extended to account for the loss functions with memory considered
here. Notice that [4] and [5] focus on the case |S| — oo (for which no uniform convergence rates
can be derived) as these works emphasize the use of the Lempel-Ziv parsing rule [3] to compete
against an FSM of any size. For a finite sequence and a given number of states, however,
competing against deterministic machines, aiming at a deterministic “FS predictability” with
a regret corresponding to a reduced number of experts, may not minimize the total normalized
loss. For memoryless loss functions, the limiting F'S predictability (as |S| — oo) is the same as
with randomized machines (for which the regret is larger due to a larger number of experts),
but may be achieved at a slower rate. Thus, our results extend earlier work on FS predictability
not only in the direction of loss functions with memory, but also providing a more refined regret
analysis, with the above trade-off to be resolved.

The rest of this paper is organized as follows. Section 2 studies on-line strategies for finite

sets of generic experts. In Section 3, we impose an FSM structure on the expert set, and



discuss various alternatives for the reference class. Finally, Section 4 studies on-line strategies
for randomized FSM strategies, and extends the notion of FS predictability to loss functions

with memory.

2 On-line strategies for finite sets of experts

In this section, we study on-line strategies that compete against a finite set F of A experts for
any individual sequence ™. No assumptions are required on the observation and action spaces
A and B, respectively. The loss function £(b',b,z), V/,b € B, x € A, is assumed bounded, with a
maximum loss £,,x. At each time instant ¢, each expert F' € F offers its advice, which takes the
form of a probability distribution on b;. If {b;} is randomly selected according to the strategy
proposed by F', the expected expert loss is given by

Lr(z) = > Pr (b =0/, b, = 0)L(V, b, 2¢) (12)

b’ ,beB

where Pr(¥’ )() denotes probability with respect to the ensemble of possibly random actions of
F'. Notice that the (possibly random) information used by the expert to generate its advice is
unspecified, and irrelevant at this point. An on-line strategy combines the advice of the experts,

to derive a distribution on b; from which the action is drawn.

General Approach. In principle, it would appear that we can obtain a suitable on-line
strategy for finite expert sets by directly applying the theory of learning with expert advice
of [7] and [6]. A subtle complication introduced by the memory in the loss function, however,
prevents such a direct application. The learning algorithms of [7] and [6] suggest to randomly
select, at each time instant ¢, an element F' of F based on its expected performance on z!~!,
and draw b; according to the distribution proposed by F. The complication arises as these
algorithms count on the fact that the average on-line loss, given the expert selection F', is equal
to the average loss achieved by F' on the new observation z;. This equivalence, however, may
not hold for loss functions with memory, since the instantaneous losses of the on-line strategy
and the expert on the new observation also depend on their respective previous actions, which
may differ.

It is nevertheless possible to adapt the general approach of learning with expert advice

to tracking the best strategy in F in the present setting. To this end, we will introduce an



additional block-length parameter that determines how long we will follow the advice of a
randomly selected new expert. The goal is to amortize the potential discrepancy between on-
line and expert losses at the start of each block (the “cost of switching experts”), over the length
of the block. Notice that “piecewise constant” strategies that follow a fixed expert during a
certain block are considered in [19]. However, the piecewise constant strategies in [19] are used
for off-line reference, as a generalization of competing against the best fixed expert. Our on-line
strategy, inspired by [6], is first presented for the finite horizon case, in which n is known in

advance.

Finite Horizon Case. For a fixed block length M, let K = [n/M] — 1, and consider the
parsing of 2" into K non-overlapping blocks of length M, Xy = (Zxara1, Thdra2y - s ToMAM ),
k=0,1,...,K — 1, followed by a possibly shorter block Xx = (zxarr+1, TrM+2,---,Tn). Let
Epyk denote the cumulative value over k blocks of the loss (12) of expert F, with Zp‘,() =0
for all F. The multiset of A cumulative losses {Lpy, F € F}, is denoted by Lry. At t =
kM + 1,k = 0,1,..., K, the on-line algorithm randomly selects F' € F according to the

conditional distribution B
exp{—nLrk}
dFicF exp{—nLp k}

where 7 is a given positive constant. In (13), the experts are exponentially weighted based on

Py(F|LF k) = (13)

their past performance. The actions of the selected expert are followed through ¢ = min(kM +
M,n) (i.e., during Xj). Notice that two different randomizations are involved: one with respect
to the choice of expert, at a block level, and one with respect to the possibly random expert
actions, at a sample level. Theorem 1 below gives an upper-bound on the normalized regret of

the proposed scheme.

Theorem 1 Let

1
n 3

M*=2— 14

(lnA) (14)
and ,
2 InX\3

* = — . 1
g Crax ( n > ( 5)

Let the expected loss of the proposed on-line strategy with parameters n = n* and M = [M*],
over ", be denoted by Lee/m(z™) (finite expert set/finite horizon). Let Lmin(2z") denote the



loss of the expert in F that performs best on x™. Then,

L (Lrana) = Lain(a) < 3 e (22)7 4 22OV 6 (0 8) (1)

n

Proof: The bounding technique (similar to the one used for proving [20, Theorem 1], which
builds on [7]) is based on the sums Wy, 0 < k < K + 1, defined by
A —_
Wi = Z exp{—nLrp}. (17)
FeF
It consists in comparing an upper bound and a lower bound to In(Wx1/Wy). For the lower

bound, we have:

%% _
In -2 — Z exp{—nLpr4+1} —InX
Wo FeF
> —nl _
> lnrﬁlg}(exp{ nLrr+1} —InA
= —nLmin(z") —In X (18)

where the first equality follows from Lo = 0, so that Wy = X, and the last equality follows
from the definition of E_F,K+1 as the total loss accumulated by F' over K + 1 blocks, namely
over the entire sequence z".
To get an upper bound, we first define £z(X}) as the average loss accumulated by an
expert F' € F over block Xj, namely
Lr(Xp)= Y > Py =0,b = b)L(V,b,z,) (19)
b’ ,be B t=kM+1

where my = kM + M, 0 < k < K, and mg = n. With this definition, for £ =0,1,..., K,
— k — — —
Lrgi1 =Y Lr(X;)=Lpk+ Lr(Xg). (20)
i=0

Thus, by (17), (20), and (13),
Wit

In =In Y Py(F|Lgy)exp{—nLp(Xi)}. (21)

k FeF
Next, recall that Hoeffding’s inequality [21] asserts that for any zero-mean random variable Z
taking values in a bounded interval of size R, In E[e?] < R?/8. A trivial extension that allows
for a general mean p of Z, gives

2

InEle?] < p+ % : (22)



Applying (22) to the right-hand side of (21), we get

. . 1M ax
ln Z Pk(F|Lf,k) exp{—nﬁp(Xk)} S —T]Ep{ﬁp(Xk”L]:’k} + T (23)

FeF

where the expectation on F is with respect to Pj(:|Lz ). Combining equations (21) and (23)

and taking the summation over £ =0,1,..., K, we get
Wi 1 N Wi
In——— = 1
W ,;0 A

n?M?02, (K +1)

maXx

8

K
< =Y Ep{Lp(Xp) Ly} +
k=0

(24)

The summation on the right-most side of (24) differs from Ly /g, (2™) in that it does not account
for the possible change in the expert selection from one block to another, which only affects the
term Pr) (bpas = 0, beasy1 = b) in (19), as byys follows the expert used in the previous block.
This correction cannot cost more than an additional loss of /.y for each block X, £ > 0, and

therefore

K
Leesym(z") < Ep{Lp(Xi) Lk} + Klmax -
k=0

Thus, by (24),

W, . M2 (K +1
In K+1 < _nﬁfes/fh (xn) + n max( ) + nKemax
Wo 8
2 " 22 Mn+M-—1 n—1
< _n‘cfes/fh($ ) + 1 Zma (8 ) + Nlmax M (25)

Finally, by comparing the upper and the lower bounds on In(Wg 41/W)), (18) and (25), we get

In )\ 02 M M—-1 -1

Efes/fh(xn) < Emin(xn)

For a given horizon n, the design parameters M* and n* given in (14) and (15), respectively,
approximately minimize the regret. Using M = [M*]| and n = n* yields the upper-bound (16),
where the last two terms in the right-hand side account for the discrepancy between M and

M?*, and for the possibly incomplete last block Xf. O

Infinite Horizon Case. For infinite horizon, we use the “doubling technique” (see, e.g., [9]),
dividing time into non-overlapping contiguous super-segments of lengths N; = [nga’], j =

0,1,---, for given positive constants ngy and a, a > 1. In the (j 4 1)-st super-segment, the above

10



finite horizon algorithm is used with design parameters M = [M;] and n = n;, where M; and
n;j are specified by (14) and (15), respectively, but with N; replacing n. The expected loss of
this infinite horizon scheme over a, prefix ™ of a sequence of observations is denoted Ly, Jin(7")
(finite expert set/infinite horizon). Theorem 2 below states that for all n, the normalized regret

is bounded as in Theorem 1, but with a larger constant.

Theorem 2 For any prefiz ™ of an infinite sequence of observations,

% (Efes/ih($n) - Emin($n)) < g C(a)lmax (%) ! + 0 (thn> (27)
where ,
_la(a=1)J3
C(a) = T,

Proof: Let J(n) denote the index of the super-segment in which z, falls, and let Y}, 0 <
j < J(n), denote the sequence of observations that fall in the (j 4+ 1)-st super-segment. We

have Y; = (z1,11, %142, -, 1;,,), Where Tp = 0, Tj41 —T; = Nj for 0 < j < J(n), and

>

Trmy+1 =1 < Tjy + Ny By definition of the infinite horizon scheme, we have

J(n)
Lfes/ih(xn) - Z Lfes/ﬂl(y}) < (J(n) + l)gmax (28)
=0

where the difference is due to the possible discrepancy between by and the last action of each
super-segment. We can upper-bound each loss Lgg /m(Yj), 0 < j < J(n), using Theorem 1, and
the bound is still valid if we replace the loss of the best performing expert in each super-segment
with that of the expert F' that performs best on ™. On the other hand, the design parameters
used in the last super-segment Yj(,), of length n —T,, are optimized for a possibly longer
horizon Nj(,). However, notice that for given design parameters, the regret terms in (26) grow
with the sequence length, and therefore the upper bound still holds if we replace the sequence
length with the (possibly longer) horizon for which the parameters are optimized. Thus, the
(unnormalized) bound of Theorem 1 is still valid if we replace the sequence length with a longer

horizon in the regret term. As a result, for 0 < j < J(n) we have
— _ 3 1
Lres/m(Y7) < Lr(Y5) + 5 Lmax[(In N2 +O(1)

where Lr(Y;) denotes the expected loss of F over Y;. Therefore, (28) implies

J(n)
1 n 15 on 3lmax 211 J(n)
Eﬁfes/ih(z ) < Eﬁmm(x )+ o j§:0[(1n A)NS]3 4+ 0 (—n > . (29)

11



Now, assuming Ny > 1,

=
S
2
Wl
Il
=
N
Pl
=
|
—_
—
Wl
/N
—
+
=
|
ot
N——
Wl

<
Il
=)

<
Il

§=0
J(n)
; 2(J 1
§=0
In addition,
J(n)—1 o™ _q
n>TJ(n): N; > ng 1
=0 a—
Thus,
In[1 + n(a — 1)/no]
1
T(n) < - (31)
which also yields
2 2
I(n) nale—l) 4 V3 _ 1 na(a—1)\ 3
a%]<("°2 ) <(;°) (32)
=0 a3 —1 a3 — 1

where the last inequality holds for all n > 8nga?/[27(a — 1)]. The theorem follows from equa-
tions (29)-(32). O

Notice that the optimal choice of ¢ and ng depends on n. As n — 00, the optimal a is the
value that minimizes C'(a), which is close to a = 1.64, and the bound on the regret is about
2.64 times higher than in the finite horizon case. However, any choice a > 1 guarantees a regret

that vanishes at the same rate as in the finite horizon case.

Almost-Sure Convergence. Next, we establish convergence of the on-line loss to L_',min(mn)
in the almost-sure sense for the random choice of experts, while still maintaining, at this point,
the average performance measure with respect to the possibly random actions of each expert.
Almost-sure convergence with respect to the latter requires additional assumptions on the
experts, so as to guarantee that the loss obeys a “law of large numbers.” Such assumptions will
be made in Section 4. Here, a slightly different choice of the block length parameter is needed.
Let Lges/in(7") denote the (random) average loss incurred over z™ by a specific realization of the
randomly selected experts according to the infinite horizon scheme (where Nj is as in Theorem 2

but M; and n; are still unspecified).
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1_ _1_
Theorem 3 Let M; = KyN} 7' and nj = KoN; 7 where 0 < g1 < 1/3, 0 < ¢ < 2/3,

and Ky, Ky are positive constants. Then,

I Lfes/ih(xn) - Zmin(xn)
imsup

n—o00 n

<0 a.s.

Proof: Let J(n) denote the index of the super-segment in which a time instant n falls, and let
m(n) denote the total number of blocks up to and including the block in which z,, is located.
Recalling the definition of T} as the cumulative length of the first j super-segments, we have

TN [T

i) = Jz% {ﬁj " { Mj(w) w '

Let Fy, Fi, ..., Fy(n)—1 denote the sequence of expert selections in the specific realization leading
to the loss Lg/in(7"). Notice that these selections are independent (given z"), and so are the
corresponding random losses L, (X)) accumulated by F, over block Xy, k =0,1,...,m(n)—1.
For a sequence of zero-mean independent random variables Z;, taking values in bounded intervals
of sizes Ry, respectively, k = 1,2,...,m, the Chernoff bounding technique used in conjunction
with Hoeffding’s inequality (see (22)) yields, for every € > 0,
2

2m2e

SF )

m
Pr{z Zy, > me} < exp{—
k=1

Thus, by letting m = m(n), Zy = Lp,(Xg) — EF{Lr,(Xk)Lr i}, and Ry = luax My, k =
0,1,...,m(n)—1, where j(k) denotes the index of the super-segment to which block k£ belongs,
we can apply the bound in (33) to obtain

et A 2m(n)?e?
Pr kz:% (L, (Xk) — Er{LF, (Xi)|LFk}] = m(n)e p < eXp{—EIQnaX ) e }.oo(34)

Now, proceeding as in the proof of Theorem 2, but with the design parameters n; and M;
specified for Theorem 3, we have

m(n)—1
> Bp{Lr(Xp)[Lrx} < Luin(a") + O(m? ) + O(n'=917%2) . (35)
k=0
In addition,
m(n)—1

Lressin(x") < Y L, (Xg) + Lmaxm(n) . (36)
k=0

13



It is easy to see that m(n) = ©(n?'72/3) and E;n:(g)_l

and (36) imply

M].Z(k) = O(n*3%1), so that (34), (35),

P

n

v { Laesjin(") = Lmin(2") 6(n)} < exp{—K3n’*'} (37)

for some positive constant K3, where §(n) = O(n¥>~%/3) 4 O(n=%'%2) + O(n® ~1/3). Since
d(n) — 0 and the right-hand side of (37) forms a summable series, the result follows by the
Borel-Cantelli Lemma. O

For a given ¢, which determines the decay rate at the right-hand side of (37), the order of
d(n) at the left-hand side is minimized by choosing ¢ such that max{0, %—2(,01} <o < %—1—901.

In that case we have §(n) = O(n®1~1/3),

Discussion. An example of the finite expert set considered in this section is the set of deter-
ministic F'S strategies of the form b, = g(s;), as studied for memoryless loss functions, for finite
action space B and state space S. In this case, log A < |S|log |B|. The MDP probabilistic anal-
ogy, in which the data are drawn from an FS source {p(z|s), x € A, s € S} and the expected
loss takes the form (8), suggests an alternative deterministic FS model. Assuming that {p(z|s)}
yields an irreducible Markov chain, the expected loss in (8) is minimized over the strategies

by the deterministic FS strategy

by = pe(z' 10 = g(se, br_1)

independent of s; and by [16, Vol. 2, Ch. 4]. This strategy is termed stationary, and is obtained

by solving the following linear program:

minimize: Z q(s,b',b)L(s,b',b) over q

s,b',b
subject to: Zq(s, b, b) = Z q(s', 0", b )p(s]s"),
b s’y
Z q(s,b',b) =1, and
s,bb
q(s,0',0) > 0 (38)

where p(s|s’) is given by (10). At most one action b satisfies g(s, b, b) # 0, and we set g(s,b") = b.
Thus, the MDP setting suggests the use of a finite set of deterministic reference FS off-line
strategies of the form b, = g(s,b;—1), that are obtained as optimal stationary strategies for

some F'S sources {p(x|s)}. The resulting number of experts satisfies log A < |S|-|B|log|B].

14



In the case |S| = 1, the same model naturally arises without recourse to a probabilistic
setting. In that case, consider randomized reference strategies, not necessarily F'S, in which b, is
any stationary random process, with by randomly selected according to the stationary marginal
distribution (rather than being a fixed initial action). Let q(b;—1 = b',b; = b), b',b € B, denote
the marginal distribution on pairs. Then, the average loss (with respect to the ensemble of
randomly selected actions) takes the form

L™ = 3 q,b) S np(@)e',byz) 2n 3 (b, b)L(Y,b) (39)

bb'€B zEA bb'€B

where p(z) denotes the empirical probability of x € A for the sequence z™. Thus, the per-
formance is controlled by the transition probabilities from one action to the next induced by
the marginals, namely ¢(b|b') = q(b',b)/ > q(¥',b), which are subject to off-line optimization.
Here, as in the memoryless loss case, the optimal reference strategy depends on ™ through its
empirical distribution p(x). The linear program defined by the minimization of the right-hand
side of (39) over ¢, is a particular case of (38) (obtained in the MDP case), and admits a deter-
ministic solution b, = g(bs—1). Clearly, each possible solution corresponds to a simple cycle in
the fully connected directed graph whose nodes represent the elements of B, with by randomly
selected among the actions in the cycle with a uniform distribution. If we associate a weight
L(b,V') to an edge from action b to action o', then the best strategy corresponds to the simple
cycle with smallest average weight among its edges, which can be found with a Viterbi-like
procedure. Due to the random choice of by, these experts are not deterministic. However,
if we now allow optimization of the choice of by within the actions in the cycle, we obtain a

deterministic expert with a smaller or equal loss. Clearly, in this case,

B
B
log A < logz (' _|> 1! < |B|log |B].

i=1 \ *
The above graph theoretic considerations can be generalized to the MDP case in which |S| > 1,
provided that the state transitions are independent of the data, i.e., f(s,z) = f(s) forallz € A
(e.g., in the case |S| = 1). The off-line strategies can be found by identifying simple cycles with
minimum average weight in a graph with nodes in § x B. The edges in the graph connect pairs
(s,b') to corresponding pairs (f(s),b), with associated weights L(s,b’,b). An edge from (s,b)
to (f(s),b) in the selected simple cycle indicates that b = g(s, V).
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For given S and f, the reference set b, = g(s¢, by—1) is richer than the traditional reference
set by = g(s;) used for memoryless loss functions. However, it is in turn a subset of the
traditional model, if the latter is defined for a state space S x B, and an appropriate next-state
function. This fact follows from observing that any strategy of the form b; = g(s¢, b;—1) can be
represented as by = g(oy), oy € S X B, by re-defining the state transitions as 0.1 = f'(0y, 2),
where for 0 = (s,b) € S x B, f'(0,2) = (f(s,2),9(s,b)). Notice that the next-state function f’

also depends on g. In particular, if ¢ is randomized, so is f'.

3 FSM reference models for loss functions with memory

We will now impose an FSM structure on the expert set, for a finite action space B. As discussed
in Section 1, for memoryless loss functions the analysis can be confined to deterministic reference
strategies. In this section, we show that key properties that hold for FSM expert models in
that case, do not carry over to the case of loss functions with memory, which complicates the
problem. In particular, it is evidenced that the deterministic model is too narrow for this
case, in the sense of offering a less ambitious target performance than randomized FSM expert
models. As a result, in Section 4 we analyze on-line strategies for a randomized FSM expert
model.

We start by showing that, contrary to the memoryless loss case, the minimizing function g
in the loss expression (11) for an FSM model b; = g(s;) (and a given next-state function) need
not be deterministic. Intuitively, the reason is that with a deterministic g, the mapping remains
the same for the first two arguments of #(g(s’), g(s),z) in (11), whereas randomization allows
for selection of two “different” mappings, thus accounting for a convex combination of terms
not all of which are covered by the deterministic mappings. In contrast, in the memoryless loss
case, taking expectation over a randomized mapping g would generate a mixture only of terms
that can be implemented deterministically, one of which is the best. The following example

demonstrates a randomized optimal mapping g.
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Example 1. Consider a binary prediction problem in which

0 if Ty = bt
U(bg—1,bs, 1) = % if z; = b1 and z; # by
1 otherwise.

Let the underlying FSM for the set of experts be Markov of order 1, namely, s;11 = x4, and for
a (possibly randomized) strategy g(s) denote q; = Pr{g(s) = 1}, s € {0,1}. Straightforward
computations show that for a sequence z", n — oo (so that we can neglect edge effects), the

loss in (11) takes the form

n
ﬁﬂﬂﬁznﬂ%+§ﬁp—v—me+Bp+3V+w—3M1+mﬁ+vwm+%1—9—VMﬂ (40)

where p 2 n(00)/n, v 2 2n(01)/n, ¢ 2 [7(001) + n(011)]/n, and n(y1y2 - - - Ym) denotes the
number of occurrences of a string y1ys - -+ ¥, in z". Now, for a constant p, 1/4 < p < 3/4,
there exists a non-empty Markov type such that for any sequence z™ in the type, n(yz0) =
pn(yz)+0(1/n), y,z € {0,1} (see [22]). Neglecting the O(1/n) term (which accounts for edge
effects and non-integer values), we have p = p?, v = 2p(1 — p), and ¢ = p(1 — p), so that, after

normalization, the loss in (40) is given by

Ly(z") _p+@%+ﬂ—MmP

pgo+ (1 —p)q
2 )

2

=1

+(4p—3

which achieves its minimum value 1 —p— (3 —4p)?/8 for any strategy such that pgo+ (1 —p)q1 =
(3—4p)/2. The four possible deterministic strategies, in turn, yield losses 1 —p, 1 —5p(1—p)/2,
3p(1 —p)/2, and p, respectively. Clearly, a randomized strategy prevails for any p # %

Notice that in the above example, the loss of the best single-state deterministic machine
is nmin{p,1 — p}, which for p in the range (1/3,2/3) is larger than the loss 3np(l — p)/2
that can be obtained with the best deterministic machine with a Markov order of 1. Thus,
it may be advantageous to increase the number of states even if, as in this case, the state
refinement process does not provide additional information in the sense of further refining the
conditional empirical distributions. In contrast, for memoryless loss functions, state refinements
may translate into better performance only if they result in a better “discrimination” of the
conditional empirical probabilities, as the optimal g(s), s € S, depends solely on the occurrence
counts given s. The advantage of state refinement even without a change in the empirical

conditional probabilities, is further illustrated by the following example.
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Example 2. Consider the “counting” sequence [3] that lists, for example, in lexicographical
order, all the binary words of length k, k = 1,2, - - -. For this sequence, the empirical conditional
probability of 0 given any past string tends to % as n grows, regardless of the length of the
conditioning string. Clearly, the (normalized) loss of a deterministic single-state machine (with
the loss function of Example 1) is %. However, it can be shown that a Markov machine of
order k can achieve the normalized loss 1 + d(k), where (k) — 0 as k — co. This loss can be
achieved by stepping through a Hamiltonian circuit in the de Brujin graph of order k (see [23]),
alternatively assigning actions g(s) = 0 and ¢(s) = 1 as all the states s € S are visited. Notice
that a normalized loss of i can be achieved with a (non-Markovian) two-state periodic FSM
that generates actions by; = 0 and boy41 =1, ¢ =0,1,---.

As the Markov order k grows, the performance in the counting sequence example ap-

proaches the best achievable performance for any FSM. This property conforms to the case
of memoryless loss functions [5]. However, this is not always the case for loss functions with
memory, as demonstrated by the following example.
Example 3. Counsider the loss function £(b',b,2) = 1 if b = b, and £(V,b,2) = 0 otherwise
(here, the loss does not depend on x € A). For the all-zero sequence z™ = 000-- -, the state
sequence is constant in a Markov model, regardless of the Markov order. Therefore, a Markov
strategy will be constant, with a normalized loss of 1. In contrast, the two-state FSM strategy
that generates the action sequence b” = 010101 --- has a zero loss.

The above examples show that while for the expert model b, = g(s;) the loss in (11)
depends on the data only through its type with respect to an FSM with state (s,s) € S2, the
model does not inherit some of the properties of the memoryless loss case. Furthermore, the
following example provides evidence to the need to deal with randomized experts also if, as
suggested by the MDP analogy, we let the expert’s advice b; depend also on the previous advice
bi—1. Notice that in the case by = g(s¢,bi—1), the type of 2 will not in general determine the
loss in (6).2

Example 4. Let z" (n — oo) be a binary periodic sequence with period z'® =

2An exception is given by the case |S| = 1, with the initial action by chosen according to the steady-state

distribution of the first-order Markov chain {b;} (see Equation (39)).
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101010000000111111, let B = {0,1}, and consider the loss function

0 if Ty = bt . bt—l
g(btflabtaxt) -

1 otherwise.
Let the underlying FSM for the set of experts be Markov of order 1, so that s;1 =z, t > 0,
and assume s; = 1. Notice that each period in z" is composed of (three) pieces with very
different Markov types. While it appears that no deterministic machine can perform well on
all the pieces, the idea is that a randomized machine may be more able to compromise. An
exhaustive search shows that the best deterministic expert b, = ¢(® (s;, b;_1) is given by by = 1,
and by = sy, t > 0 (independent of b;_1), with a loss Eg(d) = 5 per period over any integer
number of periods (thus, the normalized loss tends to 5/18 as n — 00). It is easy to verify that
a randomized expert g(’")(st, bi—1) that chooses by = 1 with probability ¢ in case s; = b1 =0
and otherwise behaves as the above deterministic expert, achieves an expected loss per period

(over any integer number of periods)

7
7 q—dq
L,y =5— .
gt I+gq
Since Zg(r) < b for 0 < g < 1, it follows that the best expert of the form b, = g(sy, b;—1) for =™

is randomized.

Instead of considering randomized experts b; = g(s¢, bi—1), we can “hide” the dependency
on b, 1 through a transformation of the state space, as discussed at the end of Section 2.
Notice that the resulting next-state function is randomized if g is randomized. A randomized
next-state function introduces statistical dependencies between the expert’s actions, without
an explicit dependency of g on b;_1. Moreover, it results in a richer expert model.

We conclude that the most appropriate FSM expert model takes the form b, = g(s;),
where the next-state function is randomized, with transition probabilities pr(si11]s¢, ). We
can assume g to be deterministic, since for a randomized rule based on a conditional distribution
qq(be|s¢), an equivalent expert with at most |S| x |B| states and for which ¢ is deterministic,
can be built as follows: Split each state into | B| states, and for an observation z € A, transition
from the composite state (s',b") to (s,b) with probability p¢(s|s’, z)g(b|s); then, at state (s, b),

choose action b deterministically.
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It is interesting to notice that, while randomization of the next-state function results in
a richer expert model, for a given mapping g this model can be viewed as one in which S is
a set of actions and the FSM (driven by z") is Markov of order 1. The random action s; is
selected (conditioned on the previous action and the state) according to py(s¢|si—1,2¢—1), and
incurs a loss £4(s;—1, S¢, T¢) = 2(g(st-1),9(st),z¢). Thus, under this interpretation, the next-
state function is deterministic and the (randomized) choice of action depends on the previous

action.

4 On-line strategies for randomized FSM experts

In this section, for a given state space S with cardinality v, we consider on-line strategies that
perform essentially as well as the best randomized FSM expert, which is given by a mapping
by = g(s¢), a set of transition probabilities ps(s;11|ss,z4), and an initial state s;, for any
individual sequence z™. The observation space A and the action space B are assumed finite,
with respective cardinalities a and (. Again, the result is first presented for a given finite
horizon n. As in Section 2, a block-length parameter will determine how long the advice of an
expert is followed.

Since the set F of experts is infinite, the idea is to construct a finite grid in the space of
probability matrices {ps(s|s’,z), s’,s € S, z € A} in order to approximate the best performing
expert on z" by a point in the grid (together with a deterministic mapping g and an initial

state). By (6), the expert loss £, ,(z") is given by

Lpg(z") = £bo,g(s1),21) + 3 D Prisi = s'|z"2} Y pr(sls’sze1)l(g(s), 9(s), 21)  (41)

t=2s'cS SES

where Pr{s; = s'|z°} 2 1 when s' is a given initial state, and 0 otherwise. Thus, the main
difficulty is in bounding the error accumulated in the computation of Pr{s;,_; = s'|z* 2}
as a result of the approximation. This probability is obtained from the product of tran-
sition probability matrices Q(z1) - Q(z2) - ... - Q(z1—2), Q(x) being the stochastic matrix
{pr(sls’,z), s,s' € S, x € A}, where the optimum @ in each factor of this product is ap-
proximated by a grid point, and so, the overall approximation error grows with ¢. Since the

regret of an on-line strategy that combines expert predictions grows with the number of experts,
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we are faced with two conflicting goals which need to be compromised. On the one hand, a
dense grid would provide a good approximation of the best randomized strategy in the contin-
uum; however, on the other hand, the grid cannot be too dense as it would otherwise include a
larger number of experts with the risk of non-vanishing normalized regret. Nonetheless, thanks
to the fact that the regret depends on the number of experts logarithmically, it turns out that
a polynomially growing grid satisfies both requirements.

Specifically, consider a grid G, in which all the transition probabilities ps(s|s’,z) are
integer multiples of €,, for a vanishing parameter ¢, to be specified later. Let F,, denote the
resulting set of experts, where an expert F' € F,, is given by a point in the grid, an initial state
ng), and a mapping ¢ (a fixed initial action by is chosen for all experts, since its effect does not
propagate). Recalling o = |A|, v = |S|, and § = | B, the cardinality A, of F,, satisfies

1\ A
< (2) AN (42)
For a fixed block length M, let a parsing of 2" into K + 1 non-overlapping blocks be defined
as in Theorem 1. At t = kM + 1,k = 0,1,..., K, the on-line algorithm randomly selects
F € F, according to the conditional distribution (13), where F is replaced by (the finite set)
Fy, the cumulative expected loss £ i of expert I over k blocks is computed as in (41), and n
is a given positive constant. The initial state sprx11 of that block is selected according to the

Mk independent

marginal distribution on ss;+1 that would have resulted from applying F' on z
of previous state occurrences. Thus, the corresponding distribution on by differs from the
one prescribed by Theorem 1, as it follows the marginal, rather than the conditional distribu-
tion. This choice guarantees statistical independence between actions corresponding to different
blocks, a property that will be used later to show also almost-sure convergence. The marginal
is computed and maintained recursively, starting from the initial state ng). The actions of the
selected expert are followed through ¢t = min(kM + M,n) (i.e., during the (k + 1)-st block).

Theorem 4 below gives an upper bound on the normalized expected regret of the proposed

scheme.

Theorem 4 Let e, = 1/([n'*%]42), d > 0, and let M* and n* be specified as in equations (14)
and (15), respectively, but with X replaced by N, given by (42). Let the expected loss of the

proposed on-line strategy with parameters n = n* and M = [M*], over =™, be denoted by
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v

Lygs/m(2™) (randomized finite-state expert/finite horizon). Let L]; (z™) denote the expected

loss of the (randomized) expert in F that performs best on z™. Then,

1

C g 3 1+ d)y2al
ﬁ (ﬁrfs/ﬂl(xn) - [”len(xn)) < 5 gmax (Hﬂ

n

)g +O0(n™F) +0(n™. (43)

Theorem 4 implies that for d > 1/3, the normalized regret is O ([(ln n)/n]1/3).

Proof: Let {p’}(s|s’,$), s',s € S,z € A} denote the transition probabilities of the expert
F € F that performs best on z". It can readily be verified that there exists a set of transition
probabilities {ps(s|s’, z), s, s € S, z € A} in G, such that

. —1
1By (s]s', ) — pi(s|s,2)] < ”’T e (44)

for all s',s € S,z € A. To bound the error accumulated in the computation of Pr{s; ; =
s'lx'72} in (41), t > 2, as a result of approximating {p’}(s|s’, z)} with the grid point {p(s|s’, z)},

we write the probabilities corresponding to each set of distributions as

Pri{s;_1 = s'|xt_2} = 18T§F) Q" (x1) - Q" (m2) - ... - Q" (14—2) - 1y
and
Pr(ses = a2} = 170, Q) - Qea) - Qlava) 1y (45)

respectively, where 1 denotes a (column) ~y-vector with a single non-zero entry, which corre-
sponds to s € S and equals 1, and Q*(z;) and Q(ml), xz; € A, 1 <14 <t—2, denote, respectively,
the stochastic matrices {p}(s|s’,zi), s,s' € S} and {py(s|s’,zi), s,s' € S}. Equation (45) can

be written as
Pr{s;_y = s'|z' ?} = 15@ Q% (1) + Alz1)] - [Q% (z2) + Alz2)] - ... - [Q (T4-2) + A(z4-2)] - 1&

where A(z;), 1<i<t—2, denote error matrices whose entries, by the approximation bound (44),

are all upper-bounded by (y — 1)e, /v in absolute value. Thus,

2t=2—1
Pr{s;_; = s'|o"™%} = Pr*{s;_; = s'|2!7%} + Z 1sT§F) -Zj-1g (46)
j=1

where Z;, 1 < j < 2!72, denote products of ¢ — 2 matrices each of which is either Q*(z;) or
A(z;) for some i, 1 <7 <t—2, and at least one of the factors is A(z;). For a matrix Z; formed

by & factors of type A(x;) (1 <k <t — 2), we have
Zj = R1 . A((IIZI) . R2 . A(xw) ce R,.; . A(flfzh) . R/-a—i—l
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. AL . . . . A
for some indexes 0 = ip < 1] <9 < ... < iy < ige1 =t —1, where R, 1 < h < x+1, are

stochastic matrices of the form

Ry 2 Q*(wiy ,41) - Q (wi, 1)

provided ip,_1 + 1 # 45, and R, = I (the v x 7 identity matrix) otherwise.

Now, since Ry, is stochastic, every entry in Ry, - A(z;,) is upper-bounded by (y —1)e, /v in
absolute value. Therefore, the absolute value of every entry in []; Ry, - A(z;,) is upper-bounded
by [(v — 1)&n]* /7, and after further post-multiplication by Rj41, the absolute value of every
entry of Z; is upper-bounded by [(y — 1)€,]". Thus, we can upper-bound the right-hand side
of (46) to obtain

=2
- t—2
Pr{s;-1 = s'[a" %} <Pr{s;-1 = ¢'|2" 7} + ) < ) Ay =1)en]® = Prifsi_y = §'|z' "2} + 6,
K

k=1
(47)
where 6; = (14 (v — 1)) ? — 1. Tt then follows from (41) that, for any initial state ng) and

mapping g,
Lpg(z™) < U(bo,g(si™),21)
n
1
+ 3 ST Pt {simr = 8ot 2 4+ 00 S [0 (sl memr) + L—enlt(g(s)), 9(s), )
t=2g¢'cS seS
< Ep*,g (™) + Lmaxy (nen + (1 4+ vey) Z 9t>
t=2
< Lpeg(@™) + nlimaxcylen + (1 +7€n)0n] 2 Lpe (™) + 0, (48)

where the last inequality follows from 6, being an increasing function of ¢. Thus, the loss
achieved by any expert in F is approximated by an expert in F,, up to an excess (normalized)
loss 6, = O(nv?e,). In particular, the loss L_',grid(x”) of the expert in F,, that performs best on
x™ satisfies

Lgria(z") < Lopin(2") +ndy (49)

where 6, = O(n~%) for ¢, = 1/([n'+%]~?).

Next, we use Theorem 1 to upper-bound the regret £ /m(T") — Egrid(x”) of the proposed
on-line strategy with respect to the finite set of experts F,,. The choice of the initial state

Symkr1 of block k according to the marginal (rather than conditional) distribution corresponding
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to the evolution of the selected expert F along ¥, prevents from direct application of the
theorem. However, the use of the correct marginal implies that the joint distributions of pairs of
consecutive actions, which determine the expected loss, will not differ beyond the first sample in
the block from those dictated by F. Now, since by corresponds to a possibly different expert
selection, this discrepancy was already accounted for in the proof of Theorem 1. Therefore, we

can still use the theorem to upper-bound the regret. Finally, since

£rfs/f“n(ﬂ?n) - E?nin(ﬂﬂn) = (ﬁ_rfs/fh(ﬂﬁn) - Egrid(l“n)) + (ﬁ_grid(fﬂn) - ‘C_;ynin(xn))

the result follows from (49), Theorem 1, and (42). O

For infinite horizon, again, time is divided into non-overlapping contiguous super-segments
of lengths N; = [nga’], j = 0,1,---, for given positive constants ng and a, a > 1. In the
(7 + 1)-st super-segment, the above finite horizon algorithm is used with an expert set FN;
(given by a grid GENj, with €, as in Theorem 4), and design parameters M = [M;] and 1 = 7;,
where M; and 7; differ from M* and n*, respectively, in that N; replaces n in their definition.
The expected loss of this infinite horizon scheme over a prefix z™ of a sequence of observations
is denoted L, /in(z") (randomized finite-state expert/infinite horizon). Theorem 5 below states

that for all n, the normalized regret is essentially bounded as in Theorem 4, but with a larger

constant. The proof is omitted, since it is analogous to that of Theorem 2.

Theorem 5 For any prefiz ™ of an infinite sequence of observations,

(1+d)y?alnn
n

DN W

(ﬁ_rfs/ih(l“n) - ‘C_;ynin(xn)) <

S

1
C(@)fumas ( ) "0 )+ 0mY).

As for almost-sure convergence, it can be established with respect to both randomization
levels (the choice of experts and the expert actions), as shown in Theorem 6 below. This pure
almost-sure property is stronger than the one presented for generic experts in Theorem 3, which
was only with respect to the random selection of experts at each block (with expectation still
taken for the inner randomization on the expert actions). Let Lyg/in(2") denote the (random)
loss incurred over ™ by a specific realization of the randomly selected experts and their random

actions, according to the infinite horizon scheme, but with M; and 7; as in Theorem 3.
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Theorem 6 If0 < ¢ < 1/3 and 0 < @2 < 2/3, then
Lygsjin(z™) — L1 (™)

. min
lim sup 0 a.s.
n—oo n

Proof: We proceed as in the proof of Theorem 3, except that here the independent random
losses of interest are L/ (Xk), k= 0,1,...,m(n)—1, which correspond to specific realizations
of the on-line actions over block X;. The independence of these losses follows from the choice

of initial state for each block. Thus,

max

m(n)—1 B 2m(n)2e?

Pre > [Lessin(Xi) — Er{Lugs/in(Xp)|Lry}] = m(n)e p < exp{— . ) <12 }
k=0 bmax =1 My

implying

2m(n)?e?

(n)

g?na.x E;n:? sz(k)
A result analogous to Theorem 5, but for the re-specified design parameters n; and M;, takes

Pr{Lum(a") = Ligyym(a") > m(n)e} < exp{~ b (50)

the form
Erfs/ih(x") <Ll (z") + O3 1nn) + O(n'=17%2) + O(n~%) + Lpaxm(n) . (51)

Since the asymptotic behavior of m(n) and Mj, is the same as in the proof of Theorem 3,

by (50) and (51), the proof is completed similarly. O

FSM experts with an unbounded number of states. Next, we consider an infinite
sequence £°°, and analyze an on-line strategy that competes against randomized FSM experts
of any size (y — oo). The corresponding reference performance for randomized FSM experts is

given by

7 N Lin(z")
05 (2%°) = 71520 hzr;sgp nin
where the limit on 7y exists since £ . (z") is non-negative and non-increasing on v. To achieve
a vanishing normalized regret, we use the algorithm of Theorem 5, but with a value v; of v
that gradually increases with the super-segment index j. Let Lgeq(z") denote the resulting loss

over x".

Corollary 1 If the size vy; of the state space used for super-segment j satisfies lim;_,, y; = 00

and v; = O(VNj/10g2 Nj), and d > 1/3, then

r n
lim sup Eseale”) <025 ().

n—o0 n
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Proof: Let Y; denote the sequence of observations that fall in the (j 4+ 1)-st super-segment. By
Theorem 4 we have

Loeq(Y;) — LV (Y;) = O ([f)/]?N]2 log Nj]%) =0 <%§\\g)> (52)

where lim;_, €(/N;) = 0. For any positive integer y, we have y; > v for sufficiently large j,
implying

E’Y]’

min

Therefore, by (52), we have

_ _ 1 Ne(N)
2 — B (™) — Z j€UYj
Eseq( ) Emm( ) O (jzo lOg N] ) (53)

where J(n) is the index of the super-segment in which n falls. Now, if €(N;) = O((log N;)/N;),
then the right-hand side of (53) is O(J(n)). Otherwise, the right-hand side of (53) is
O(ne(n)J(n)/logn). In any case, since J(n) = O(logn) (see proof of Theorem 2), we have

n rY . n
lim sup Eseq(2") < limsup Lmin(@") . (54)
n—00 n n—00
Since (54) holds for any v > 0, the proof is complete. O

Discussion. Corollary 1 parallels similar results for memoryless loss functions [5]. In the
memoryless loss case, the “ultimate” performance yardstick is restricted to deterministic FSM’s,
which is justified by the asymptotic equivalence of the deterministic and the randomized classes.
For a finite sequence and a given number of states, however, we can still ask which approach is

better in terms of total normalized loss:

a. To compete against deterministic machines only, as in Section 2 (where an action may
also depend on the previous action), aiming at a deterministic “FS predictability,” with a
regret corresponding to a reduced number of experts. For memoryless loss functions, the
limiting FS predictability (as |S| — oo) is the same as with randomized machines, but

may be achieved at a slower rate.

b. To compete against randomized machines, for which the regret is larger due to a larger

number of experts, but the limiting value may be smaller for loss functions with memory.
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Since the best approach may depend on the data sequence, it cannot be decided ahead
of time. However, we can regard each approach as a randomized “meta-expert” and, again,
combine the advice of these two meta-experts as in Section 2. By Theorem 2 (in the infinite
horizon case), the main term in the (normalized) excess loss (with respect to the best of the
above two strategies) is 1.5C (a)lmax((In2)/n)'/3. Thus, this mixed strategy is equivalent to

picking the best approach, but with an additional regret corresponding to only two experts.
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