
On Sequential Strategies for Loss Functions with

Memory�

Neri Merhav
y

Electrical Engineering Department

Technion

Haifa ������ Israel

Erik Ordentlich
z

GlobespanVirata� Inc�

���� Walsh Ave�

Santa Clara� CA ������ USA

Gadiel Seroussi and Marcelo J� Weinberger

Hewlett	Packard Laboratories

���� Page Mill Road

Palo Alto� CA �
��
� USA�

Abstract

The problem of optimal sequential decision for individual sequences� relative to a class

of competing o��line reference strategies� is studied for general loss functions with memory�

This problem is motivated by applications in which actions may have �long term� e�ects� or

there is a cost for switching from one action to another� As a �rst step� we consider the case

in which the reference strategies are taken from a �nite set of generic �experts�� We then

focus on �nite�state reference strategies� assuming �nite action and observation spaces� We

show that key properties that hold for �nite�state strategies in the context of memoryless loss

functions� do not carry over to the case of loss functions with memory� As a result� an in�nite

family of randomized �nite�state strategies is seen to be the most appropriate reference class

for this case� and the problem is basically di�erent from its memoryless counterpart� Based

on Vovk�s exponential weighting technique� in�nite�horizon on�line decision schemes are

devised� For an arbitrary sequence of observations of length n� the excess normalized loss

of these schemes relative to the best expert in a corresponding reference class is shown to

be upper�bounded by an O	n����
 term in the case of a �nite class� or an O	�	ln n
�n����


term for the class of randomized �nite�state strategies� These results parallel the O	n����


bounds attained by previous schemes for memoryless loss functions� By letting the number

of states in the reference class grow� the notion of �nite�state predictability is also extended�

Index Terms� Sequential decision� on�line algorithms� general loss functions� prediction� ex�

pert advice� randomized expert�
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� Introduction

The sequential decision problem ��� �� concerns a temporal sequence of observations xn �

x�x� � � � xn for which corresponding actions b�b� � � � bn result in instantaneous losses �	bt� xt


for each time instant t� � � t � n� where �	�� �
 denotes a non�negative function� The instanta�

neous loss contributions from each action�observation pair yield a cumulative loss

Lb	x
n
 �

nX
t��

�	bt� xt
 �

A sequential 	or �on�line�
 decision algorithm 	or �strategy�
 is a sequence of actions b�b� � � � bn

in which the actions bt are 	possibly random
 functions of the previous observations x
t�� only�

The goal in the sequential decision problem is to 
nd an on�line strategy that approximates�

in the long run and for an arbitrary individual sequence of observations� the performance of

the best strategy in a given reference class� The best competing strategy is determined in

hindsight 	or �o��line�
� with full knowledge of the given sequence of observations� The excess

loss incurred by the on�line strategy over the best competing strategy is termed the regret�

Universal lossless data compression is clearly a special case of the sequential decision problem�

where bt is a conditional probability assignment p	�jx
t��
 for xt and �	bt� xt
 � � log p	xtjx

t��
�

The regret corresponds to the pointwise redundancy of a sequential probability assignment

scheme with respect to a class of models� Other instances of the sequential decision problem

include gambling� prediction� and portfolio selection 	see� e�g�� ���
�

In the original formulation of the sequential decision problem ���� the reference class is

given by all constant strategies� and the best constant strategy is termed the Bayes response�

In ���� Ziv and Lempel extend this class in the context of universal compression of individual

sequences� to include all �nite�state 	FS
 encoders� A similar approach is used in ��� to study

binary prediction� leading to the notion of FS predictability� This work is extended in ��� for

general loss functions� In the FS setting� rather than being constant� the competing reference

strategy is allowed to vary according to bt � g	st
� where st is a state in an FS machine 	FSM


with state set S� driven by a next�state function st�� � f	st� xt
� The functions g and f � and

the initial state s�� are optimized o��line� with full knowledge of x
n� The 	normalized
 loss over

an in
nite sequence 	n��
 is considered� and a 	generalized
 FS predictability results from

letting jSj tend to in
nity� Notice that� for given f and s�� the loss incurred with g takes the

�



form

Lg	x
n
 �

X
s�S

X
x�A

n	x� s
�	g	s
� x
 	�


where for an observation x 	in a discrete alphabet A
 and a state s � S� n	x� s
 denotes the

number of times xt � x and st � s� t � �� �� � � � � n� Thus� the optimal g consists of using� for

each state� the Bayes response corresponding to the sub�sequence of observations occurring at

that state� namely

g	s
 � argminb�BEx��	b� x
js� 	�


where B is the action space and the expectation on x is taken with respect to the conditional

empirical distribution

p	xjs
 �
n	x� s
P

x��A n	x
�� s


� x � A� s � S� 	�


The function de
ned in 	�
 is deterministic and depends on xn only through the empirical

distribution 	�
� Equation 	�
 also suggests a probabilistic analogy� in which the data are

drawn from an FS source fp	xjs
� x � A� s � Sg� with the next�state function f still dictating

the evolution of the state� In that case� the expected loss for any strategy bt � �t	x
t��� bt��


	not necessarily FS
 is given by

�Lp�� �
nX
t��

X
s�S

X
b�B

Pt	s� b
Ex��	b� x
js� 	�


where Pt	s� b
 is the joint probability 	with respect to fp	xjs
g and f�tg
 that 	st� bt
 �

	s� b
� Again� the expected loss in 	�
 is minimized over � by the deterministic FS strategy

�t	x
t��� bt��
 � g	st
� where g is as in 	�
 and the expectation is with respect to the FS source�

The theory of learning with expert advice ��� �� �� �� is a natural extension of the above

framework� where the class of reference competing strategies is viewed as a set of experts� In

this setting� an on�line strategy is expected to combine the 	possibly random
 advice of the

experts� incurring a loss that approaches that of the best performing expert for each individual

sequence�

The classical formulation of the sequential decision problem does not address cases in which

the instantaneous losses also depend on past action�observation pairs� Such losses may capture

the cost of switching from one action to another 	e�g�� transaction costs incurred in portfolio

selection ���� ���� or energy spent in control systems
� or the long term e�ect 	�memory�
 of

�



an action at a given time� For a loss function with limited memory of the form �	bt��� bt� xt
�

the cumulative loss takes the form

Lb	x
n
 �

nX
t��

�	bt��� bt� xt
 	�


where b� represents some initial action� For a randomized strategy� the average loss 	with

respect to the ensemble of randomly selected actions
 takes the form

�Lb	x
n
 �

X
b��b�B

nX
t��

Pr	bt�� � b�� bt � b
�	b�� b� xt
 � 	�


The scenario in which there is a cost for switching from one action to another is akin to

the metrical task system 	MTS
 problem 	see� e�g�� ����
� but di�ers fundamentally from it in

that in the MTS problem it is assumed that the action bt precedes xt� Connections between the

MTS problem and the sequential decision problem are investigated in ����� As for the case of

actions with long term e�ects� an example is given by the following 	inverse
 
ltering problem�

Given a 
lter H	z
 � h� � h�z
��� and a 	noisy
 
lter output sequence xn 	the observations
�

the actions bt are aimed at 
nding the most likely input sequence b�b� � � � bn that �explains� x
n

in the sense that Lb	x
n
 is minimized� where

�	bt��� bt� xt
 � �xt � 	h�bt � h�bt��
�
� �

In other applications� e�g�� prefetching in computer memory architectures� the memory may

be much longer� In this example� the goal is to prefetch an address from main memory into a

faster memory 	�cache�
 ahead of time� in order to prevent stall time by the CPU when accessing

this address� The sequence of observations is given by the address sequence� and the action bt

consists in prefetching one 	or several
 address	es
� While this problem has been studied as one

of prediction 	see� e�g�� ����
� such formulation aims at predicting the next memory reference�

rather than at having it already in cache at the time it is requested� Clearly� the loss 	e�g�� the

CPU stall time caused if the address xt is not in cache at the time it is requested
 will depend

not only on bt� but on the entire sequence of actions b�b� � � � bt� Based on an opportunity cost

analysis� it is argued in ���� that a reasonable loss function for the prefetching application takes

the form

�	b�� b�� � � � � bt� xt
 �
�X
i��

Ci	bt�i� xt
 	�


�



where the contribution Ci	bt�i� xt
 of the action bt�i to the loss incurred at time t is considered

�in isolation� and assumed additive� This contribution does not extend beyond a given non�

negative window size � 	the memory length
� For this simpli
ed loss� it is shown in ���� that an

on�line algorithm that uses the parsing rule of ��� to build a decision tree� performs essentially

as well as the best FS strategy determined in hindsight�

In this paper� we reformulate the sequential decision problem studied in ��� to cover also

loss functions with memory� We will focus on general loss functions of the form 	�
 and 	�
�

for which the instantaneous losses �	b�� b� x
� b�� b � B� x � A� are bounded by a given constant�

extension to longer memories is relatively straightforward� Our main result will require 
nite

observation and action spaces A and B� respectively� in cases in which no assumptions are

required� our notation will nevertheless assume a discrete alphabet A��

Notice that the theory of Markov decision processes 	MDP�s� see� e�g�� ����
 is an analogous

generalization 	in the direction of loss functions with memory
 of the probabilistic setting� in

which the data are drawn from an FS source 	as in Equation 	�

� In an MDP� the process at

time t is considered to be at some state �t in a countable state space� and a decision maker

chooses an action bt � b � B� at a cost L	�t� b
� As a result� the process evolves to state �t��

according to 	action�dependent
 transition probabilities fpb	�t��j�t
g� In an average cost per

stage problem� for a given initial state ��� the decision maker aims at a 	possibly randomized


strategy f�tg that minimizes the normalized expected loss over n stages� n � �� where the

expectation is taken with respect to the transition probabilities and to f�tg� In particular� if

�t � 	bt��� st
� st � S� and pb		b� st��
j	b
�� st

 � p	st��jst
 for all b

� � B� where fp	sjs�
g are

transition probabilities de
ned on S� then the normalized asymptotic expected loss takes the

form

�Lp�� � lim sup
n��

�

n

nX
t��

X
s�S

X
b��b�B

Pt	s� b
�� b
L		s� b�
� b
 	�


where Pt	s� b
�� b
 is the joint probability 	with respect to fp	sjs�
g and f�tg
 that 	st� bt��� bt
 �

	s� b�� b
� The connection with loss functions with memory in a probabilistic setting follows�

since 	�
 gives the normalized value of the expected loss 	�
 as n � �� in case the data is

drawn from an FS source with conditional probabilities fp	xjs
� x � A� s � Sg and the state

�For continuous spaces� probability distributions should be appropriately replaced by density functions� and

summations by integrals�

�



sequence evolves according to the next�state function f � where

L		s� b�
� b

�
� L	s� b�� b
 �

X
x�A

p	xjs
�	b�� b� x
 	�


and

p	sjs�
 �
X

x� s�f�s��x	

p	xjs�
 � 	��


Sequential strategies for loss functions with memory and arbitrary observation sequences

are considered in ���� in a broader setting� closely related to MDP�s� However� the problem

in ���� is formulated in the framework of Blackwell�s so�called �approachability�excludability�

theory ����� in which conditions to approach a certain performance region regardless of the

observations are studied for vector loss functions� While for memoryless loss functions it is

possible to de
ne a loss vector and performance regions that measure the regret 	see� e�g�� ���
�

this does not appear to be the case for loss functions with memory�

A sensible generalization of the notion of regret used in ���� requires the determination of

a set of reference FS o��line strategies 	or experts
� First� we consider the case in which the

experts are generic 	i�e�� no FSM structure is imposed
� and the set of experts is 
nite� This case

covers the deterministic FS o��line strategies that lead to the generalized predictability of ����

Inspired by ��� in the setting of prediction with expert advice� we devise on�line strategies that

perform essentially as well as any expert in a 
nite set� for an arbitrary sequence of observations�

Speci
cally� we present an in
nite horizon on�line scheme whose normalized excess loss vanishes

at a rate O
�
�	ln�
�n���


�
� where � denotes the cardinality of the expert set� This result parallels

the case of memoryless loss functions� for which the normalized excess loss for learning schemes

with expert advice 	as well as for classical schemes by Hannan ���� Blackwell ����� and others
 is

upper�bounded by an O	n����
 term� While the learning algorithm of ��� 	see also ��� and ���


suggests to 	randomly
 select an expert at each time t based on its performance on xt��� here

the main problem is to overcome the e�ect of bt�� in the instantaneous loss at time t� as this

action may not agree with the expert selected at that time�

Next� we consider FSM experts� In the memoryless loss case� the �ultimate� performance

yardstick for FSM experts in ��� is restricted to deterministic FSM�s� This restriction is natural�

since it is shown in ��� that� as jSj � �� allowing randomization of f does not improve the

	generalized
 predictability of an individual sequence� Moreover� for a deterministic next�state

�



function f � the optimal strategy de
ned in 	�
 is deterministic� However� key properties that

hold for FSM expert models in the case of memoryless loss functions break as a result of an

additional dependency on the previous action� which complicates the problem� For loss functions

with memory� the loss incurred by the expert model bt � g	st
 on an individual sequence x
n

takes the form

Lg	x
n
 � �	b�� g	s�
� x�
 �

X
s��s�S

X
x�A

n	x� s�s
�	g	s�
� g	s
� x
 	��


where n	x� s�s
 denotes the number of occurrences in x�� x
� � � � � xn of an observation x at

state s� which in turn is preceded by state s�� Although the loss still depends on xn through

occurrence counts� it turns out that the minimizing expert g in 	��
 need not be deterministic

as in 	�
� Thus� we cannot restrict the analysis to 
nite expert sets� Furthermore� we cannot

rule out randomized next�state functions� which allow for statistical dependencies between the

expert�s actions� When the next�state function is randomized� without loss of generality� g can

be assumed deterministic� An in
nite horizon on�line algorithm is derived for that case� with a

regret that vanishes at a rate O
�
�	lnn
�n���


�
� While our results for the 
nite expert set case

apply to generic experts� here we make heavy use of the FSM structure of the experts�

Next� by letting the number of states in the reference class grow� the FS predictability

of ��� 	and ���
 is further extended to account for the loss functions with memory considered

here� Notice that ��� and ��� focus on the case jSj � � 	for which no uniform convergence rates

can be derived
 as these works emphasize the use of the Lempel�Ziv parsing rule ��� to compete

against an FSM of any size� For a 
nite sequence and a given number of states� however�

competing against deterministic machines� aiming at a deterministic �FS predictability� with

a regret corresponding to a reduced number of experts� may not minimize the total normalized

loss� For memoryless loss functions� the limiting FS predictability 	as jSj � �
 is the same as

with randomized machines 	for which the regret is larger due to a larger number of experts
�

but may be achieved at a slower rate� Thus� our results extend earlier work on FS predictability

not only in the direction of loss functions with memory� but also providing a more re
ned regret

analysis� with the above trade�o� to be resolved�

The rest of this paper is organized as follows� Section � studies on�line strategies for 
nite

sets of generic experts� In Section �� we impose an FSM structure on the expert set� and

�



discuss various alternatives for the reference class� Finally� Section � studies on�line strategies

for randomized FSM strategies� and extends the notion of FS predictability to loss functions

with memory�

� On�line strategies for �nite sets of experts

In this section� we study on�line strategies that compete against a 
nite set F of � experts for

any individual sequence xn� No assumptions are required on the observation and action spaces

A and B� respectively� The loss function �	b�� b� x
� b�� b � B� x � A� is assumed bounded� with a

maximum loss �max� At each time instant t� each expert F � F o�ers its advice� which takes the

form of a probability distribution on bt� If fbtg is randomly selected according to the strategy

proposed by F � the expected expert loss is given by

�LF 	xt
 �
X

b��b�B

Pr�F 		bt�� � b�� bt � b
�	b�� b� xt
 	��


where Pr�F 		�
 denotes probability with respect to the ensemble of possibly random actions of

F � Notice that the 	possibly random
 information used by the expert to generate its advice is

unspeci
ed� and irrelevant at this point� An on�line strategy combines the advice of the experts�

to derive a distribution on bt from which the action is drawn�

General Approach� In principle� it would appear that we can obtain a suitable on�line

strategy for 
nite expert sets by directly applying the theory of learning with expert advice

of ��� and ���� A subtle complication introduced by the memory in the loss function� however�

prevents such a direct application� The learning algorithms of ��� and ��� suggest to randomly

select� at each time instant t� an element F of F based on its expected performance on xt���

and draw bt according to the distribution proposed by F � The complication arises as these

algorithms count on the fact that the average on�line loss� given the expert selection F � is equal

to the average loss achieved by F on the new observation xt� This equivalence� however� may

not hold for loss functions with memory� since the instantaneous losses of the on�line strategy

and the expert on the new observation also depend on their respective previous actions� which

may di�er�

It is nevertheless possible to adapt the general approach of learning with expert advice

to tracking the best strategy in F in the present setting� To this end� we will introduce an

�



additional block�length parameter that determines how long we will follow the advice of a

randomly selected new expert� The goal is to amortize the potential discrepancy between on�

line and expert losses at the start of each block 	the �cost of switching experts�
� over the length

of the block� Notice that �piecewise constant� strategies that follow a 
xed expert during a

certain block are considered in ����� However� the piecewise constant strategies in ���� are used

for o��line reference� as a generalization of competing against the best 
xed expert� Our on�line

strategy� inspired by ���� is 
rst presented for the 
nite horizon case� in which n is known in

advance�

Finite Horizon Case� For a 
xed block length M � let K � dn�Me � �� and consider the

parsing of xn into K non�overlapping blocks of length M � Xk � 	xkM��� xkM��� � � � � xkM�M 
�

k � �� �� � � � �K � �� followed by a possibly shorter block XK � 	xKM��� xKM��� � � � � xn
� Let

�LF�k denote the cumulative value over k blocks of the loss 	��
 of expert F � with �LF�� � �

for all F � The multiset of � cumulative losses f �LF�k� F � Fg� is denoted by LF �k� At t �

kM � �� k � �� �� � � � �K� the on�line algorithm randomly selects F � F according to the

conditional distribution

Pk	F jLF �k
 �
expf�	 �LF�kgP

F ��F expf�	
�LF ��kg

	��


where 	 is a given positive constant� In 	��
� the experts are exponentially weighted based on

their past performance� The actions of the selected expert are followed through t � min	kM �

M�n
 	i�e�� duringXk
� Notice that two di�erent randomizations are involved� one with respect

to the choice of expert� at a block level� and one with respect to the possibly random expert

actions� at a sample level� Theorem � below gives an upper�bound on the normalized regret of

the proposed scheme�

Theorem � Let

M� � �

�
n

ln�

� �
�

	��


and

	� �
�

�max

�
ln�

n

� �
�

� 	��


Let the expected loss of the proposed on�line strategy with parameters 	 � 	� and M � dM�e�

over xn� be denoted by �Lfes�fh	x
n
 ��nite expert set��nite horizon�� Let �Lmin	x

n
 denote the

�



loss of the expert in F that performs best on xn� Then�

�

n

�
�Lfes�fh	x

n
� �Lmin	x
n

�
�
�

�
�max

�
ln�

n

� �
�

�
�max	� � 	ln�
��


n
�O

�
n�

�
�

�
� 	��


Proof� The bounding technique 	similar to the one used for proving ���� Theorem ��� which

builds on ���
 is based on the sums Wk� � � k � K � �� de
ned by

Wk
�
�
X
F�F

expf�	 �LF�kg � 	��


It consists in comparing an upper bound and a lower bound to ln	WK���W�
� For the lower

bound� we have�

ln
WK��

W�
� ln

X
F�F

expf�	 �LF�K��g � ln�

� lnmax
F�F

expf�	 �LF�K��g � ln�

� �	 �Lmin	x
n
� ln� 	��


where the 
rst equality follows from �LF�� � �� so that W� � �� and the last equality follows

from the de
nition of �LF�K�� as the total loss accumulated by F over K � � blocks� namely

over the entire sequence xn�

To get an upper bound� we 
rst de
ne �LF 	Xk
 as the average loss accumulated by an

expert F � F over block Xk� namely

�LF 	Xk
 �
X

b��b�B

mkX
t�kM��

Pr�F 		bt�� � b�� bt � b
�	b�� b� xt
 	��


where mk � kM �M� � � k 
 K� and mK � n� With this de
nition� for k � �� �� � � � �K�

�LF�k�� �
kX
i��

�LF 	Xi
 � �LF�k � �LF 	Xk
 � 	��


Thus� by 	��
� 	��
� and 	��
�

ln
Wk��

Wk
� ln

X
F�F

Pk	F jLF �k
 expf�	 �LF 	Xk
g � 	��


Next� recall that Hoe�ding�s inequality ���� asserts that for any zero�mean random variable Z

taking values in a bounded interval of size R� lnE�eZ � � R���� A trivial extension that allows

for a general mean � of Z� gives

lnE�eZ � � ��
R�

�
� 	��


�



Applying 	��
 to the right�hand side of 	��
� we get

ln
X
F�F

Pk	F jLF �k
 expf�	 �LF 	Xk
g � �	EF f �LF 	Xk
jLF �kg�
	�M���max

�
	��


where the expectation on F is with respect to Pk	�jLF �k
� Combining equations 	��
 and 	��


and taking the summation over k � �� �� � � � �K� we get

ln
WK��

W�
�

KX
k��

ln
Wk��

Wk

� �	
KX
k��

EFf �LF 	Xk
jLF �kg�
	�M���max	K � �


�
� 	��


The summation on the right�most side of 	��
 di�ers from �Lfes�fh	x
n
 in that it does not account

for the possible change in the expert selection from one block to another� which only a�ects the

term Pr�F 		bkM � b�� bkM�� � b
 in 	��
� as bkM follows the expert used in the previous block�

This correction cannot cost more than an additional loss of �max for each block Xk� k � �� and

therefore

�Lfes�fh	x
n
 �

KX
k��

EF f �LF 	Xk
jLF �kg�K�max �

Thus� by 	��
�

ln
WK��

W�
� �	 �Lfes�fh	x

n
 �
	�M���max	K � �


�
� 	K�max

� �	 �Lfes�fh	x
n
 �

	���maxM	n�M � �


�
� 	�max

n� �

M
� 	��


Finally� by comparing the upper and the lower bounds on ln	WK���W�
� 	��
 and 	��
� we get

�Lfes�fh	x
n
 � �Lmin	x

n
 �
ln�

	
�
	��maxM	n�M � �


�
� �max

n� �

M
� 	��


For a given horizon n� the design parameters M� and 	� given in 	��
 and 	��
� respectively�

approximately minimize the regret� Using M � dM�e and 	 � 	� yields the upper�bound 	��
�

where the last two terms in the right�hand side account for the discrepancy between M and

M�� and for the possibly incomplete last block XK � �

In�nite Horizon Case� For in
nite horizon� we use the �doubling technique� 	see� e�g�� ���
�

dividing time into non�overlapping contiguous super�segments of lengths Nj � dn�a
je� j �

�� �� � � �� for given positive constants n� and a� a � �� In the 	j��
�st super�segment� the above

��




nite horizon algorithm is used with design parameters M � dMje and 	 � 	j � where Mj and

	j are speci
ed by 	��
 and 	��
� respectively� but with Nj replacing n� The expected loss of

this in
nite horizon scheme over a pre
x xn of a sequence of observations is denoted �Lfes�ih	x
n


	
nite expert set�in
nite horizon
� Theorem � below states that for all n� the normalized regret

is bounded as in Theorem �� but with a larger constant�

Theorem � For any pre�x xn of an in�nite sequence of observations�

�

n

�
�Lfes�ih	x

n
� �Lmin	x
n

�
�
�

�
C	a
�max

�
ln�

n

� �
�

�O

�
lnn

n

�
	��


where

C	a
 �
�a	a� �
�

�
�

a
�
� � �

�

Proof� Let J	n
 denote the index of the super�segment in which xn falls� and let Yj� � �

j � J	n
� denote the sequence of observations that fall in the 	j � �
�st super�segment� We

have Yj � 	xTj��� xTj��� � � � � xTj��
� where T�
�
� �� Tj�� � Tj � Nj for � � j 
 J	n
� and

TJ�n	��
�
� n � TJ�n	 �NJ�n	� By de
nition of the in
nite horizon scheme� we have������ �Lfes�ih	x

n
�

J�n	X
j��

�Lfes�fh	Yj


������ � 	J	n
 � �
�max 	��


where the di�erence is due to the possible discrepancy between b� and the last action of each

super�segment� We can upper�bound each loss �Lfes�fh	Yj
� � � j 
 J	n
� using Theorem �� and

the bound is still valid if we replace the loss of the best performing expert in each super�segment

with that of the expert F that performs best on xn� On the other hand� the design parameters

used in the last super�segment YJ�n	� of length n � TJ�n	� are optimized for a possibly longer

horizon NJ�n	� However� notice that for given design parameters� the regret terms in 	��
 grow

with the sequence length� and therefore the upper bound still holds if we replace the sequence

length with the 	possibly longer
 horizon for which the parameters are optimized� Thus� the

	unnormalized
 bound of Theorem � is still valid if we replace the sequence length with a longer

horizon in the regret term� As a result� for � � j � J	n
 we have

�Lfes�fh	Yj
 � �LF 	Yj
 �
�

�
�max�	ln�
N

�
j �

�
� �O	�


where �LF 	Yj
 denotes the expected loss of F over Yj � Therefore� 	��
 implies

�

n
�Lfes�ih	x

n
 �
�

n
�Lmin	x

n
 �
��max

�n

J�n	X
j��

�	ln�
N�
j �

�
� �O

�
J	n


n

�
� 	��


��



Now� assuming N� � ��

J�n	X
j��

N
�
�
j �

J�n	X
j��

	Nj � �

�
�

�
� �

�

Nj � �

� �
�




J�n	X
j��

	Nj � �

�
�

�
� �

�

�	Nj � �


�




J�n	X
j��

	n�a
j


�
� �

�	J	n
 � �


�
� 	��


In addition�

n � TJ�n	 �

J�n	��X
i��

Ni � n� �
aJ�n	 � �

a� �
�

Thus�

J	n
 

ln�� � n	a� �
�n��

lna
	��


which also yields

J�n	X
j��

a
�j
� 


�
na�a��	

n�
� a

��
� � �

a
�
� � �




�
na�a��	

n�

� �
�

a
�
� � �

	��


where the last inequality holds for all n � �n�a
�����	a � �
�� The theorem follows from equa�

tions 	��
�	��
� �

Notice that the optimal choice of a and n� depends on n� As n��� the optimal a is the

value that minimizes C	a
� which is close to a � ����� and the bound on the regret is about

���� times higher than in the 
nite horizon case� However� any choice a � � guarantees a regret

that vanishes at the same rate as in the 
nite horizon case�

Almost�Sure Convergence� Next� we establish convergence of the on�line loss to �Lmin	x
n


in the almost�sure sense for the random choice of experts� while still maintaining� at this point�

the average performance measure with respect to the possibly random actions of each expert�

Almost�sure convergence with respect to the latter requires additional assumptions on the

experts� so as to guarantee that the loss obeys a �law of large numbers�� Such assumptions will

be made in Section �� Here� a slightly di�erent choice of the block length parameter is needed�

Let Lfes�ih	x
n
 denote the 	random
 average loss incurred over xn by a speci
c realization of the

randomly selected experts according to the in
nite horizon scheme 	where Nj is as in Theorem �

but Mj and 	j are still unspeci
ed
�

��



Theorem � Let Mj � K�N
�
�
���

j and 	j � K�N
� �

�
���

j � where � 
 �� 
 ���� � 
 �� 
 ����

and K�� K� are positive constants� Then�

lim sup
n��

Lfes�ih	x
n
� �Lmin	x

n


n
� � a�s�

Proof� Let J	n
 denote the index of the super�segment in which a time instant n falls� and let

m	n
 denote the total number of blocks up to and including the block in which xn is located�

Recalling the de
nition of Tj as the cumulative length of the 
rst j super�segments� we have

m	n
 �

J�n	��X
j��

�
Nj

Mj

	
�

�
n� TJ�n	
MJ�n	

	
�

Let F�� F�� � � � � Fm�n	�� denote the sequence of expert selections in the speci
c realization leading

to the loss Lfes�ih	x
n
� Notice that these selections are independent 	given xn
� and so are the

corresponding random losses �LFk	Xk
 accumulated by Fk over block Xk� k � �� �� � � � �m	n
���

For a sequence of zero�mean independent random variables Zk taking values in bounded intervals

of sizes Rk� respectively� k � �� �� � � � �m� the Cherno� bounding technique used in conjunction

with Hoe�ding�s inequality 	see 	��

 yields� for every 
 � ��

Prf
mX
k��

Zk � m
g � expf�
�m�
�Pm
k��R

�
k

g � 	��


Thus� by letting m � m	n
� Zk � �LFk	Xk
 � EF f �LFk	Xk
jLF �kg� and Rk � �maxMj�k	� k �

�� �� � � � �m	n
��� where j	k
 denotes the index of the super�segment to which block k belongs�

we can apply the bound in 	��
 to obtain

Pr


�
�
m�n	��X
k��

� �LFk	Xk
�EF f �LFk	Xk
jLF �kg� � m	n




�
� � expf�

�m	n
�
�

��max

Pm�n	
k�� M�

j�k	

g � 	��


Now� proceeding as in the proof of Theorem �� but with the design parameters 	j and Mj

speci
ed for Theorem �� we have

m�n	��X
k��

EF f �LFk	Xk
jLF �kg � �Lmin	x
n
 �O	n�����

 �O	n�������
 � 	��


In addition�

Lfes�ih	x
n
 �

m�n	��X
k��

�LFk	Xk
 � �maxm	n
 � 	��


��



It is easy to see that m	n
 � �	n�����

 and
Pm�n	��

k�� M�
j�k	 � O	n��
���
� so that 	��
� 	��
�

and 	��
 imply

Pr

�
Lfes�ih	x

n
� �Lmin	x
n


n
� �	n


�
� expf�K
n


��g 	��


for some positive constant K
� where �	n
 � O	n�����

 � O	n������
 � O	n�����

� Since

�	n
 � � and the right�hand side of 	��
 forms a summable series� the result follows by the

Borel�Cantelli Lemma� �

For a given ��� which determines the decay rate at the right�hand side of 	��
� the order of

�	n
 at the left�hand side is minimized by choosing �� such that maxf��
�

����g 
 �� �

�

����

In that case we have �	n
 � O	n�����

�

Discussion� An example of the 
nite expert set considered in this section is the set of deter�

ministic FS strategies of the form bt � g	st
� as studied for memoryless loss functions� for �nite

action space B and state space S� In this case� log � � jSj log jBj� The MDP probabilistic anal�

ogy� in which the data are drawn from an FS source fp	xjs
� x � A� s � Sg and the expected

loss takes the form 	�
� suggests an alternative deterministic FS model� Assuming that fp	xjs
g

yields an irreducible Markov chain� the expected loss in 	�
 is minimized over the strategies �

by the deterministic FS strategy

bt � �t	x
t��� bt��
 � g	st� bt��


independent of s� and b� ���� Vol� �� Ch� ��� This strategy is termed stationary� and is obtained

by solving the following linear program�

minimize�
X
s�b��b

q	s� b�� b
L	s� b�� b
 over q

subject to�
X
b

q	s� b�� b
 �
X
s��b��

q	s�� b��� b�
p	sjs�
 �

X
s�b��b

q	s� b�� b
 � � � and

q	s� b�� b
 � � 	��


where p	sjs�
 is given by 	��
� At most one action b satis
es q	s� b�� b
 �� �� and we set g	s� b�
 � b�

Thus� the MDP setting suggests the use of a �nite set of deterministic reference FS o��line

strategies of the form bt � g	st� bt��
� that are obtained as optimal stationary strategies for

some FS sources fp	xjs
g� The resulting number of experts satis
es log � � jSj � jBj log jBj�

��



In the case jSj � �� the same model naturally arises without recourse to a probabilistic

setting� In that case� consider randomized reference strategies� not necessarily FS� in which bt is

any stationary random process� with b� randomly selected according to the stationary marginal

distribution 	rather than being a 
xed initial action
� Let q	bt�� � b�� bt � b
� b�� b � B� denote

the marginal distribution on pairs� Then� the average loss 	with respect to the ensemble of

randomly selected actions
 takes the form

Lq	x
n
 �

X
b�b��B

q	b�� b

X
x�A

np	x
�	b�� b� x

�
� n

X
b�b��B

q	b�� b
L	b�� b
 	��


where p	x
 denotes the empirical probability of x � A for the sequence xn� Thus� the per�

formance is controlled by the transition probabilities from one action to the next induced by

the marginals� namely q	bjb�
 � q	b�� b
�
P

b q	b
�� b
� which are subject to o��line optimization�

Here� as in the memoryless loss case� the optimal reference strategy depends on xn through its

empirical distribution p	x
� The linear program de
ned by the minimization of the right�hand

side of 	��
 over q� is a particular case of 	��
 	obtained in the MDP case
� and admits a deter�

ministic solution bt � g	bt��
� Clearly� each possible solution corresponds to a simple cycle in

the fully connected directed graph whose nodes represent the elements of B� with b� randomly

selected among the actions in the cycle with a uniform distribution� If we associate a weight

L	b� b�
 to an edge from action b to action b�� then the best strategy corresponds to the simple

cycle with smallest average weight among its edges� which can be found with a Viterbi�like

procedure� Due to the random choice of b�� these experts are not deterministic� However�

if we now allow optimization of the choice of b� within the actions in the cycle� we obtain a

deterministic expert with a smaller or equal loss� Clearly� in this case�

log � � log

jBjX
i��

�
jBj

i

�
� i� � jBj log jBj �

The above graph theoretic considerations can be generalized to the MDP case in which jSj � ��

provided that the state transitions are independent of the data� i�e�� f	s� x
 � f	s
 for all x � A

	e�g�� in the case jSj � �
� The o��line strategies can be found by identifying simple cycles with

minimum average weight in a graph with nodes in S	B� The edges in the graph connect pairs

	s� b�
 to corresponding pairs 	f	s
� b
� with associated weights L	s� b�� b
� An edge from 	s� b�


to 	f	s
� b
 in the selected simple cycle indicates that b � g	s� b�
�

��



For given S and f � the reference set bt � g	st� bt��
 is richer than the traditional reference

set bt � g	st
 used for memoryless loss functions� However� it is in turn a subset of the

traditional model� if the latter is de
ned for a state space S	B� and an appropriate next�state

function� This fact follows from observing that any strategy of the form bt � g	st� bt��
 can be

represented as bt � g	�t
� �t � S 	B� by re�de
ning the state transitions as �t�� � f �	�t� xt
�

where for � � 	s� b
 � S 	B� f �	�� x
 � 	f	s� x
� g	s� b

� Notice that the next�state function f �

also depends on g� In particular� if g is randomized� so is f ��

� FSM reference models for loss functions with memory

We will now impose an FSM structure on the expert set� for a 
nite action space B� As discussed

in Section �� for memoryless loss functions the analysis can be con
ned to deterministic reference

strategies� In this section� we show that key properties that hold for FSM expert models in

that case� do not carry over to the case of loss functions with memory� which complicates the

problem� In particular� it is evidenced that the deterministic model is too narrow for this

case� in the sense of o�ering a less ambitious target performance than randomized FSM expert

models� As a result� in Section � we analyze on�line strategies for a randomized FSM expert

model�

We start by showing that� contrary to the memoryless loss case� the minimizing function g

in the loss expression 	��
 for an FSM model bt � g	st
 	and a given next�state function
 need

not be deterministic� Intuitively� the reason is that with a deterministic g� the mapping remains

the same for the 
rst two arguments of �	g	s�
� g	s
� x
 in 	��
� whereas randomization allows

for selection of two �di�erent� mappings� thus accounting for a convex combination of terms

not all of which are covered by the deterministic mappings� In contrast� in the memoryless loss

case� taking expectation over a randomized mapping g would generate a mixture only of terms

that can be implemented deterministically� one of which is the best� The following example

demonstrates a randomized optimal mapping g�

��



Example �� Consider a binary prediction problem in which

�	bt��� bt� xt
 �


�����
�����
� if xt � bt

�
� if xt � bt�� and xt �� bt

� otherwise�

Let the underlying FSM for the set of experts be Markov of order �� namely� st�� � xt� and for

a 	possibly randomized
 strategy g	s
 denote qs � Prfg	s
 � �g� s � f�� �g� Straightforward

computations show that for a sequence xn� n � � 	so that we can neglect edge e�ects
� the

loss in 	��
 takes the form

Lg	x
n
 � n	�
 �

n

�

h
	�� � � �
q� � 	��� �� � �� �
q� � �q�� � �q�q� � 	�� �� �
q��

i
	��


where �
�
� n	��
�n� �

�
� �n	��
�n� �

�
� �n	���
 � n	���
��n� and n	y�y� � � � ym
 denotes the

number of occurrences of a string y�y� � � � ym in xn� Now� for a constant p� ��� 
 p 
 ����

there exists a non�empty Markov type such that for any sequence xn in the type� n	yz�
 �

p n	yz
�O	��n
� y� z � f�� �g 	see ����
� Neglecting the O	��n
 term 	which accounts for edge

e�ects and non�integer values
� we have � � p�� � � �p	�� p
� and � � p	�� p
� so that� after

normalization� the loss in 	��
 is given by

Lg	x
n


n
� �� p�

�pq� � 	�� p
q��
�

�
� 	�p� �


pq� � 	�� p
q�
�

which achieves its minimum value ��p�	���p
��� for any strategy such that pq��	��p
q� �

	���p
��� The four possible deterministic strategies� in turn� yield losses ��p� ���p	��p
���

�p	� � p
��� and p� respectively� Clearly� a randomized strategy prevails for any p �� �
� �

Notice that in the above example� the loss of the best single�state deterministic machine

is nminfp� � � pg� which for p in the range 	���� ���
 is larger than the loss �np	� � p
��

that can be obtained with the best deterministic machine with a Markov order of �� Thus�

it may be advantageous to increase the number of states even if� as in this case� the state

re
nement process does not provide additional information in the sense of further re
ning the

conditional empirical distributions� In contrast� for memoryless loss functions� state re
nements

may translate into better performance only if they result in a better �discrimination� of the

conditional empirical probabilities� as the optimal g	s
� s � S� depends solely on the occurrence

counts given s� The advantage of state re
nement even without a change in the empirical

conditional probabilities� is further illustrated by the following example�

��



Example �� Consider the �counting� sequence ��� that lists� for example� in lexicographical

order� all the binary words of length k� k � �� �� � � �� For this sequence� the empirical conditional

probability of � given any past string tends to �
� as n grows� regardless of the length of the

conditioning string� Clearly� the 	normalized
 loss of a deterministic single�state machine 	with

the loss function of Example �
 is 

� � However� it can be shown that a Markov machine of

order k can achieve the normalized loss �
� � �	k
� where �	k
 � � as k ��� This loss can be

achieved by stepping through a Hamiltonian circuit in the de Brujin graph of order k 	see ����
�

alternatively assigning actions g	s
 � � and g	s
 � � as all the states s � S are visited� Notice

that a normalized loss of �
� can be achieved with a 	non�Markovian
 two�state periodic FSM

that generates actions b�t � � and b�t�� � �� t � �� �� � � ��

As the Markov order k grows� the performance in the counting sequence example ap�

proaches the best achievable performance for any FSM� This property conforms to the case

of memoryless loss functions ���� However� this is not always the case for loss functions with

memory� as demonstrated by the following example�

Example �� Consider the loss function �	b�� b� x
 � � if b � b�� and �	b�� b� x
 � � otherwise

	here� the loss does not depend on x � A
� For the all�zero sequence xn � ��� � � �� the state

sequence is constant in a Markov model� regardless of the Markov order� Therefore� a Markov

strategy will be constant� with a normalized loss of �� In contrast� the two�state FSM strategy

that generates the action sequence bn � ������ � � � has a zero loss�

The above examples show that while for the expert model bt � g	st
 the loss in 	��


depends on the data only through its type with respect to an FSM with state 	s�� s
 � S�� the

model does not inherit some of the properties of the memoryless loss case� Furthermore� the

following example provides evidence to the need to deal with randomized experts also if� as

suggested by the MDP analogy� we let the expert�s advice bt depend also on the previous advice

bt��� Notice that in the case bt � g	st� bt��
� the type of x
n will not in general determine the

loss in 	�
��

Example �� Let xn 	n � �
 be a binary periodic sequence with period x�� �

�An exception is given by the case jSj � �� with the initial action b� chosen according to the steady�state

distribution of the �rst�order Markov chain fbtg 	see Equation 	
����

��



������������������� let B � f�� �g� and consider the loss function

�	bt��� bt� xt
 �


��
��
� if xt � bt � bt��

� otherwise�

Let the underlying FSM for the set of experts be Markov of order �� so that st�� � xt� t � ��

and assume s� � �� Notice that each period in xn is composed of 	three
 pieces with very

di�erent Markov types� While it appears that no deterministic machine can perform well on

all the pieces� the idea is that a randomized machine may be more able to compromise� An

exhaustive search shows that the best deterministic expert bt � g�d		st� bt��
 is given by b� � ��

and bt � st� t � � 	independent of bt��
� with a loss �g�d� � � per period over any integer

number of periods 	thus� the normalized loss tends to ���� as n��
� It is easy to verify that

a randomized expert g�r		st� bt��
 that chooses bt � � with probability q in case st � bt�� � �

and otherwise behaves as the above deterministic expert� achieves an expected loss per period

	over any integer number of periods


��g�r� � ��
q � q


� � q
�

Since ��g�r� 
 � for � 
 q 
 �� it follows that the best expert of the form bt � g	st� bt��
 for x
n

is randomized�

Instead of considering randomized experts bt � g	st� bt��
� we can �hide� the dependency

on bt�� through a transformation of the state space� as discussed at the end of Section ��

Notice that the resulting next�state function is randomized if g is randomized� A randomized

next�state function introduces statistical dependencies between the expert�s actions� without

an explicit dependency of g on bt��� Moreover� it results in a richer expert model�

We conclude that the most appropriate FSM expert model takes the form bt � g	st
�

where the next�state function is randomized� with transition probabilities pf 	st��jst� xt
� We

can assume g to be deterministic� since for a randomized rule based on a conditional distribution

qg	btjst
� an equivalent expert with at most jSj 	 jBj states and for which g is deterministic�

can be built as follows� Split each state into jBj states� and for an observation x � A� transition

from the composite state 	s�� b�
 to 	s� b
 with probability pf 	sjs
�� x
qg	bjs
� then� at state 	s� b
�

choose action b deterministically�

��



It is interesting to notice that� while randomization of the next�state function results in

a richer expert model� for a given mapping g this model can be viewed as one in which S is

a set of actions and the FSM 	driven by xn
 is Markov of order �� The random action st is

selected 	conditioned on the previous action and the state
 according to pf 	stjst��� xt��
� and

incurs a loss �g	st��� st� xt

�
� �	g	st��
� g	st
� xt
� Thus� under this interpretation� the next�

state function is deterministic and the 	randomized
 choice of action depends on the previous

action�

� On�line strategies for randomized FSM experts

In this section� for a given state space S with cardinality �� we consider on�line strategies that

perform essentially as well as the best randomized FSM expert� which is given by a mapping

bt � g	st
� a set of transition probabilities pf 	st��jst� xt
� and an initial state s�� for any

individual sequence xn� The observation space A and the action space B are assumed 
nite�

with respective cardinalities � and �� Again� the result is 
rst presented for a given 
nite

horizon n� As in Section �� a block�length parameter will determine how long the advice of an

expert is followed�

Since the set F of experts is in
nite� the idea is to construct a 
nite grid in the space of

probability matrices fpf 	sjs
�� x
� s�� s � S� x � Ag in order to approximate the best performing

expert on xn by a point in the grid 	together with a deterministic mapping g and an initial

state
� By 	�
� the expert loss �Lp�g	x
n
 is given by

�Lp�g	x
n
 � �	b�� g	s�
� x�
 �

nX
t��

X
s��S

Prfst�� � s�jxt��g
X
s�S

pf 	sjs
�� xt��
�	g	s

�
� g	s
� xt
 	��


where Prfs� � s�jx�g
�
� � when s� is a given initial state� and � otherwise� Thus� the main

di culty is in bounding the error accumulated in the computation of Prfst�� � s�jxt��g

as a result of the approximation� This probability is obtained from the product of tran�

sition probability matrices Q	x�
 � Q	x�
 � � � � � Q	xt��
� Q	x
 being the stochastic matrix

fpf 	sjs
�� x
� s� s� � S� x � Ag� where the optimum Q in each factor of this product is ap�

proximated by a grid point� and so� the overall approximation error grows with t� Since the

regret of an on�line strategy that combines expert predictions grows with the number of experts�

��



we are faced with two con!icting goals which need to be compromised� On the one hand� a

dense grid would provide a good approximation of the best randomized strategy in the contin�

uum� however� on the other hand� the grid cannot be too dense as it would otherwise include a

larger number of experts with the risk of non�vanishing normalized regret� Nonetheless� thanks

to the fact that the regret depends on the number of experts logarithmically� it turns out that

a polynomially growing grid satis
es both requirements�

Speci
cally� consider a grid G�n in which all the transition probabilities pf 	sjs
�� x
 are

integer multiples of 
n� for a vanishing parameter 
n to be speci
ed later� Let Fn denote the

resulting set of experts� where an expert F � Fn is given by a point in the grid� an initial state

s
�F 	
� � and a mapping g 	a 
xed initial action b� is chosen for all experts� since its e�ect does not

propagate
� Recalling � � jAj� � � jSj� and � � jBj� the cardinality �n of Fn satis
es

�n � � � �� �

�
�


n

����
�
� ��n � 	��


For a 
xed block length M � let a parsing of xn into K � � non�overlapping blocks be de
ned

as in Theorem �� At t � kM � �� k � �� �� � � � �K� the on�line algorithm randomly selects

F � Fn according to the conditional distribution 	��
� where F is replaced by 	the 
nite set


Fn� the cumulative expected loss �LF�k of expert F over k blocks is computed as in 	��
� and 	

is a given positive constant� The initial state sMk�� of that block is selected according to the

marginal distribution on sMk�� that would have resulted from applying F on x
Mk� independent

of previous state occurrences� Thus� the corresponding distribution on bMk�� di�ers from the

one prescribed by Theorem �� as it follows the marginal� rather than the conditional distribu�

tion� This choice guarantees statistical independence between actions corresponding to di�erent

blocks� a property that will be used later to show also almost�sure convergence� The marginal

is computed and maintained recursively� starting from the initial state s
�F 	
� � The actions of the

selected expert are followed through t � min	kM �M�n
 	i�e�� during the 	k � �
�st block
�

Theorem � below gives an upper bound on the normalized expected regret of the proposed

scheme�

Theorem � Let 
n � ��	dn
��de��
� d � �� and let M� and 	� be speci�ed as in equations �	
�

and �	��� respectively� but with � replaced by ��n� given by �
��� Let the expected loss of the

proposed on�line strategy with parameters 	 � 	� and M � dM�e� over xn� be denoted by

��



�Lrfs�fh	x
n
 �randomized �nite�state expert��nite horizon�� Let �L�min	x

n
 denote the expected

loss of the �randomized� expert in F that performs best on xn� Then�

�

n

�
�Lrfs�fh	x

n
� �L�min	x
n

�
�
�

�
�max

�
	� � d
��� lnn

n

��
�

�O	n�
�
� 
 �O	n�d
 � 	��


Theorem � implies that for d � ���� the normalized regret is O
�
�	lnn
�n���


�
�

Proof� Let fp�f 	sjs
�� x
� s�� s � S� x � Ag denote the transition probabilities of the expert

F � F that performs best on xn� It can readily be veri
ed that there exists a set of transition

probabilities f"pf 	sjs
�� x
� s�� s � S� x � Ag in G�n such that

j"pf 	sjs
�� x
� p�f 	sjs

�� x
j �
� � �

�
� 
n 	��


for all s�� s � S� x � A� To bound the error accumulated in the computation of Prfst�� �

s�jxt��g in 	��
� t � �� as a result of approximating fp�f 	sjs
�� x
g with the grid point f"pf 	sjs

�� x
g�

we write the probabilities corresponding to each set of distributions as

Pr�fst�� � s�jxt��g � �T
s
�F �
�

�Q�	x�
 �Q
�	x�
 � � � � �Q

�	xt��
 � �s�

and

"Prfst�� � s�jxt��g � �T
s
�F �
�

� "Q	x�
 � "Q	x�
 � � � � � "Q	xt��
 � �s� 	��


respectively� where �s denotes a 	column
 ��vector with a single non�zero entry� which corre�

sponds to s � S and equals �� and Q�	xi
 and "Q	xi
� xi � A� � � i � t��� denote� respectively�

the stochastic matrices fp�f 	sjs
�� xi
� s� s

� � Sg and f"pf 	sjs
�� xi
� s� s

� � Sg� Equation 	��
 can

be written as

"Prfst�� � s�jxt��g � �T
s
�F �
�

� �Q�	x�
 �#	x�
� � �Q
�	x�
 �#	x�
� � � � � � �Q

�	xt��
 �#	xt��
� � �s�

where #	xi
� ��i�t��� denote error matrices whose entries� by the approximation bound 	��
�

are all upper�bounded by 	� � �

n�� in absolute value� Thus�

"Prfst�� � s�jxt��g � Pr�fst�� � s�jxt��g�
�t����X
j��

�T
s
�F �
�

�Zj � �s� 	��


where Zj � � � j 
 �t��� denote products of t � � matrices each of which is either Q�	xi
 or

#	xi
 for some i� � � i � t��� and at least one of the factors is #	xi
� For a matrix Zj formed

by � factors of type #	xi
 	� � � � t� �
� we have

Zj � R� �#	xi�
 �R� �#	xi�
 � � � R	 �#	xi�
 � R	��

��



for some indexes �
�
� i� 
 i� 
 i� 
 � � � 
 i	 
 i	��

�
� t � �� where Rh� � � h � � � �� are

stochastic matrices of the form

Rh
�
� Q�	xih����
 � � � � �Q

�	xih��


provided ih�� � � �� ih� and Rh � I 	the � 	 � identity matrix
 otherwise�

Now� since Rh is stochastic� every entry in Rh �#	xih
 is upper�bounded by 	� � �

n�� in

absolute value� Therefore� the absolute value of every entry in
Q
hRh �#	xih
 is upper�bounded

by �	� � �

n�
	��� and after further post�multiplication by R	��� the absolute value of every

entry of Zj is upper�bounded by �	� � �

n�
	� Thus� we can upper�bound the right�hand side

of 	��
 to obtain

"Prfst�� � s�jxt��g � Pr�fst�� � s�jxt��g�
t��X
	��

�
t� �

�

�
� �	�� �

n�

	 � Pr�fst�� � s�jxt��g� �t

	��


where �t � 	� � 	� � �

n

t�� � �� It then follows from 	��
 that� for any initial state s

�F 	
� and

mapping g�

�L�p�g	x
n
 � �	b�� g	s

�F 	
� 
� x�


�
nX
t��

X
s��S

�Pr�fst�� � s�jxt��g� �t�
X
s�S

�p�f 	sjs
�� xt��
 �

� � �

�

n��	g	s

�
� g	s
� xt


� �Lp��g	x
n
 � �max�

�
n
n � 	� � �
n


nX
t��

�t

�

� �Lp��g	x
n
 � n�max��
n � 	� � �
n
�n�

�
� �Lp��g	x

n
 � n�n 	��


where the last inequality follows from �t being an increasing function of t� Thus� the loss

achieved by any expert in F is approximated by an expert in Fn up to an excess 	normalized


loss �n � O	n��
n
� In particular� the loss �Lgrid	x
n
 of the expert in Fn that performs best on

xn satis
es

�Lgrid	x
n
 � �L�min	x

n
 � n�n 	��


where �n � O	n�d
 for 
n � ��	dn
��de��
�

Next� we use Theorem � to upper�bound the regret �Lrfs�fh	x
n
� �L�grid	x

n
 of the proposed

on�line strategy with respect to the 
nite set of experts Fn� The choice of the initial state

sMk�� of block k according to the marginal 	rather than conditional
 distribution corresponding

��



to the evolution of the selected expert F along xMk� prevents from direct application of the

theorem� However� the use of the correct marginal implies that the joint distributions of pairs of

consecutive actions� which determine the expected loss� will not di�er beyond the 
rst sample in

the block from those dictated by F � Now� since bMk corresponds to a possibly di�erent expert

selection� this discrepancy was already accounted for in the proof of Theorem �� Therefore� we

can still use the theorem to upper�bound the regret� Finally� since

�Lrfs�fh	x
n
� �L�min	x

n
 � 	 �Lrfs�fh	x
n
� �Lgrid	x

n

 � 	 �Lgrid	x
n
� �L�min	x

n



the result follows from 	��
� Theorem �� and 	��
� �

For in
nite horizon� again� time is divided into non�overlapping contiguous super�segments

of lengths Nj � dn�a
je� j � �� �� � � �� for given positive constants n� and a� a � �� In the

	j � �
�st super�segment� the above 
nite horizon algorithm is used with an expert set FNj

	given by a grid G�Nj
� with 
n as in Theorem �
� and design parameters M � dMje and 	 � 	j �

where Mj and 	j di�er from M� and 	�� respectively� in that Nj replaces n in their de
nition�

The expected loss of this in
nite horizon scheme over a pre
x xn of a sequence of observations

is denoted �Lrfs�ih	x
n
 	randomized 
nite�state expert�in
nite horizon
� Theorem � below states

that for all n� the normalized regret is essentially bounded as in Theorem �� but with a larger

constant� The proof is omitted� since it is analogous to that of Theorem ��

Theorem 	 For any pre�x xn of an in�nite sequence of observations�

�

n

�
�Lrfs�ih	x

n
� �L�min	x
n

�
�
�

�
C	a
�max

�
	� � d
��� lnn

n

��
�

�O	n�
�
� 
 �O	n�d
 �

As for almost�sure convergence� it can be established with respect to both randomization

levels 	the choice of experts and the expert actions
� as shown in Theorem � below� This pure

almost�sure property is stronger than the one presented for generic experts in Theorem �� which

was only with respect to the random selection of experts at each block 	with expectation still

taken for the inner randomization on the expert actions
� Let Lrfs�ih	x
n
 denote the 	random


loss incurred over xn by a speci
c realization of the randomly selected experts and their random

actions� according to the in
nite horizon scheme� but with Mj and 	j as in Theorem ��

��



Theorem 
 If � 
 �� 
 ��� and � 
 �� 
 ���� then

lim sup
n��

Lrfs�ih	x
n
� �L�min	x

n


n
� � a�s�

Proof� We proceed as in the proof of Theorem �� except that here the independent random

losses of interest are Lrfs�ih	Xk
� k � �� �� � � � �m	n
��� which correspond to speci�c realizations

of the on�line actions over block Xk� The independence of these losses follows from the choice

of initial state for each block� Thus�

Pr


�
�
m�n	��X
k��

�Lrfs�ih	Xk
�EF f �Lrfs�ih	Xk
jLF �kg� � m	n




�
� � expf�

�m	n
�
�

��max

Pm�n	
k�� M�

j�k	

g

implying

Pr
n
Lrfs�ih	x

n
� �Lrfs�ih	x
n
 � m	n



o
� expf�

�m	n
�
�

��max

Pm�n	
k�� M�

j�k	

g � 	��


A result analogous to Theorem �� but for the re�speci
ed design parameters 	j and Mj � takes

the form

�Lrfs�ih	x
n
 � �L�min	x

n
 �O	n�����
 lnn
 �O	n�������
 �O	n�d
 � �maxm	n
 � 	��


Since the asymptotic behavior of m	n
 and Mj�k	 is the same as in the proof of Theorem ��

by 	��
 and 	��
� the proof is completed similarly� �

FSM experts with an unbounded number of states� Next� we consider an in
nite

sequence x�� and analyze an on�line strategy that competes against randomized FSM experts

of any size 	� ��
� The corresponding reference performance for randomized FSM experts is

given by

���min	x
�
 � lim

���
lim sup
n��

�L�min	x
n


n

where the limit on � exists since �L�min	x
n
 is non�negative and non�increasing on �� To achieve

a vanishing normalized regret� we use the algorithm of Theorem �� but with a value �j of �

that gradually increases with the super�segment index j� Let �Lseq	x
n
 denote the resulting loss

over xn�

Corollary � If the size �j of the state space used for super�segment j satis�es limj�� �j ��

and �j � o	
p
Nj� log

�Nj
� and d � ���� then

lim sup
n��

�Lseq	x
n


n
� ���min	x

�
 �

��



Proof� Let Yj denote the sequence of observations that fall in the 	j ��
�st super�segment� By

Theorem � we have

�Lseq	Yj
� �L
�j
min	Yj
 � O

�
���jN

�
j logNj�

�
�

�
� O

�
Nj
	Nj


logNj

�
	��


where limj�� 
	Nj
 � �� For any positive integer �� we have �j � � for su ciently large j�

implying

�L
�j
min	Yj
 �

�L�min	Yj
 �

Therefore� by 	��
� we have

�Lseq	x
n
� �L�min	x

n
 � O

�
�J�n	X

j��

Nj
	Nj


logNj

�
A 	��


where J	n
 is the index of the super�segment in which n falls� Now� if 
	Nj
 � O		logNj
�Nj
�

then the right�hand side of 	��
 is O	J	n

� Otherwise� the right�hand side of 	��
 is

O	n
	n
J	n
� log n
� In any case� since J	n
 � O	log n
 	see proof of Theorem �
� we have

lim sup
n��

�Lseq	x
n


n
� lim sup

n��

�L�min	x
n


n
� 	��


Since 	��
 holds for any � � �� the proof is complete� �

Discussion� Corollary � parallels similar results for memoryless loss functions ���� In the

memoryless loss case� the �ultimate� performance yardstick is restricted to deterministic FSM�s�

which is justi
ed by the asymptotic equivalence of the deterministic and the randomized classes�

For a 
nite sequence and a given number of states� however� we can still ask which approach is

better in terms of total normalized loss�

a� To compete against deterministic machines only� as in Section � 	where an action may

also depend on the previous action
� aiming at a deterministic �FS predictability�� with a

regret corresponding to a reduced number of experts� For memoryless loss functions� the

limiting FS predictability 	as jSj � �
 is the same as with randomized machines� but

may be achieved at a slower rate�

b� To compete against randomized machines� for which the regret is larger due to a larger

number of experts� but the limiting value may be smaller for loss functions with memory�

��



Since the best approach may depend on the data sequence� it cannot be decided ahead

of time� However� we can regard each approach as a randomized �meta�expert� and� again�

combine the advice of these two meta�experts as in Section �� By Theorem � 	in the in
nite

horizon case
� the main term in the 	normalized
 excess loss 	with respect to the best of the

above two strategies
 is ���C	a
�max		ln �
�n

��
� Thus� this mixed strategy is equivalent to

picking the best approach� but with an additional regret corresponding to only two experts�
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