

Timed-Release Cryptography

Wenbo Mao
Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2001-37
March 9th , 2001*

E-mail: wm@hplb.hpl.hp.com

timed-release
cryptography,
time-lock
puzzles, timed
commitments,
efficient zero-
knowledge
protocols

Let n be a large composite number. Without factoring n, the
validation of a2t (mod n) given a, t with gcd (a, n) = 1 and t < n
can be done in t squarings modulo n. For t << n (e.g., n > 2 1024

and t < 2 100), no lower complexity than t squarings is known to
fulfil this task (even considering massive parallelisation).
Rivest et al suggested to use such constructions as good
candidates for realising timed-release crypto problems. We
argue the necessity for zero-knowledge proof of the correctness
of such constructions and propose the first practically efficient
protocol for a realisation. Our protocol proves, in log2 t standard
crypto operations, the correctness of (ae) 2t (mod n) with
respect to ae where e is an RSA encryption exponent. With such
a proof, a Timed-release RSA Encryption of a message M can be
given as a2t M (mod n) with the assertion that the correct
decryption of the RSA ciphertext Me (mod n) can be obtained by
performing t squarings modulo n starting from a. Timed-release
RSA signatures can be constructed analogously.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Timed-Release Cryptography

Wenbo Mao
Hewlett-Packard Laboratories
Filton Road, Stoke Gi�ord

Bristol BS34 8QZ
United Kingdom

wm@hplb.hpl.hp.com

March 7, 2001

Abstract

Let n be a large composite number. Without factoring n, the validation of a2
t

(mod

n) given a, t with gcd(a; n) = 1 and t < n can be done in t squarings modulo n. For

t � n (e.g., n > 21024 and t < 2100), no lower complexity than t squarings is known to

ful�ll this task (even considering massive parallelisation). Rivest et al suggested to use

such constructions as good candidates for realising timed-release crypto problems.

We argue the necessity for zero-knowledge proof of the correctness of such construc-

tions and propose the �rst practically e�cient protocol for a realisation. Our protocol

proves, in log2 t standard crypto operations, the correctness of (ae)2
t

(modn) with re-

spect to ae where e is an RSA encryption exponent. With such a proof, a Timed-release

RSA Encryption of a message M can be given as a2
t

M(mod n) with the assertion that
the correct decryption of the RSA ciphertextM e(mod n) can be obtained by performing

t squarings modulo n starting from a. Timed-release RSA signatures can be constructed

analogously.

Keywords Timed-release cryptography, Time-lock puzzles, Timed commitments, E�cient
zero-knowledge protocols.

1 Introduction

Let n be a large composite natural number. Given t < n and gcd(a; n) = 1, without factoring
n, the validation of

X � a2
t

(mod n) (1)

can be done in t squarings mod n. However if �(n) (Euler's phi function of n) is known, then
the job can be completed in O(logn) multiplications via the following two steps:

u
def
= 2t(mod �(n)); (2)

1

X
def
= au(mod n): (3)

For t� n (e.g., n > 21024 and t < 2100), it can be anticipated that factoring of n (and hence
computing �(n) for performing the above steps) will be much more di�cult than performing
t squarings. Under this condition we do not know any other method which, without using the
factorisation of n, can compute a2

t

(mod n) in time less than t squarings. Moreover, because
each squaring can only be performed on the result of the previous squaring, it is not known
how to speedup the t squarings via parallelisation of multiple processors. Parallelisation of
each squaring step cannot achieve a great deal of speedup since a squaring step only needs
a trivial computational resource and so any non-trivial scale of parallelisation of a squaring
step is likely to be penalised by communication delays among the processors.

These properties suggest that the language

L(a; t; n) = f (a; t; a2
t

mod n) j t < n; gcd(a; n) = 1 g (4)

forms a good candidate for the realisation of timed-release crypto problems. Rivest, Shamir
and Wagner pioneered the use of this language in a time-lock puzzle scheme [11]. In their
scheme a puzzle is a triple (t; a; n) and the instruction for �nding its solution is to perform
t squarings mod n starting from a which leads to a2

t

(modn). A puzzle maker, with the
factorisation knowledge of n, can construct a puzzle e�ciently using the steps in (2) and (3)
and can �ne tune the di�culty for �nding the solution by choosing t in a vast range. For
instance, the MIT Laboratory for Computer Science (LCS) has implemented the time-lock
puzzle of Rivest et al into \The LCS35 Time Capsule Crypto-Puzzle" and started its solving
routine on 4th April 1999. It is estimated that the solution to the LCS35 Time Capsule
Crypto-Puzzle will be found in 35 years from 1999, or on the 70 years from the inception of
the MIT-LCS [10]. (Though we will discuss a problem of this puzzle in x1.2.)

1.1 Applications

Boneh and Naor used a subset of L(a; t; n) (details to be discussed in x1.2) and constructed
a timed-release crypto primitive which they called \timed commitments" [3]. Besides sev-
eral suggested applications they suggested an interesting use of their primitive for solving
a long-standing problem in fair contract signing. A previous solution (due to Damg�ard [6])
for fair contract signing between two remote and mutually distrusted parties is to let them
exchange signatures of a contract via gradual release of secrets. A major drawback with that
solution is that it only provides a weak fairness. Let us describe this weakness by using, for
example, a discrete-logarithm based signature scheme. A signature being gradually released
relates to a series of discrete logarithm problems with the discrete logarithm values to have
gradually decreasing magnitudes. Sooner or later before the two parties completes their ex-
change, one of them may �nd himself in a position of extracting a discrete logarithm which
is su�ciently small with respect to his computational resource. It is well-known (e.g., the
work of Van Oorschot and Wiener on the parallelised rho method [13]) that parallelisation is
e�ective for extracting small discrete logarithms. So the resourceful party (one who is able
to a�ord vast parallelisation) can abort the exchange at that point and wins an advanced

2

position unfairly. Boneh and Naor suggested to seal signatures under exchange using ele-
ments in L(a; t; n). Recall the aforementioned non-parallelisable property for re-constructing
the elements in L(a; t; n), a roughly equal time can be imposed for both parties to open the
sealed signatures regardless of their (maybe vast) di�erence in computing resources. In this
way, they argued that strong fairness for contract signing can be achieved.

Rivest et al suggested several other applications of timed-release cryptography [11]:

� A bidder in an auction wants to seal his bid so that it can only be opened after the
bidding period is closed.

� A homeowner wants to give his mortgage holder a series of encrypted mortgage pay-
ments. These might be encrypted digital cash with di�erent decryption dates, so that
one payment becomes decryptable (and thus usable by the bank) at the beginning of
each successive month.

� A key-escrow scheme can be based on timed-release crypto, so that the government can
get the message keys, but only after a �xed, pre-determined period.

� An individual wants to encrypt his diaries so that they are only decryptable after �fty
years (when the individual may have forgotten the decryption key).

1.2 Previous Work and Unsolved Problem

With the nice properties of L(a; t; n) we are only half way to the realisation of timed-release
cryptography. In most imaginable applications where timed-release crypto may play a role,
it is necessary for a problem constructor to prove (ideally in zero-knowledge) the correct
construction of the problem (e.g., without a correctness proof, the strong fairness property of
the fair-exchange application is absent).

From the problem's membership in NP we know that there exists a zero-knowledge proof
for a membership assertion regarding language L(a; t; n). Such a proof can be constructed
via a general method (e.g., the work of Goldrich et al [8]). However, the performance of
a zero-knowledge proof in a general construction is not suitable for practical use. By the
performance for practical use we mean an e�ciency measured by a small polynomial in some
typical parameters (e.g., the bit length of n). To our knowledge, there exists no practically
e�cient zero-knowledge protocols for proving the general case of the membership in L(a; t; n).
We say so with our awareness of the work of Boneh and Naor of \timed commitments" [3].

Boneh and Naor constructed a practically e�cient protocol for proving membership in the
subset of L(a; t; n) where t = 2k with k being any natural number. The time control that the
elements in this subset can o�er has granularity of powers of 2. This granularity is too coarse.
Boneh and Naor envisioned k 2 [30; :::; 50] for typical cases in applications. While it is evident
that k decreasing from 30 downwards will quickly trivialise a timed-release crypto problem
as 230 is already at the level of a small polynomial in the secure bit length of n (usually 210),
a k increasing from 30 upwards will harden the problem in such increasingly giant steps that
imaginable services (e.g., the strong fairness for gradual disclosure of secret proposed in [3])

3

will quickly become unattractive or unusable. Taking the LCS35 Time Capsule for example,
suppose that the 35-year-opening-time capsule is in that subset (so the correctness can be
e�ciently proved with the protocol in [3]), then the only other elements in that subset with
opening times close to 35 years will be 17.5 years and 70 years.

The Time-Lock-Puzzle work of Rivest et al [11] did not provide a method for proving the
correct construction of a timed-release crypto problem.

1.3 Our Work

We construct the �rst practically e�cient zero-knowledge proof protocol for demonstrating
the membership in L(a; t; n) which runs in log2 t steps, each an exponentiation modulo n, or
O(log2 t(log2 n)

3) bit operations in total. This e�ciency suits practical uses. The membership
demonstration can be conducted in terms of (ae)2

t

(modn) 2 L(ae; t; n) on given a and ae

where e is an RSA encryption exponent. Then we are able to provide two timed-release
crypto primitives, one for timed release of a message in RSA encryption, and the other for
timed release of an RSA signature. In the former, a messageM can be sealed in a2

t

M(mod n),
and the established membership asserts that the correct decryption of the RSA ciphertext
M e(mod n) can be obtained by performing t squarings modulo n starting from a. The latter
primitive can be constructed analogously.

Our schemes provide general methods for the use of timed-release cryptography.

1.4 Organisation

In the next section we agree on notations to be used in the paper. In Section 3 we construct
general methods for timed-release cryptography based on proven membership in L(a; t; n). In
Section 4 we construct our membership proof protocol working with an RSA modulus of a
safe-prime structure. In Section 5 we generalise our result to working with any odd composite
modulus which is di�cult to factor.

2 Notation

Throughout the paper we use the following notation. Zn denotes the ring of integers modulo
n. Z�

n denotes the multiplicative group of integers modulo n. �(n) denotes Euler's phi function
of n, which is the order, i.e., the number of elements, of the group Z�

n. For an element a 2 Z�
n,

Ordern(a) denotes the multiplicative order modulo n of a, which is the least index i satisfying

ai � 1(modn); hai denotes the subgroup generated by a;
�
x
n

�
denotes the Jacobi symbol of x

mod n. We denote by J+(n) the subset of Z
�
n containing the elements of the positive Jacobi

symbol. For integers a, b, we denote by gcd(a; b) the greatest common divisor of a and b, and
by lcm(a; b) the least common multiple of a and b. For a real number r, we denote by brc the
oor of r, i.e., r round down to the nearest integer. For an event E, we denote by Pr[E] the
probability for E to occur.

4

3 Timed-Release Crypto with Membership in L(a; t; n)

Let Alice be the constructor of a timed-release crypto problem. She begins with constructing
a composite natural number n = pq where p and q are two distinct odd prime numbers. De�ne

a(t)
def
= a2

t

(mod n); (5)

ae(t)
def
= (a(t))e(mod n); (6)

where e is a �xed natural number relatively prime to �(n) (in the position of an RSA en-
cryption exponent), and a 6� �1 (mod n) is a random element in Z�

n. Alice can construct a(t)
using the steps in (2) and (3).

The following security requirements should be in place: n should be so constructed that
Order�(n)(2) is su�ciently large, and a should be so chosen that Ordern(a) is su�ciently
large.

In the remainder of this section, we assume that Alice has proven to Bob, the veri�er, the
following membership status (using the protocol in x4):

ae(t) 2 L(ae; t; n): (7)

Clearly, this is equivalent to another membership status:

a(t) 2 L(a; t; n):

However in the latter case a(t) is (temporarily) unavailable to Bob due to the di�culty of
extracting the e-th root (of ae(t)) in the RSA group.

3.1 Timed-release of an RSA Encryption

For message M < n, to make the RSA ciphertext M e(modn) decryptable in time t, Alice
can construct a \timed encryption":

TE(M; t)
def
= a(t)M (mod n): (8)

Let Bob be given the tuple (TE(M; t); ae(t); e; a; t; n) where ae(t) is constructed in (5) and
(6) and has the membership status in (7) proven by Alice. Then from the relation

TE(M; t)e � ae(t)M e (mod n); (9)

Bob is assured that the plaintext corresponding to the RSA ciphertext M e(modn) can be
obtained from TE(M; t) by performing t squarings modulo n starting from a.

Remark As in the case of a practical public-key encryption scheme, M in (8) should be ran-
domised using a proper plaintext randomisation scheme designed for providing the semantic
security (e.g., the OAEP scheme for RSA [1]).

5

3.2 Timed-release of an RSA Signature

Let e, n be as above and d satisfy ed � 1 (mod �(n)) (so d is in the position of an RSA signing
exponent). For message M < n (see Remark below), to make its RSA signature Md(mod n)
releasable in time t, Alice can construct a \timed signature":

TS(M; t)
def
= a(t)Md (mod n): (10)

Let Bob be given the tuple (M;TS(M; t); ae(t); e; a; t; n) where ae(t) is constructed in (5)
and (6) and has the membership status in (7) proven by Alice. Then from the relation

TS(M; t)e � ae(t)M (mod n); (11)

Bob is assured that the RSA signature on M can be obtained from TS(M; t) by performing
t squarings modulo n starting from a.

Remark As in the case of a practical digital signature scheme, M in (10) should denote an
output from a secure one-way hash function. We further require that the output is in J+(n).
A random padding scheme should make this happen with probability 0.5.

3.3 Security Analysis

3.3.1 Con�dentiality of M in TE(M; t)

We assume that Alice has implemented properly our security requirements on the large mag-
nitudes of Order�(n)(2) and Ordern(a). Then we observe that the mapping from ae to ae(t) is
random (which follows the Blum-Blum-Shub random sequence generator [2]) in a large subset
of the quadratic residues modulo n. Thus, given the di�culty of extracting the e-th root of
a random element in the RSA group, a successful extraction of a(t) from ae(t) will constitute
a grand breakthrough if it is done at a cost less than t squarings modulo n.

The above part of the argument (i.e., di�culty of �nding a(t) from ae(t)) will also apply
to the security analysis in x3.3.3.

Next, we observe that our scheme for encryptingM 2 Z�
n inside TE(M; t) is a trapdoor one-

way permutation (from Z�
n to a subset of it) since the transformation is to multiply, modulo

n, the message M to the trapdoor secret a(t). Thus, well-known plaintext ranomisation
schemes which have been proposed for achieving the semantic security for trapdoor-one-way-
permutation-based cryptosystems (e.g., OAEP for RSA [1]) can be applied to our plaintext
message before the permutation and thereby achieve the message con�dentiality properties
that such a randomisation scheme o�ers (against various passive or active attacks).

3.3.2 Unforgeability of Md in TS(M; t)

Recall that M here denotes an output from a secure one-way hash function before signing
in the RSA way. The unforgeability of Md in TS(M; t) directly follows that of Md(modn)
given in clear.

6

Likewise, the randomness of ae(t) ensures that of TS(M; t)e. Thus the availability of the
pair (TS(M; t); TS(M; t)e) does not constitute a valid signature of Alice on anything since
this availability is equivalent to that of (x; xe) which can be constructed by anybody out of
using a random x.

3.3.3 Indistinguishability of Md in TS(M; t)

The indistinguishability is the following property: with the timed-release signature on M
available at hand and with the proven membership ae(t) 2 L(ae; t; n), but without going
through t squarings mod n, Bob must not be able to show to a third party that the data he
possesses form a signature of Alice on M . The holding of this property is shown below.

Let M̂ 2 J+(n) be any message of Bob's choice (e.g., M̂d becomes available to him from
a di�erent context). We have

TS(M; t) � a(t)Md � a(t)
�
M

M̂

�d
M̂d � âM̂d(mod n):

So the third party faces to decide which of Md or M̂d is sealed in TS(M; t). This boils down
to deciding if a(t) 2 L(a; t; n) or â 2 L(a; t; n) (both are in J+(n)). Even by making a(t) and
â available to the third party (and hence Md and M̂d become available too), without having
viewed the membership proof protocol run between Alice and Bob, a correct decision will form
a grand breakthrough if it is done at a cost less than t squarings mod n. We should emphasise
the following point: even though the availability of Md and M̂d allows one to recognise that
the both to be Alice's valid signatures, without verifying the membership status, one is unable
to tell if any of the two has any connection with TS(M; t) at all.

4 Membership Proof with Safe-Prime-StructuredMod-

ulus

Let Alice have constructed her RSA modulus n with a safe-prime structure. This requires
n = pq, p0 = (p� 1)=2, q0 = (q � 1)=2 where p, q, p0 and q0 are all distinct primes of roughly
equal size. We assume that Alice has proven to Bob in zero-knowledge such a structure of n.
This can be achieved via using, e.g., the protocol of Camenisch and Michels [4].1

Let a 2 Z�
n satisfy

gcd(a� 1; n) = 1; (12)�
a

n

�
= �1: (13)

It is elementary to show that a satisfying (12) and (13) has the full order 2p0q0. The following
lemma observes a property of a.

1Due to the current di�culty of zero-knowledge proof for a safe-prime-structured RSA modulus, we rec-
ommend to use the protocol in section 5 which works with any odd composite modulus provided it is di�cult
to factor. Section 4 merely serves a preparation purpose for Section 5.

7

SQ(a; x; y; n)

Input Common: n: an RSA modulus with a safe-prime structure;
a 2 Z�

n: an element of the full-order 2p0q0 = �(n)=2 (so a 6� �1 (mod n);
x; y 2 J+(n): x 6� �y (mod n);

Alice: z: x � �az(mod n), y � �az
2

(mod n);

1. Bob chooses at random r < n, s < n and sends to Alice: C
def
= arxs(mod n);

2. Alice sends to Bob: R
def
= Cz(mod n);

3. Bob accepts if R � xrys(mod n), or rejects otherwise.

Figure 1: Building Block Protocol

Lemma 1 Let n be an RSA modulus of a safe-prime structure and a 2 Z�
n of the full order.

Then for any x 2 Z�
n, either x 2 hai or �x 2 hai.

Proof It's easy to check �1 62 hai. So hai and the coset (�1)hai both have the half the size
of Z�

n, yielding Z
�
n = hai [(�1)hai. Any x 2 Z�

n is either in hai or in (�1)hai. The latter case
means �x 2 hai. 2

4.1 A Building Block Protocol

Let Alice and Bob have agreed on n (this is based on Bob's satisfaction on Alice's proof that
n has a safe-prime structure).

Figure 1 speci�es a perfect zero-knowledge protocol for Alice to prove that for a; x; y 2 Z�
n

with n of a safe-prime structure, a of the full order, and x; y 2 J+(n), they satisfy (note, �
below means either + or �, but not both)

9z : x � �az(mod n); y � �az
2

(mod n): (14)

Alice should of course have constructed a; x; y to satisfy (14). She sends a; x; y to Bob.
Bob (has checked n of a safe-prime structure) should �rst check (12) and (13) on a for its

full-order property (the check guarantees a 6� �1 (mod n)); he should also check x; y 2 J+(n).
Remark For ease of exposition this protocol appears in a non zero-knowledge format. How-
ever, the zero-knowledge property can be added to it using the notion of a commitment
function: Instead of Alice sending R in Step 2, she sends a commitment commit(R), after
which Bob reveals r and s; this allows Alice to check the correct formation of C; the correct
formation means that Bob has already known Alice's response.
Theorem 1 Let a; x; y; n be as speci�ed in the common input in Protocol SQ. The protocol
has the following properties:
Completeness There exists z 2 Zn and x; y 2 Z�

n satisfying (14); for these values Bob will
always accept Alice's proof;

8

Soundness If (14) does not hold for the common input, then Alice, even computationally
unbounded, cannot convince Bob to accept her proof with probability greater than 2p0+2q0�1

2p0q0
.2

Zero-knowledge Bob gains no information about Alice's private input.
Proof

Completeness For any z 2 Zn, let x = az(mod n), y = az
2

(mod n) (both in the plus case).
It is evident from inspection of the protocol that Bob will always accept Alice's proof.
Soundness Suppose that (14) does not hold whereas Bob has accepted Alice's proof.

The �rst congruence of (14) holds as a result of Lemma 1. So it is the second congruence
of (14) that does not hold. Let � 2 Z�

n satisfy

y � �az
2

(mod n) with Ordern(�) > 2: (15)

By asserting Ordern(�) > 2 we exclude the cases for � being any square root of 1, which
consists of either �1, or the other two roots which will render y 62 J+(n).

We only need to consider the case x � �az(modn). The other case x � az(modn) is
completely analogous (and easier).

Since Bob accepts the proof, he sees the following two congruences

C � arxs(mod n); (16)

R � xrys (mod n): (17)

Examining (16), we see that C � ar(�x)s 2 hai if s is even, or �C � ar(�x)s 2 hai if
s is odd. So for either cases of s, we are allowed to re-write (16) into the following linear
congruence with r and s as unknowns

loga�C � r + sz (mod 2p0q0):

For every case of s = 1; 2; � � � ; 2p0q0, this linear congruence has a value for r. This means that
for any �xed C, (16) has exactly 2p0q0 pairs of solutions. Each of these pairs will yield an R
from (17). Below we argue that for any two solution pairs from (16), which we denote by
(r; s) and (r0; s0), if gcd(s� s0; 2p0q0) � 2 then they must yield R 6� R0 (mod n). Suppose on
the contrary

arxs � C � ar
0

xs
0

(mod n); i.e., ar�r0

� xs
0�s(mod n); (18)

it also holds

xrys � R � R0 � xr
0

ys
0

(mod n); i.e., xr�r0

� ys
0�s(mod n): (19)

Using (18) and (15) with noticing x � �az, we can transform (19) into

(�1)[r�r0+z(s0�s)]a[z
2(s0�s)] � xr�r0

� ys
0�s � �(s

0�s)a[z
2(s0�s)](mod n);

2The safe-prime structure of n implies p0 � q0 � pn and hence this probability value is approximately
1=
p
n.

9

which yields

�(s
0�s) � (�1)[r�r0+z(s0�s)] � �1 (mod n); i.e., �2(s

0�s) � 1 (mod n): (20)

Recall that Ordern(�) > 2 which implies Ordern(�) being a multiple of p0 or q0 or both.
However, gcd(s0 � s; 2p0q0) � 2, i.e., gcd(2(s0 � s); 2p0q0) = 2, so 2(s0 � s) cannot be such a
multiple. Consequently (20) cannot hold and we reach a contradiction.

For any s � 2p0q0, it's routine to check that there are 2p0 + 2q0 � 2 cases of s0 satisfying
gcd(2(s0� s); 2p0q0) > 2. Thus, if (14) does not hold, amongst 2p0q0 possible R's matching the
challenge C, there are in total 2p0 + 2q0 � 1 of them (matching s and the other 2p0 + 2q0 � 2
s0s) that may collide to Bob's �xing of R. Even computationally unbounded, Alice will have
at best 2p0+2q0�1

2p0q0
probability to have responded correctly.

Zero-Knowledge Immediate (see Remark after the description of the protocol). 2

4.2 Proof of Membership in L(a; t; n)

For t � 1, we can express 2t as

2t =

(
2[2�(t=2)] = [2(t=2)]2 if t is even
2[2�(t�1)=2+1] = [2(t�1)=2]2 � 2 if t is odd

Copying this expression to the exponent position of a2
t

(mod n), we can express

a2
t

(mod n) �

8<
: a[2

(t=2)]2 if t is even

(a[2
(t�1)=2])2 if t is odd

(21)

In (21) we see that the exponent 2t can be expressed as the square of another power of 2
with t being halved in the latter. This observation suggests that repeatedly using SQ, we can
demonstrate, in blog2 tc steps, that the discrete logarithm of an element is of the form 2t. This
observation translates precisely into the protocol speci�ed in Figure 2 which will terminate
within log2 t steps and prove the correct structure of a(t). The protocol is presented in three
columns: the actions in the left column are performed by Alice, those in the right column, by
Bob, and those in the middle, by the both parties.

A run of Membership(a; t; a(t); n) will terminate within blog2 tc loops, and this is the
completeness property. The zero-knowledge property follows that of SQ. We only have to
show the soundness property.
Theorem 2 Let n = (2p0+1)(2q0+1) be an RSA modulus of a safe-prime structure, a 2 Z�

n

be of the full order 2p0q0, and t > 1. Upon acceptance termination of Cert Est(a; t; a(t); n),
relation a(t) � a2

t

(mod n) holds with probability greater than

1�
blog2 tc(2p

0 + 2q0 � 1)

2p0q0
:

10

Membership(a; t; a(t); n)
Abort and reject if any checking by Bob fails, or accept upon termination.

Alice Bob

u
def
= a(t); u

?
2 J+(n); a

?

6� �u (mod n)
While t > 1 do0
BBBBBBBBBBBBBBBBBBBBBBB@

y
def
= u;

if t is odd: y
def
= a(t� 1);

x
def
= a(bt=2c);

Sends x; y to Bob;
Receives x; y from Alice;

x; y
?
2 J+(n);

if t is odd: y2
?
� u (mod n);

SQ(a; x; y; n);

u
def
= x;

t
def
= bt=2c;

When t = 1:
u

?
� a2(mod n);

Figure 2: Membership Proof Protocol

Proof Denote by SQ(a; x1; y1; n) and by SQ(a; x2; y2; n) any two consecutive acceptance
calls of SQ in Membership (so y1 = a(t) in the �rst call, and x2 = a2 in the last call, of SQ
in Membership, respectively). When t > 1, such two calls prove that there exists z:

x2 � �az(mod n); y2 � �az
2

(mod n); (22)

and either
x1 = y2 � �az

2

(mod n); y1 � �az
4

(mod n); (23)

or
x1 = y22 � a2z

2

(mod n); y1 � �a4z
4

(mod n): (24)

Upon t = 1, Bob further sees that x2 = a2. By induction, the exponents z (resp. z2, z4,
2z2, 4z4) in all cases of �az (resp. �az

2

, � � �) in (22), (23) or (24) contain a single factor: 2,
and the minus symbol disappears from (22), (23) and (24) since the even exponents imply
all cases of x and y to be quadratic residues. So we can write a(t) = a2

u

(modn) for some
natural number u.

Further note that each all of SQ causes an e�ect of having 2u square-rooted in the integers
which is equivalent to having u halved in the integers. Thus, exactly blog2 uc calls (and no
more) of SQ can be made. But Bob has counted blog2 tc calls of SQ, therefore u = t.

Each acceptance call of SQ has the correctness probability of 1� 2p0+2q0�1
2p0q0

. So after blog2 tc
acceptance calls of SQ, the probability for Membership to be correct is

11

(1�
2p0 + 2q0 � 1

2p0q0
)blog2 tc > 1�

blog2 tc(2p
0 + 2q0 � 1)

2p0q0
. 2

Discussions

i) It is obvious that by preparing all the intermediate values in advance, Membership can
be run in parallel to save the blog2 tc rounds of interactions.

ii) In our applications described in x3, we will always prove ae(t) 2 L(ae; t; n) where e
satis�es gcd(e; �(n)) = 1 (i.e., e is an RSA encryption exponent). Thus, ae preserves
the full order property to allow proper running of SQ and Membership.

iii) In case of proving the correctness of a(t) with an intention for a reconstruction to be
done in t squarings (e.g., reconstruction of a(t � 1) to be done in t � 1 squarings),
we should note that a run Membership(a; t; a(t); n) has caused disclosure of a(bt=2c)
for even t and a(t � 1) for odd t. This disclosure allows the reconstruction to be
done in t=2 or 0 squarings, respectively. To compensate the loss of computation, proof
of a(2t) is necessary. Consequently, Membership(a; 2t; a(2t); n) runs one loop more
than Membership(a; t; a(t); n) does. Note that this precaution is unnecessary for our
applications in x3 because there it is the e-th root of the disclosed value that is needed
but is not available still.

4.3 Performance

In each run of SQ, Alice (resp. Bob) performs one (resp. four) exponentiation(s) mod
n. So in Membership(a; t; a(t); n) Alice (resp. Bob) will perform blog2 tc (resp. 4blog2 tc)
exponentiations mod n. These translate to O(blog2 tc(log2 n)

3) bit operations.
In the LCS35 Time Capsule Crypto-Puzzle [10], t = 79685186856218 is a 47-bit binary

number. Thus the veri�cation for that puzzle can be completed within 4 � 47 = 188 expo-
nentiations mod n.

The number of bits to be exchanged is measured by O((blog2 tc)(log2 n)).

5 Membership Proof with General Modulus

Now we show that our membership proof protocol can work with a modulus which is any odd
composite integer provided it has two distinct prime factors (so factoring can be di�cult).
Our trick is to work with n2 and prove

a(t) 2 L(a; t; n2)

where a(t) is constructed modulo n2 (to be speci�ed in (25) and (26) below). Once the above
is proven, a(t) (mod n) 2 L(a; t; n) results straightforwardly.

We begin by presenting a lemma which observes an interesting property of elements in
Z�
n2 where n is any odd composite integer with at least two distinct prime factors. (Paillier

12

Protocol SQ2(a; x; y; n)

Input: Common: n: an odd composite integer with at least two distinct prime factors;
a; x; y 2 Z�

n2: x 6� �a (mod n2) and x is in the orbit of a;

Alice: z: x � az(mod n2), y � az
2

(mod n2);

1. Bob chooses at random r < n2, s < n2, and sends to Alice: C
def
= arxs(mod n2);

2. Alice sends to Bob: R
def
= Cz(mod n2) with a non-interactive proof R 2 hCi;

3. Bob accepts if R � xrys(mod n2), or rejects otherwise.

Figure 3: Modi�ed Building-Block Protocol

used the same group to have constructed new public-key cryptosystems [9], which does not
use our observation.)
Lemma 2 Let n be any odd composite integer. For a randomly chosen integer u 2 Z�

n2,

Pr[n divides Ordern2(u)] �
�(n)

n
:

Proof See Appendix A.

5.1 Modi�ed Membership Proof Protocol

Let Alice have constructed a(t) (mod n2). She can do so e�ciently by the following two steps

u
def
= 2t(mod �(n)n); (25)

a(t)
def
= au(mod n2): (26)

The building-block protocol SQ will be modi�ed into SQ2 in Figure 3 which allows Alice
to prove that a common input tuple (a; x; y; n) satis�es

9z : x � az(mod n2) and y � az
2

(mod n2) (27)

The modi�ed protocol will require a 2 Z�
n2 to have an order divisible by n. By Lemma 2, if a is

output from a pseudo random generator which is seeded with n and a publicly veri�able seed,
then this will almost certainly be the case. This way of �xing a can be veri�ed by Bob. Also,
we assume that x is in the orbit of a (as will be clear in a moment, this will always be seen
by Bob in his veri�cation which applies SQ2). Of course, Bob should check x 6� �a (mod n2)
before engaging a veri�cation run with Alice.
Remark Besides the use of n2, SQ2 di�ers from SQ in Step 2 where Alice adds a proof of
subgroup membership, which is very simple (see e.g., Stinson [12], pages 399-400) and can be
made non-interactive.

13

We only have to prove the soundness property for SQ2.
Theorem 3 Let a; x; y; n be as speci�ed in the common input of Protocol SQ2. The protocol
has the following properties soundness property:
Soundness If (27) does not hold for the common input values, then Alice cannot convince

Bob to accept her proof with probability greater than n��(n)+1
n

.3

Proof See Appendix A.

Replacing SQ with SQ2 and n with n2, Membership is modi�ed straightforwardly to
working with n2. Upon acceptance, Bob sees that when t = 1, x has an initial value generated
by a. By the soundness property of SQ2, y will have an initial value generated by a using
a power of 2, which has been used as the value of x in a previous loop. By induction, this
status (x 2 hai) will be maintained as long as Bob has accepted each run of SQ2. Thus
after blog2 tc instances of acceptance of SQ2, the modi�ed Membership has a correctness
probability greater than

1�
blog2 tc(n� �(n) + 1)

n
:

Finally we should recap that Bob's acceptance of a(t) 2 L(a; t; n2) implies his acceptance
of a(t) (mod n) 2 L(a; t; n). The timed-release encryption and signature schemes in x3 should
remain working with modulo n, rather than n2.

5.2 Performance

In SQ2, the additional step for verifying the subgroup membership condition will require Bob
to compute an additional modulo exponentiation, while Alice's load remains the same. So
Bob will compute 5 modulo exponentiations mod n2.

The use of a modulus of double size will result in a 8-fold increase in local computations.
Thus, to prove (resp. verify) a(t) 2 L(a; t; n2) using the modi�ed membership proof protocol,
Alice (resp. Bob) will perform 8(blog2 tc) (resp. (5 � 8)(blog2 tc)) exponentiations mod n.
(These measurements have been converted to the modulo n operation.)

6 Conclusion

We have constructed general and e�cient cryptographic protocol schemes for achieving timed-
release cryptography which include timed-release encryption and timed-release signatures.
These schemes have proven correctness on time control which can be �ne tuned to the gran-
ularity in the number of multiplications.

We have also shown that the use of n2 can relax the structural requirement on n. This
is an important observation which indicates that many RSA-based protocols which require
the use of safe-prime structured moduli can be modi�ed this way to working with standard
moduli. Therefore this observation forms an independent contribution to the area of study.

3For n being a standard RSA modulus, i.e., product of two primes of roughly equal size, this probability
value is � 1=

p
n.

14

Acknowledgments

I would like to thank Kenny Paterson and Steven Galbraith for their helpful comments on a
draft of this paper.

References

[1] Bellare, M., Desai, A., Pointcheval, D. and Rogaway, P. Relations among notions of
security for public-key encryption schemes, Advances in Cryptology: Proceedings of
CRYPTO 98 (H. Krawczyk ed.), Lecture Notes in Computer Science 1462, Springer-
Verlag 1998, pages 26-45.

[2] Blum, L., Blum, M. and Shub, M. A simple unpredictable pseudo-random number
generator, SIAM J. Comput. 15(2): 364-383 (1986).

[3] Boneh, D. and Naor, M. Timed commitments (extended abstract), Advances in Cryp-
tology: Proceedings of CRYPTO'00, Lecture Notes in Computer Science 1880, Springer-
Verlag 2000, pages 236{254.

[4] Camenisch J. and Michels, M. Proving in zero-knowledge that a number is the product of
two safe primes, In Advances in Cryptology | EUROCRYPT 99 (J. Stern ed.), Lecture
Notes in Computer Science 1592, Springer-Verlag 1999, pages 106{121.

[5] Chaum, D. Zero-knowledge undeniable signatures, Advances in Cryptology: Proceedings
of CRYPTO 90 (I.B. Damgaard, ed.) Lecture Notes in Computer Science 473, Springer-
Verlag 1991, pages 458-464.

[6] Damg�ard, I. Practical and probably secure release of a secret and exchange of signatures,
Advances in Cryptology | Proceedings of EUROCRYPT 93 (T. Helleseth ed.), Lecture
Notes in Computer Science 765, Springer-Verlag 1994, pages 200{217.

[7] Gennaro, R., Krawczyk, H. and Rabin, T. RSA-based undeniable signatures, Advances
in Cryptology: Proceedings of CRYPTO 97 (W. Fumy ed.), Lecture Notes in Com-
puter Science 1294, Springer-Verlag 1997, pages 132-149. Also in Journal of Cryptology
(2000)13:397{416.

[8] Goldreich, O., Micali, S. and Wigderson, A. How to prove all NP statements in zero-
knowledge and a methodology of cryptographic protocol design, Advances in Cryptology
| Proceedings of CRYPTO 86 (A.M. Odlyzko ed.), Lecture Notes in Computer Science,
Springer-Verlag 263 (1987), pages 171{185.

[9] Paillier, P. Public-key cryptosystems based on composite degree residuosity classes,
Advances in Cryptology | Proceedings of EUROCRYPT 99 (J. Stern ed.), Lecture
Notes in Computer Science, Springer-Verlag 1592 (1999), pages 223{238.

15

[10] Rivest, R.L. Description of the LCS35 Time Capsule Crypto-Puzzle,
http://www.lcs.mit.edu/about/tcapintro041299, April 4th, 1999.

[11] Rivest, R.L., Shamir, A. and
Wagner, D.A. Time-lock puzzles and timed-release crypto, Manuscript. Available at
(http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps).

[12] Stinson, D.R. Cryptography: Theory and Practice, CRC Press, 1995.

[13] van Oorschot, P.C. and Wiener, M.J. Parallel collision search with cryptanalytic appli-
cations, J. of Cryptology, Vol.12, No.1 (1999), pages 1{28.

A Proofs

Lemma 2 Let n be any odd composite integer. For a randomly chosen integer u 2 Z�
n2,

Pr[n divides Ordern2(u)] �
�(n)

n
:

Proof Write n =
Qr

i=1 p
ei
i with pi (for i = 1; 2; � � � ; r) being distinct odd primes. Let

i = 1; 2; � � � ; r.
For any x 2 Z�

n2 denote by xi 2 Z�

p
2ei

i

the result of x mod p2eii . Then x 2 Z�
n2 has an order

divisible by n if and only if xi 2 Z�

p
2ei

i

has an order divisible by peii , i.e., the order is peii k

for kj�(peii). In the cyclic group Z�

(p2eii)
, the number of elements of order peii k for kj�(peii) is

�(peii k). Summing them up for all the cases of k, the number of such elements in the Z�

(p2eii)
is X

p
ei

i
kj�(p2eii)

�(peii k) � �(peii)
X

kj�(p
ei

i
)

�(k) = �(peii)
2:

The inequality meets the equation case only when gcd(�(n); n) = 1 and thereby �(pik) =
�(pi)�(k). Thus, in Z�

n2, the number of elements of orders divisible by n is at least

rY
i=1

�(peii)
2 = �(

rY
i=1

peii)
2 = �(n)2:

The claimed probability bound follows from the fact that Z�
n2 has �(n)n elements. 2

Theorem 3 Let a; x; y; n be as speci�ed in the common input of Protocol SQ2. The protocol
has the following properties soundness property:
Soundness If (27) does not hold for the common input values, then Alice cannot convince

Bob to accept her proof with probability greater than n��(n)+1
n

.4

4For n being a standard RSA modulus, i.e., product of two primes of roughly equal size, this probability
value is � 1=

p
n.

16

Proof Suppose that (27) does not hold whereas Bob has accepted Alice's proof. Since x is
in the orbit of a, so it is the second congruence of (27) that does not hold. We can denote
z = loga x and

9� 6= 1 : y � �az
2

(mod n2): (28)

Since Bob accepts the proof, he sees the following two congruences (noticing (28) with
x � az):

C � arxs � ar+sz(mod n2); (29)

R � xrys � a(r+sz)z�s � Cz�s(mod n2):

Since Alice has also proven R � Ck(mod n2) for some k, we derive

Ck�z � �s(mod n2): (30)

On the other hand, in (29), loga C 2 hai since x 2 hai, so writing Ordern2(a) = `n for
some integer `j�(n), we are allowed to rewrite (29) into the following linear congruence

logaC � r + sz (mod `n):

For each case of s = 1; 2; � � � ; `n, this linear congruence has a value for r, and so it has exactly
`n distinct solution pairs. Note that these pairs are solved from the �xed C, a, x, and so they
are independent from k and the �xed z. So the right hand side of (30) is a constant for all
cases of s = 1; 2; � � � ; `n; in particular, for the cases of s = 1; 2, we have:

1 � �2�1 � � (mod n2):

This contradicts (28).
Since we derive the contradiction on the condition that R 2 hCi, the probability for

Alice's successful cheating is therefore the same as that for R 62 hCi, i.e., the error probability
of the subgroup membership proof (in Step 2). If Ordern2(C) is a multiple of n, then the
latter probability is bounded by 1=n. Thus, using the result of Lemma 2, we have (note that
Pr[EjF] denotes the conditional probability)

Pr[Alice Cheats] = Pr[R 62 hCijOrdern2(C) � n]Pr[Ordern2(C) � n] +

Pr[R 62 hCijOrdern2(C) < n]Pr[Ordern2(C) < n]

< 1=n+ 1� �(n)=n =
n� �(n) + 1

n
: 2

17

