

An Approach to Optimistic Commit and
Transparent Compensation for
E-Service Transactions

Jinsong Ouyang, Akhil Sahai, Vijay Machiraju
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-34
February 23rd , 2001*

E-mail: {jinsongo, asahai, vijaym} @ hpl.hp.com

distributed
transaction
processing,
optimistic
commit,
transparent
transaction
compensation,
e-services,
Internet,
e-commerce

Web based services, also termed E-services are either
stand-alone or use other web services for performing their tasks.
Such E-services that depend on other E-services are termed
composite e-services. The composition can be static or dynamic, i.e.
either these e-services interact amongst themselves in a pre-
negotiated manner or dynamically discover each other and negotiate
on the fly. E-service to e-services interaction takes place across
enterprises and management domains. To conduct a business task,
an e-service undertakes a conversation that spans across multiple e -
services, which is often asynchronous and asymmetric. Within a
conversation, the unit of business at each e-service is called a
component transaction. The component transactions within a
conversation form a conversational transaction. Each
component transaction is autonomous and independent
while it is related to each other only in the context of a specific
conversation. A conversational transaction is committed if each
component is committed. If one or more component transactions
abort, its parent transaction, depending on the business logic,
may abort or start one or more new component transactions. In this
paper, we argue that the traditional transaction semantics and
mechanisms do not apply well in the e-service world, and propose a
new approach to enabling transaction support on the
Internet.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 - 2 -

1. Introduction
An e-service is a web-based service that undertakes transactions, solves problem and does useful
task. E-services are accessible at well know Uniform Resource Locator addresses. Some of
these E-services are stand-alone and perform their tasks on their own. However, some of
these E-services depend on other e-services to perform their tasks. Such composite e-services
either know their partner e-services in advance through pre-negotiated understanding, (e.g.
web based portal sites like expedia, travelocity) or dynamically discover other e-services and
enter into contracts with them. There is an increasing trend towards dynamic composition
where e-services dynamically choose their trading partners or service providers [2][3]. In the
figure 1, the composite root e-service is composed of two sub e-services, one of which in turn
is composed of another sub e-service.

Figure 1. A composite e-service

These e-services are federated in nature as they interact across management domains and
enterprise networks. Their implementations could be vastly different in nature. They could be
based on CORBA [1], BizTalk [2], COM, E-speak [3] or on other platforms.

E-services typically interact with each other using asynchronous messages. The interactions
between e-services for conducting a specific task create a conversation [4, 5]. Within a
conversation, we call the unit of business at each e-service a component transaction. The
component transactions within a conversation form a conversational transaction. As independent
e-services are created and deployed by autonomous e-service providers, component
transactions are independent and autonomous. On the other hand, the component
transactions are relative to each other in the context of a particular conversation. For example,
a travel agency may need services provided by a flight and a hotel e-service. The business logic
of the transactions in the two e-services is independent of each other. The lifecycles of the
transactions in the two e-services are totally unrelated, and could be largely different. However,
for a particular travel request, the travel conversation will initiate a flight booking transaction
and a hotel booking transaction. The two transactions are relative to each other in the context
of this particular conversation the booked flight and hotel are part of a particular travel
arrangement.

Conversational transactions have different semantics than traditional transactions. A
conversational transaction is committed if each component transaction is committed. If one

E-Service

E-Service

E-Service

E-Service

conversations

conversations

conversations

 - 3 -

component transaction aborts, its parent transaction usually tries a new sub transaction, instead
of simply aborting itself. If not every component transaction can commit eventually, the
conversational transaction, unlike a traditional distributed transaction, may or may not need to
be canceled depending on the business logic. This is because the component transactions are
independent of each other, and it is totally up to the e-service starting the conversation to
decide if all-or-nothing semantics should be enforced. A conversational transaction, by itself,
does not require all-or-nothing semantics.

In this paper we propose a new approach called XIP (E-Service Transaction Internet Protocol)
for transaction support in e-services. The approach consists of two parts. The first part is an
optimistic commit protocol to systematically enable the Internet transaction semantics (e.g.,
commit, abort, retry, cancel). The second part is a transaction reversal algorithm for the
cancellation/compensation of committed component transactions. The reversal of
transactions is done by intercepting the invocations (e.g., ODBC [6], OLE DB [6], JDBC [7])
to the backend database servers. Thus, unlike the existing compensation-based approaches
[10], the cancellation is transparently done without any involvement from the applications.

2. The problem and related work
For traditional distributed transactions, a key technology to guarantee the data consistency is
the two-phase commit protocol (2-pc) [8]. It is used to ensure agreement by all parties
regarding the outcome of the work (all-or-nothing). Current 2-pc protocols and transaction
managers are only suitable for single-domain distributed applications [5]. To address the
problem, the Transaction Internet Protocol (TIP) [5] was proposed. TIP is a 2-pc protocol
that provides ubiquitous distributed transaction support in a heterogeneous and cross-domain
environment. It is made possible by separating the transaction protocol from the application
communications protocol (the two-pipe model).

2-pc protocols including TIP do not fit in well with the conversational transaction paradigm. If
TIP is used to coordinate a conversational transaction, the executions of component
transactions are bundled together in a 2-pc manner. This is not desirable, sometimes not
acceptable due to the following reasons.
• = The component transactions within a conversation are autonomous and independent, and

they are relative to each other only in the context of a particular conversation.
• = The lifecycles of different component transactions could be largely different. In the e-

service world, individual service requests are usually asynchronous. That is, the response to
a request may not arrive immediately, and the response time may be unpredictable. There
are many factors contributing to the response time such as business logic (long-lived or
short-lived), delayed inputs from human operators, the network delays, and so forth. The
response times of component transactions are independent of each other.

• = If a conversational transaction consists of component transactions with largely different
response times, TIP will commit the conversational transaction when everyone is ready.
That is, the short-lived transactions (their resources) will be blocked for probably an
unacceptable amount of time, and the resources cannot be released for processing new
service requests. This is usually an undesirable, sometimes an unacceptable option from an
autonomous e-service provider’s point of view.

 - 4 -

Another type of approach [4] would be to let the applications explicitly deal with the possible
failure scenarios. The protocol would work as follow.
• = Start a conversation by starting a root transaction upon receiving a service request.
• = Each component transaction, after finishing its business logic, commits or aborts the

transaction based on its local result.
• = Commits the conversational transaction if every component transaction commits.
• = If one or more component transactions abort and the committed component transactions

need to be canceled, the root transaction sends explicit cancel requests to the e-services to
cancel the previous agreements.

Travel

National

Marriott

UA

Budget

Hertz

Delta

Hilton

Figure 2. A dynamic travel e-service

The above protocol has two problems. First, it cannot guarantee all-or-nothing semantics
when required. If a conversational transaction needs to be canceled and some committed
component transactions cannot be undone, it will produce an inconsistent result. Second, even
without all-or-nothing requirement, it works fine only if the composite e-services are static. It
would be extremely difficult, if not impossible, when the composition is dynamic. Consider a
travel e-service that interacts with flight, hotel, and car rental e-services. As shown figure 2,
there are a number of e-services available for flight, hotel, and car rental. For each travel
request, the travel e-service dynamically chooses a set of e-services (e.g., UA, Hilton, and
Hertz) based on some criteria such as availability, rates, etc. If the travel e-service is involved in
a higher-level conversation, the travel transaction becomes a component transaction within
that conversation. To enable the cancellation of a travel arrangement, the travel e-service must
remember the context of each travel arrangement (e.g., the request itself and the sub e-service
providers for the request). Thus the cancellation request can be forwarded to the
corresponding flight, hotel, and car e-services. This would impose tremendous burden on the
development of an e-service.

 - 5 -

There have been some optimistic commit protocols [10] based on transaction compensation [9].
The idea was to perform a “semantic undo” of an “erroneously” or “prematurely” committed
local transaction if the global transaction aborts due to failures. The concept has also been
used in some mobile transaction models [11, 12, 13]. However, the protocols and models did
not cover some unique aspects of distributed transactions across the Internet. In the e-service
world, a committed transaction, if cancellable, usually has a deadline. That is, it is cancellable
until the deadline is reached. Thus even if no failures have occurred, a “semantic undo” may
still be needed before the deadline is passed. When a transaction is compensated, one of the
following scenarios can occur, depending on different protocols. First, its parent transaction
that may or may not have been committed may choose to re-negotiate a new sub transaction
with a different e-service, instead of simply aborting itself. It is likely that, with the new sub
transaction, a different result will be produced. Also the new result must be propagated to its
parent transaction, which will, in turn, change the result of its parent, and eventually that of the
root transaction. Second, the set of transactions relative to the compensated transaction need
to be compensated. The set consist of all of its children as well as its predecessors that have
been committed. Then its nearest uncommitted predecessor (e.g., the root transaction) may
choose to initiate a new path to perform the corresponding sub task. While the second
scenario potentially involves more rollbacks, the first scenario is more difficult to deal with a
committed transaction need be updated upon receiving an updated response and this
imposes a strong coding requirement on the development of e-services.

Things can get complicated if the above situations occur after the root transaction initiates a
global commit. It is essential that the states of the new sub transactions must be reflected
permanently in the global transaction once committed.

Another problem for the existing compensation-based approaches is that the applications have
to explicitly provide compensation functions. This imposes non-trivial burden on the
development of e-services.

The main contribution of our approach is to, by assuming a certain computing and
communication pattern for e-services, provide an optimistic commit protocol with transparent
transaction compensation.

3. System model
A conversational transaction is used to identify the units of business spanning across multiple
e-services while a conversation is used to capture the interactions between the e-services. The
following characteristics usually exist in the conversation-based e-services environment, and
our XIP protocols are built in such type of environment.

E-service independence. Each e-service may be developed and deployed by an independent
entity. Thus, the business logic of each e-service is completely separated from each other.

E-service autonomy. Within a conversation, the state and status of a component transaction
will neither affect nor be affected by those of its peer transactions.

Dynamic composition. E-services can be composed dynamically.

 - 6 -

DOM based interactions. E-services essentially use the Document Object Model of
interactions. E-services communicate with each other only via asynchronous documents.

Stateless transactions. Component transactions are stateless. Once a transaction is
committed, its state is recorded in the backend databases, and/or sent to other e-services via a
document.

Unpredictable response times. Asynchronous processing, different service lifecycles, human
and/or network delays make the response times of component transactions unpredictable.
The response time of one component transaction is of little use to predict another one. It is
undesirable, sometimes unacceptable to synchronize the executions of the peer e-services.

System and network failures. System and/or network failures may occur during a
conversation. We assume that each e-service is able to recover from a failure within a definite
amount of time.

Commit, retry, cancellation, and compensation. Depending on the business logic, the e-
service starting a transaction can request an all-or-nothing property with respect to its sub
transactions. The transaction can re-negotiate a new sub transaction if one is aborted or
compensated. If “all” semantics cannot be achieved, the e-service can choose to
cancel/compensate the committed sub transactions. However services may not always be
cancellable. Some payments are not refundable, and booking cannot be canceled after a certain
point of time. Thus some scheme is needed to prevent the situation where some committed
component transactions become uncancellable while others are still outstanding.

4. Optimistic commit with transparent compensation
4.1 System definitions

We define an e-service conversation as C, C = {s0, s1, …, sn-1} where s0 is the root e-service
starting the conversation, and others are the participating children e-services. A participating e-
service may be an immediate child of the root e-service, or that of another child e-service.

Corresponding to C, a conversational transaction is defined as T, T = {t0, t1, …, tn-1} where t0
is the root transaction starting the conversational transaction, and ti is a component transaction
at e-service si. A component transaction may be an immediate child of the root transaction, or
that of another component transaction.

E-services interact with each other by exchanging asynchronous documents. dij is used to
represent a document from ti to tj. We define two functions for each component transaction:
f(dij) and ϕ(ti). f(dij) is called by tj to perform the business logic when receiving request dij
from ti. ϕ(ti) is the compensation function used to cancel the committed operations for ti.
Two attributes are defined for each transaction t: t.deadline and t.status. t.deadline defines
whether/when t, once committed, is/becomes uncancellable. t.status defines t’s lifecycle
that has five states: pre-commit, prepared, local-committed, global-committed, aborted,
canceled.

 - 7 -

4.2 The techniques
Before presenting the XIP protocol and algorithm, we describe the techniques used for the
protocols: transaction correlation [14, 15] and the transaction reversal.

A conversational transaction forms a spanning tree where each node represents a component
transaction. To forward a commit or cancellation request, each node is correlated to its parent
and children by using a correlator. A correlator consists of the XIP handles of a node, its parent,
and its immediate children. The XIP handle is used to identify a component transaction. It
contains the transaction’s listening endpoint (i.e., its URL) and the transaction identifier. By
using the correlators, an XIP message (e.g., a commit or cancellation request) from the root
can be forwarded to all the nodes as each node knows where their immediate children are. For
the same reason, an XIP message (e.g., a commit confirmation) can be delivered all the way
back to the root node. The following are the XML [16] definitions of the correlator.

<complexType name = “XIPHandleType”>
<element name = “XIPURL” type = ”string”/>
<element name = “TranID” type =“decimal”/>

</complexType>

<complexType name = “CorrelatorType” >
<element name = “ParentHandle” type = “XIPHandleType”

minOccurs = “0” maxOccurs = “1”>
<element name = “TranHandle” type = “XIPHandleType”/>
<element name = “ChildrenHandles” type = “XIPHandleType”

minOccurs = “0“ maxOccurs = “unbounded”>
</complexType>

For traditonal transaction processing, a 2-pc protocol is used to coordinate a distributed
transaction such that a local transaction cannot commit unless every participating transaction is
ready to do so. As described above, it is expensive, if not unacceptable, to do so for
conversational transactions. During a conversation, a component transaction should commit
or abort independently whenever possible. To enable the cancellation of a committed
transaction, there are basically two types of approaches.

The first type of approach is that applications provide a compensation function for each
business function. The function is called back by the transaction manager when a committed
transaction need be canceled.

Because of the problem in the first approach, we propose a new approach called transparent
transaction compensation. The approach is based on the concept of transaction reversal, the
language-level compensation instead of the business-logic level compensation. The idea is to
generate a reversing function for each update statement against the database (e.g., INSERT,
UPDATE, DELETE), and log the associated data. At the time of cancellation, the
transaction’s effects can be removed by calling the corresponding reversing functions with the
logged data. To make it work, the transaction-reversing algorithm assumes the following
without losing the generality of e-services: the e-service transactions are stateless, and they use
a standard programming interface (e.g., JDBC, ODBC, OLE DB) to access backend databases.

 - 8 -

4.3 The optimistic commit protocol
The optimistic commit protocol in XIP is used to orchestrate the committing of a
conversational transaction. It has the following features.
• = Decentralized. In the cross-domain e-services environment, each e-service is responsible

for its own behaviors and commitments. There is no central control point that could
otherwise have the global knowledge of a conversation and coordinate all the participating
e-services directly. As a result, the protocol does not provide a central control point
coordinating each participating component. Instead, it relies on transaction correlation to
make sure that commit or cancellation actions are taken consistently within a
conversational transaction.

• = Asynchronous. Unlike 2-pc protocols, it allows the component transactions within a
conversation to locally commit if they are cancellable. A locally committed transaction will
be canceled if a global commit cannot be issued.

• = Minimal coding requirement. The protocol does not require the applications to deal with
the updating of previously committed transactions. And transparent transaction
compensation is achieved by intercepting/augmenting the data access API with the
transaction-reversing algorithm. Thus, no additional programming effort is induced,
compared to the traditional transaction programming.

The protocol consists of two parts. The first part specifies the behavior of the root transaction
manager (RTM) that starts a particular conversation. The second part specifies the behavior of
a component transaction manager (CTM) how a component transaction participates in a
conversational transaction.

The root transaction manager is responsible for starting, committing, or canceling a
conversational transaction upon receiving an event from the root e-service or its immediate
component transaction managers. The RTM protocol describes how to respond to these
events.
• = The start event. The RTM starts a root transaction upon receiving a start event from the

root e-service. It creates an XIP handle for the root transaction and returns it to the root e-
service. The XIP handle must be tagged on each of the request documents sent to other e-
services.

• = The connection event. After a service request is delivered at a sub e-service and a
component transaction is started, the CTM will send its parent a connection request. Then
the root/parent transaction will build a connection with the component transaction using
their XIP handles, and add the child’s handle to the children list in its correlator structure.
Note that, due to the asynchronous nature of e-services, the connection is really just a
“hand-shake” so that the parent and the child knows the existence of each other.

• = The response event. When a component transaction ends, the CTM will send a response
to the root/parent manager. Based on the status of the component transaction, the
root/parent transaction manager will update the corresponding child entry in the
correlator structure.

• = The timeout event. A timeout event will be generated internally if there are outstanding
service requests for a certain amount of time. When the event occurs, the transaction
manager finds out the outstanding component transactions from its correlator, and sends a
“ping” message to the corresponding CTMs. If one or more CTMs do not reply or reply

 - 9 -

with an error, failures are assumed to have occurred, and an alarm is generated and sent to
the local e-service.

• = The compensation event. Before a committed component transaction becomes
uncancellable, the CTM sends its parent a “compensation” request. After receiving the
request, the RTM, if the root still has incomplete children that were not started due to
“compensation” requests, sends back a confirmation so that the CTM can undo the
component transaction by calling ϕ(t). If each pending child was started due to a
“compensation” request, the RTM cancels the conversational transaction to avoid a
potential livelock. If there is no outstanding child transaction, the RTM sends a “denied”
response in which case the root is about to, or has initiated a global commit. If the
compensation is allowed, the RTM removes the child entry in the correlator structure, and
informs the root e-service of the compensation. It is up to the root e-service to decide
whether to start a new component transaction.

• = The end event. The RTM ends the root transaction upon receiving an end event from the
root e-service. If the root e-service wants to commit the conversational transaction, the
RTM commits the root transaction, and sends a “global commit” request to each of its
immediate children whose status is not “aborted”. After receiving each response, the RTM
sets the root transaction to “global-committed”. If the root e-service wants to cancel the
conversational transaction due to an error, the RTM sends a “cancel” request to each of its
immediate CTMs. When receiving a “canceled” response from each CTM, the RTM marks
the root transaction as “canceled”. The RTM will forget the transaction after returning
control to the root e-service.

The RTM protocol is shown as follows.

RTM()

When (an event occurs)
if (start) then

corr ← new correlator();

corr.XIPHandle.URL ← RTM.URL;
corr.XIPHandle.ID ← a new tran ID;
return corr.XIPHandle;

else if (connection) then
connect(corr.XIPHandle,evt.XIPHandle);
corr.children ← evt.XIPHandle;

else if (response) then
if (corr.children[i] = evt.XIPHandle)
then

corr.children[i].status ← evt.tranStatus;
else if (timeout) then

ping(corr.children);
if (error) then

alarm(error);
else if (compensation) then

if (no pending children) then
decision = “denied”;

else if (each pending child is a replacement) then
goto cancel;

else
decision = “confirmed”;
del(evt.XIPHandle, corr.children);
alarm(evt);

send(decision, evt.XIPHandle);
else if (end) then

 - 10 -

if (commit) then

ret ← commit(corr.XIPHandle);
if (ret != OK) then

goto cancel;
send(“global_commit”, corr.children);
wait for all responses

else if (cancel) then
cancel: send(“cancel”, corr.children);

wait for all responses
end

A component transaction manager is responsible for starting, committing, or canceling a
component transaction upon receiving an event from the local e-service, its parent
CTM/RTM, or its own immediate CTMs. The CTM protocol describes how to respond to
these events.
• = The start event. When receiving a request, an e-service first checks if there is an XIP

handle tagged on the request. If so, it informs local CTM to start a component transaction.
Based on the request and its own business logic, the e-service should also let the CTM
know if and/or until when the transaction will be cancellable: its deadline. Then the CTM
creates an XIP handle for the transaction, and sends a connection request to the parent
transaction manager which will build the connection.

• = The connection event. Same as the RTM protocol.
• = The response event. Same as the RTM protocol.
• = The ping event. When receiving a ping message, the CTM checks the corresponding

component transaction’s correlator and sees if there are outstanding sub transactions. If
so, it sends a “ping” message to the corresponding CTMs. If one or more CTMs do not
reply or reply with an error, failures are assumed to have occurred, then the CTM sends an
error reply to its parent. Otherwise, an “in-progress” reply is sent back.

• = The end event. The CTM ends the component transaction upon receiving an end event
from the local e-service. The CTM optimistically commits the transaction (“local-
committed”) if it is cancellable, otherwise prepares the transaction (“prepared”). If there is
an error in itself or some of its children transactions, the CTM aborts the local transaction
and sends a “cancel” request to its children transactions. Then the CTM sends an “ok” or
“aborted” response to the parent transaction.

• = The deadline event. A deadline of a transaction is a point beyond which it will not be
cancellable. The deadline event can be triggered by time and/or some business logic.
When it occurs, the CTM checks if there are any local-committed transactions that have
reached their cancellation deadlines. For each of these transactions, the CTM sends a
“compensation” request to its parent. If the reply indicates that the local transaction
should be compensated, the CTM calls the transaction’s ϕ(t) to undo the transaction, and
sends a “cancel” request to its children transactions.

• = The compensation event. When receiving a “compensation” request from one of its
children, the CTM checks the status of the local transaction. If the status is “local-
committed” or “prepared”, it forwards the request to its parent. When receiving the
reply, the CTM forwards it to the child. If the reply is “confirmed”, the CTM
compensates or simply aborts the transaction, and sends a “cancel” request to the rest of
its children transactions. If the local transaction’s status is “pre-commit” and it still has
incomplete children that were not started due to “compensation” requests, the CTM sends
back a confirmation, removes the child entry in its correlator structure, and informs the

 - 11 -

local e-service of the compensation. It is up to the local e-service to decide whether to start
a new sub transaction. If each pending child was started due to a “compensation” request,
the CTM aborts the local transaction and send a “cancels” request to its children. No
action should be taken if there is no outstanding child transaction.

• = The global commit event. When receiving a “global commit” message, the CTM commits
the local transaction if its status is “prepared”, and forwards the message to its immediate
children. Once all the responses come back, the CTM sets the local transaction’s status to
“global-committed”, and sends a “globally committed” response to the parent transaction.

• = The cancel event. When receiving a “cancel” message, the CTM aborts or compensates the
local transaction if its status is not aborted (e.g., pre-commit, prepared, local-committed).
Then it forwards the “cancel” message to its immediate children. Once all the responses
come back, the CTM sends a “canceled” response to the parent transaction.

The pseudo code of the CTM protocol is shown as follows.

CTM()

When (an event occurs)
if (start) then

corr ← new correlator();

corr.XIPHandle.URL ← CTM.URL;
corr.XIPHandle.ID ← a new tran ID;
corr.parent ← evt.XIPHandle;
corr.deadline ← deadline;
connect(corr.XIPHandle, corr.parent);
return corr.XIPHandle;

else if (connection or response) then
/* Same as RTM */

else if (ping) then
ping(corr.children);
if (error) then

send(“error”, corr.parent);
else

send(“in-progress”, corr.parent);
else if (end) then

if (no error) then
if (cancellable) then
commit(corr.XIPHandle);
corr.status ← “local-committed”;

else
prepare(corr.XIPHandle);
corr.status ← “pre-commit”;

send(“ok”, corr.parent);
else

abort: send(“cancel”,corr.children);
wait for all responses
if(corr.status = “local-committed”)
then

ϕ(corr.XIPHandle);
else

abort(corr.XIPHandle);
corr.status ← “canceled”;
send(“canceled”, corr.parent);

else if (deadline) then
for (each local transation)

corr ← t.correlator;
if(corr.deadline <= δ(curtime) && corr.status =“local-committed”)

 - 12 -

then
send(“compensation”, corr.parent);
if (reply = “confirmed”) then

ϕ(corr.XIPHandle);
send(“cancel”, corr.children);

else if (compensation) then
if (corr.status = “local-committed” || corr.status = “prepared”)
then

send(“compensation”, corr.parent);
receive(reply, corr.parent);
send(reply, evt.XIPHandle);
if (reply = “confirmed”) then

if(corr.status = “local-committed”)
then

ϕ(corr.XIPHandle);
else

abort(corr.XIPHandle);
send(“cancel”, other children);

else if (corr.status = “pre-commit”)
then

if (there are pending children)
then

if (each pending child is a replacement) then
goto abort;

else
send(“confirmed”,evt.XIPHandle);
del(evt.XIPHandle, corr.children);
alarm(evt);

else if (global_commit) then
if (corr.status = “prepared”) then

commit(corr.XIPHandle);
send(“global_commit”,corr.children);
wait for all responses

corr.status ← “global-committed”;
send(“global-committed”, corr.parent);

else if (cancel) then
if (corr.status = “canceled”) then

send(“canceled”, corr.parent);
else

goto abort;
end

Note that the protocol does not specify how a component transaction should be committed
locally. It only assumes that, for uncancellable transactions, the local transaction managers
should support 2 phase commit [17], and allow a transaction to be prepared and committed by
potentially different processes.

Figure 3 shows how the protocol orchestrates the committing of a conversational transaction.
In the example, s0 is the root e-service, and interacts with s1 and s2. E-service s2 has its own sub
e-services s3and s4/s5. For simplicity, figure 3 only displays the XIP messages between the e-
services whereas the e-service-specific messages are not shown.

 - 13 -

s0

s1

s2

s3

s4

s5

t0

t1

t2

Figure 3. The committing of a conversational transaction

In the example, s0 starts the root transaction at point t0, then communicates with s1 and s2
which start their transactions accordingly. s2 negotiates its own sub transactions by interacting
with s3 and s4. Following its local commit, the transaction at s3 reaches its deadline at point t1
while it has not received the global commit request from its parent. Thus it sends a
compensation request to its parent. When receiving the request, the transaction at s2 has not
heard from s4, so it sends back a confirmation to cancel the committed transaction at s3, and
re-negotiates a new sub transaction with s5. At point t2 when informed of the completion of its
sub transactions, s0 commits the root transaction and sends a global commit to its children.

4.4 Proof of correctness
We prove in this section the correctness of the optimistic commit protocol. The protocol must
ensure the safety and liveness properties.

Lemma1 The optimistic commit protocol is deadlock free.

Proof:
First, we prove that the root transaction will commit or cancel a conversational transaction
within a definite amount of time. Suppose that root transaction t0 has initiated conversational
transaction T. If t0 has not received responses from some component transactions within a
timeout interval, a timeout event is generated, and a “ping” message is forwarded to each ti (0
< i < n). If errors are detected, t0 will abort T to avoid a potential deadlock. Otherwise, t0 will
eventually receive the response from each ti (0 < i < n) because the latencies due to
asynchronous processing and network delivery are bounded. Following the business logic, t0
will send one round of synchronous messages to globally commit or cancel the conversational
transaction. t0, after every certain interval, will keep sending the global commit or cancel
message until it receives the response from each ti (0 < i < n). This will not lead to a deadlock
as we assume each e-service is able to recover from a failure within a definite amount of time.
Thus, each ti (0 < i < n) will eventually receive the commit or cancel decision, so will t0 receive
all the responses.

Second, we prove that each ti (0 < i < n) will not be blocked indefinitely. With the protocol, ti
behaves independently except for two points where ti can be blocked: waiting for a reply after
sending its parent an “compensation” request; and waiting for the responses after forwarding a
“global commit” or “cancel” message to its children. In the first scenario, ti will keep sending

 - 14 -

the request until it receives a “confirmed” or “denied” response. This will not lead to a
deadlock as we assume each e-service is able to recover from a failure within a definite amount
of time. Thus, the parents of ti will eventually receive and process the request, so will ti receive
the response. In the second scenario, for the same reason, ti will eventually receive all the
responses.

Lemma 2 The optimistic commit protocol is livelock free.

Proof:
Transaction compensation could lead to a livelock in which an infinite number of
compensations are initiated, preventing the conversational transaction from making progress.
Consider an extreme scenario where ti (0 ≤ i < n) has two sub transactions: the first child that
was previously committed reaches its deadline, and needs to be compensated while the second
child is still pending. Suppose ti starts a new sub transaction replacing the first child, then
receives a response from the second child. But before the first child (the new sub transaction)
finishes, the second child needs to be compensated. If ti starts another sub transaction
replacing the second child, the first child, following its local commit, could again reach its
deadline before the second child (the new sub transaction) finishes: a livelock occur.

Our protocol avoids livelocks by checking the status of ti’s sub transactions before ti can
negotiates a new sub transaction. According to the protocol, ti can start a new child only if it
has pending children that were not started due to compensation requests. That is, ti must be
patient enough to hear from each of its original children. Then if there are still pending
children each of which are a replacement of a compensated child, the protocol will cancel the
conversational transaction when receiving any new compensation request. As a result, the
number of compensations for a conversational transaction is bounded: no livelock.

4.5 The transaction-reversing algorithm
So far we have not addressed how the transaction compensation can be done transparently,
except for assuming a compensation function ϕ(t). In the following we propose a language-
based approach enabling transparent transaction compensation. The approach assumes that
databases are accessed via some APIs such as JDBC, ODBC, OLE DB, etc. The idea is to
intercept each API call and augment it with the transaction-reversing algorithm. For each
update statement (e.g., INSERT, DELETE, UPDATE), the reversing algorithm records the
corresponding column information, and constructs the reversing SQL strings. At the time of
compensation, the transaction manager prepares and executes the reversing statements with
the reversing SQL strings and saved column information associated with the transaction. As a
result, the state of the transaction is removed from the database.

Before presenting the algorithm, we formalize the interactions between applications and
databases. fc(t, d) represents the operation creating a database table, where t is the name of the
table to be created, and d is the definitions of the columns in the table.

fi(t, c), fd(t, q), fu(t, c, q), and fs(t, c, q) represents an insert, delete, update, and select operation
respectively. The operation can be in the form of a statement, a prepared statement, or a
stored procedure. Among the parameters, t is the set of the tables to be accessed. c is the set of

 - 15 -

columns to be inserted, updated, or selected. q is the set of columns used to create the query
(i.e., the WHERE clause).

The reversing algorithm works in the following format1.
1. At the time of transaction start, associates the transaction with the current database

connection: the database URL.
2. Saves t and d when performing fc(t, d): creating a table.
3. When preparing a statement or stored procedure, intercept and parse the SQL string and

passed parameter. Then if it does not exist, a reversing function (i.e., a reversing SQL
string) is constructed based on the type of the operation.

4. For fi(t, c), based on t and c, construct the reversing function fd(t, q) where q is a function of
c: q = ε(c). Then generate and save a compensation record. The record contains a pointer
to the reversing function and the parameters to the function (t and q).

5. For fd(t, q), performs a select operation based on t and q. That is, C = fs(t, *, q), where C is
the result set. Then construct the reversing function fi(t, d). For each c ∈ C, a compensation
record is generated and saved. The record contains a pointer to the reversing function and
the parameters to the function (t and c).

6. For fu(t, c, q), perform the following operations: C′ = fs(t, c, q); C = δ(c, C′). ∀ c′ ∈ C′, c′ is
the set of columns to be updated. Function δ performs such that, ∀ c ∈ C, c[i] = c[i] if
c[i] contains a delta value; otherwise,  c[i] = c′[i]. Then based on t, c, and q, construct the
reversing function  fu(t, c, q). For each c ∈ C, a compensation record is generated and
saved. The record contains a pointer to the reversing function and the parameters to the
function (t, c, and q).

Now we show an example where the algorithm prepares the compensation records for a
transaction. Consider a transaction executing a piece of JDBC code that update the account
balances at an indicated bank branch. Note that all of the following code are incomplete, and
only present the logic of the algorithm.

Connection con = DriverManager.getConnection(url, id, pw);
PreparedStatement pstmt = con.prepareStatement(

“UPDATE BRANCH SET BALANCE = BALANCE + ? DATE = ? WHERE BRANCH_ID = ?”);
pstmt.setInt(1, delta);
pstmt.setString(2, curDate);
pstmt.setShort(3, branchID);
pstmt.executeUpdate();

When “prepareStatement()”, “setInt()”, “setString()”, and “setShort()” are intercepted, the
algorithm records the SQL string and the types and values of the updated (BALANCE and
DATE) and indexing (BRANCH_ID) columns. It also constructs a select string and a
reversing update string if they do not exist. The strings in this case are

“SELECT BALANCE DATE FROM BRANCH WHERE BRANCH_ID = ?”
“UPDATE BRANCH SET BALANCE = BALANCE + ? DATE = ? WHERE BRANCH_ID = ?”

1 Full implementation details of the algorithm are out of scope of this paper

 - 16 -

When “executeUpdate()” is intercepted, the algorithm does the following before executing the
original statement.

PreparedStatement pstmt1 = con.prepareStatement(

“SELECT BALANCE DATE FROM BRANCH WHERE BRANCH_ID = ?”);
pstmt1.setShort(1, branchID);
ResultSet rs = pstmt1.executeQuery();
while (rs.next()) {

compensationRecords[i].sqlString
= “UPDATE BRANCH SET BALANCE = BALANCE + ? DATE = ? WHERE BRANCH_ID = ?”;
compensationRecords[i].col[0].type = “int”;
compensationRecords[i].col[0].value = -1*delta;
compensationRecords[i].col[1].type = “String”
compensationRecords[i].col[1].value = rs.getString(“DATE”);
compensationRecords[i].col[2].type = “short”;
compensationRecords[i].col[2].value = branchID;
i++;

}

To compensate a transaction, the transaction manager builds a connection with the saved
database URL. Then it retrieves all the compensation records associated with the transaction.
By replaying each record, the state of the transaction is removed from the database. For the
above example, the algorithm performs the following.

Connection con = DriverManager.getConnection(url, id, pw);
for (i = 0; i < numberOfRecords; i++) {

PreparedStatement pstmt =
con.prepareStatement(compensationRecords[i].sqlString);

pstmt.setInt(1, compensationRecords[i].col[0].value);
pstmt.setString(2, compensationRecords[i].col[1].value);
pstmt.setShort(3, compensationRecords[i].col[2].value);
pstmt.executeUpdate();

}

5. Conclusion
E-services are federated, composite, and autonomous. Due to the nature of e-services, the
traditional transaction processing mechanisms do not work well in the e-service world. We
proposed in this paper a new approach called XIP to transaction processing on the Internet.
XIP consists of two parts. The first part is an optimistic commit protocol to systematically
enable the Internet transaction semantics (e.g., commit, abort, retry, cancel). Compared to
other optimistic commit protocols, it addresses some unique aspects of e-service transactions.
The second part is a transaction-reversing algorithm enabling transparent transaction
compensation. With optimistic commit, XIP eliminates the resource-locking problem with
TIP. With the transparent transaction compensation, XIP, unlike the existing approaches, does
not require applications to provide compensation functions the programming burden is
greatly reduced and this makes XIP a practical approach to transaction support for e-
services.

 - 17 -

References

1. Object Management Group. The common object request broker. Architecture and specification.

Revision 2., July 1995. D. Rogers http://www.omg.org
2. Biztalk service Framework. Microsoft Corporation. http://www.biztalk.org/
3. Hewlett-Packard Company. E-Speak Architecture Specification. Version Beta2.2. December

1999. http://www.e-speak.hp.com
4. A. Dan and F. Parr. An Object implementation of network centric business service

application (NCBSAs): conversational service transactions, service monitor, and an
application style. OOPSLA’97, Business Object Workshop III.

5. K. Evans, J. Klein, and J. Lyon. Transaction Internet Protocol – Requirements and
supplemental information. 1998.

6. C. Wood. OLE DB and ODBC Developer’s Guide. M&T Books, Foster City, CA., 1999.
7. S. While, et al. JDBC API Tutorial and Reference, 2nd Edition. Addison-Wesley, 1999.
8. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, 1987.
9. H. F. Korth, E.Levy, and A Silberschatz. . A formal approach to recovery by

compensation transactions. In Proceedings of ACM-SIGMOD 1991 International Conference
onVery Large Databases, pages95-106, 1990.

10. E. Levy, H. F. Korth, and A. Silberschatz. An optimistic commit protocol for
distributed transaction management. In Proceedings of ACM-SIGMOD 1991 International
Conference on Management of Data, pages 88-97, 1991.

11. P. K. Chrysanthis. Transaction processing in mobile computing environment. In
Proceedings of IEEE Workshop on Advances in Parallel and Distributed Systems, pages 77-82,
1993.

12. E. Pitoura and B. Bhargava. Building information systems for mobile environments. In
Proceedings of the 3rd International Conference on Information and Knowledge Management, pages
371-378, 1994.

13. E. Pitoura and B. Bhargava. Maintaining consistency of data in mobile computing
environments. In Proceedings of the 15th IEEE International Conference on Distributed Computing
Systems, June, 1995.

14. A. Sahai, J. Ouyang, and V. Machiraju. End-to-end e-service transaction and
conversation management through distributed correlation. Technical Report HPL-2000-
145, Hewlett-Packard Labs, 2000.

15. Hewlett-Packard Company. Vantage Point Web Transaction Observer. 1999.
16. XML at World Wide Web (WWW) Consortium http://www.w3c.org/xml
17. x/Open Compony Ltd. Distributed Transaction Processing: The XA Specification, 1991

