)

invent

Agent Behavior Architectures
A MAS Framework Comparison

Steven P. Fonsecal, Martin L. Griss, Reed Letsinger
Software Technology Laboratory
HP Laboratories Palo Alto

HPL-2001-332

December 19th | 2001*

E-mail: fonseca@cse.ucsc.edu, martin_griss@hp.com, reed_letsinger@hp.com

agent
behavior,
multi-agent
system,
FIPAOS,
JADE,
ZEUS

Advances in agent technology depend on improving frameworks
for building and supporting agent societies. Experience
suggests that first generation multi-agent systems fall short of
providing a rapid prototyping development environment for the
systematic construction and deployment of agent-oriented
applications. While at least sixty [13] different agent systems
have been implemented, few efforts have been made to use
them as case studies for building second-generation multi-agent
systems. We propose a refactoring of both architecture and
implementation across the FIPAOS, JADE, and Zeus open-
source agent frameworks to produce a new multi-agent system
framework called MAS2. The first step is to extract reusable
design elements for MAS2 beginning with the agent behavior
subsystem. FIPAOS, JADE, and Zeus all have a core behavior
subsystem that includes an execution process, ACL message
interface, agent behavior engine, and corresponding primitive
processing objects. These mechanisms are evaluated in this
paper in the context of building a meeting scheduling protocol
from which useful architectural elements and implementation
techniques are identified.

* Internal Accession Date Only Approved for External Publication

1

UC Santa Cruz/HP Labs Baskin Engineering Building, Santa Cruz, CA 95064

o) Copyright Hewlett-Packard Company 2002

Agent Behavior Architectures
A MAS Framework Comparison

Steven P. Fonseca
UC Santa Cruz f HP Labs
Baskin Engineering Building
Santa Cruz, CA 95064
1-650-236-2949

fonseca@cse.ucsc.edu

ABSTRACT

Advances in agent technology depend on improving frameworks
for building and supporting agent societies. Experience suggests
that first generation mulii-agent systems fall short of providing a
rapid prototyping development environment for the systematic
construction and deployment of agent-oriecnted applications.
While at least sixty [13] different agent systems have been
implemented, few efforts have been made to use them as case
studies for building second-generation multi-agent systems. We
propose a refactoring of both architecture and implementation
across the FIPAOS, JADE, and Zeus open-source agent
frameworks to produce a new mult-agent system framework
called MAS2. The first step is to extract rensable design elements
for MAS2 beginning with the agent behavior subsystem
FIPAOS, JADE, and Zeus all have a core behavior subsystem that
includes an execution process, ACL message interface, agent
behavior engine, and comresponding primitive processing objects.
These mechanisms are evaluated in this paper in the context of
building a meeting scheduling protocol from which useful
architectural elements and implementation techniques are
identified.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques —
modules and interfaces, object-oriented design methods, software
libraries, state diagrams.

General Terms
Design, Languages

Keywords
Agent behavior, multi-agent system, FIPAOS, JADE, ZEUS.

1. INTRODUCTION

MAS frameworks attempt to provide programmers with reusable
agent-oriented classes which share useful relationships. To build
a framework, the agent domain must be decomposed and
programming abstractions identified. This process is called agent-
oriented software engineering and programming. An introduction
to these topics is provided in the next two sections after which a
discussion of the research questions is given.

Martin L. Griss
Hewlett-Packard Labs
1501 Page Mill Road, 1U-14
Paio Alto, CA 94304
1-650-857-8715

martin_griss @hp.com

Reed Letsinger
Hewlett-Packard Labs
1501 Page Mill Road, 1U-16
Palo Alto, CA 94304
1-650-857-5974

reed_letsinger@hp.com

1.1 Agent-Oriented Programming

Agent-oriented programming involves using an agent as the main
unit of encapsulation. In this paradigm {12] “we program an
agent with the help of high-level elements such as goals, choices,
skills, beliefs, and so on, and that the types of message that agent
exchanges with each other also refer to high-level communication
mechanisms in defining messages zbout data, requests, offers,
promises, refusals, acceptances and so on.” In particular, multi-
agent systems (groups of agents working together to achieve some
purpose) are critical for many large-scale e-commerce and
intelligent assistant systems, including negotiation, brokering,
contract formation, selling, scheduling, etc. The group of agents
can be a static or dynamic grouping, or a combination of static
and dynamic. The communication can be between people and
agents, or between agent and agent, or a mix.

Before effective agent-oriented solutions are available, agent-
oriented engineering and process methodelogies must be matured.
This lesson was learned after building a mobile shopper agent-
based e-commerce framework and an agent-based meeting
scheduler at Hewlett-Packard Labs. Focusing on the engineering
of multi-agent systems, the programming techniques used to
handle distributed system complexity is essentially the same as
dealing with any type of sophisticated software; decomposition,
abstraction, and organization are key [3,8]. In a very general
sense, the purpose of our research is to take these three
mechanisms and apply them to the agent-oriented paradigm. This
attempts to answer a “fundamental question” of agent-oriented
software engineering [9]): “What are the essential concepts and
notions of agent-based computing.” Jennings identifies agents,
agent organizations, interactions, and environment as possible
concepts. While focusing on abstracting and decomposing agent
behavior rather than studying agent or agent-society level issues,
we build on his ideas introducing alternate vocabulary.

Like the transition from functional to object-oriented
programming, moving from object-oriented to agent-criented
programming involves building on top of and re-encapsulating
vnits of computation. The additional layers of abstraction
introduced by this paradigm appearing in Table 1 are pamed by
their encapsulation component. The crossover from the object to
agent layer begins at the multi-agent system level. Although
multi-agent system frameworks can be thought of as being parallel
to rather than extending from traditional object-oriented
frameworks, they are placed at a higher level of abstraction
because they typically utilize object-oriented API's. Well-written

Table 1. Agent-oriented programming ahstraction layers

Agent-Onented Programming Abstraction Layers

Abstraction Level Description Example
Collection of agent societtes FIPA infrastructure agents and
Agent Environment application agents
Agent Society Collection of agents FIPA infrastructure agents
Agent Collection of executing roles Meeting requeshing agent
Agent Role Awell-defined high-level agent action | Meeting participant protocol

Agent Infrastructure — MAS Framework

ADI for low-level agent action and

FIPACS, JADE, Zeus

society infrastructure action
Application Framework or API 00 AFPI for langnage extension and RMI, MFC
raising abstraction
Language Core software foundation Java

MAS frameworks recast object calls using agent-oriented
concepts. JADE, the Java Agent Development Environment [2], is
an example mult-agent system famework that provides the
ability to communicate with FIPA compliant society infrastructure
agents.

An agent API provides the fundamental capabilities that an agent
must possess to participate in the default society chosen by the
MAS developers. JADE agents are given the ability to
communicate with FIPA compliant society infrastructure agents.
The agent API also defines interfaces to the agent subsystems.
The number and types of subsystems provided by a MAS differ
from implementation to implementation — domain dependent
agent requirements often dictate design choices. The trend is for
MAS's to minimally provide some level of conversation
management, rule-based behavior, and function-based behavior
subsystems.

As was stated, most MAS frameworks provide an agent behavior
subsystem. These subsystems are often called “engines.”
Whether rule-based or object-based, the function of a behavior
engine is to provide built-in support for programming agent
behavior. Regardless of the application domain, there is a set of
actions or utilities that are commonly needed by any agent
interacting within a society. Much like typical libraries, factoring
these utiliies into MAS support classes alleviates agent
programmers from reinventing behavior. Message storage is one
example facility provided by the Zeus coordination engine [4].
As is the case with Zeus, a behavior engine can offer domain
specific functionality (buy, sell) in addition to general-purpose
agent behavior support. At a minimum, engines need to offer
general-purpose support because the intention is for programmers
to extend, customize, and tailor agent behavior to the problem
domain. Engines typically provide a pseudo-concurrent
mechanism enabling multi-tasked agent behavior execution. This
offers a single-threaded multi-tasking solution.

JADE, FIPAQS, and ZEUS behavior engines adopt architecture
similar to Container-Based Component Management that is used
by the J2EE environment. Containers or engines provide
guaranteed services to their respective components. For example,
a web container provides request services to its Servlet
components. Analogously, an agent engine container might
provide a new dialogue convenience service to its agent role
component.

An agent rele is meant to represent a well-defined and
encapsulated unit of high-level agent behavior. An agent role can
denote the same behavior expressed in defining a protocol role.
Alternatively, it can represent some other action an agent
performs that may not invelve communicating with the society.
An agent role is composed of primitive operations from the MAS
framework abstraction layer and can also encapsulate other lower
level agent roles. In FIPAOS, JADE and ZEUS, primitive
operations are conlained in objects implementing an interface that
enables the behavior engine to manage and execute them.

Depending on the implementation, the internals of an agent rele
can range from loosely to highly structured and conseguently
dictate the same degree of coupling with the behavior engine.
Loosely coupled agent roles afford the programmer a high degree
of flexibility but don’t take advantage of factoring out reusable
code across agent roles. Highly structured agent roles are more
constraining but can take advantage of built-in engine
functionality and may offer programmers a solution template for
writing agent behavior. Two concermns emerge from these
observations. First, the success of using a highly structured agent
tole is dependent upon how easily agent behavior can ba mapped
to the internal constructs. The solution model must align with the
agent role programming model. Second, there exists a tension
between flexibility and reusability that must be tuned through
experience.

Agent toles can be mule-based or object-based; all MAS
frameworks support both. An interesting encapsulation
implication for mle-based behaviors is if all rules appear at the
same level, a system rapidly becomes unwieldy as the number of
rules increase. Instead, programmers think about “rulesets” or
“rule modules”, and use a top-level set of rules to select the active
rule model.

1.2 MAS Frameworks

FIPAQS, JADE, and Zeus are all open source Java based MAS
frameworks implementing, to varying degrees, FIPA (Foundation
for Intelligent Physical Agents) compliant agent systems. The
features these frameworks provide arc similar as they share the
common goal of providing a code base for developing intelligent,
distributed, and autonomous software, using agents as the unit of
encapsulation. As will be apparent, the major subsystems of these
frameworks are the same. What vares is their high-level

architecture and, to an even greater extent, their implementations.
An overview of each framework is offered here to establish the
context for comparing their support of function and state based
programming of agent behavior discussed in Section 3.

1.2.1 FIPAQS

Nortel Networks developed the FIPAOS MAS framework with
the intent of providing a platform whose architecture emphasized
case of extension, modularity, and therefore openness [11]. As
with JADE and Zens, FIPAOS source code is freely available
under the terms of a license prohibiting commercial exploitation.
FIPAOS, in accord with numerous FIPA specifications [6],
provides support for agent management, ACL message
transmission and reception, and protocol adherence. It includes
an agent shell that serves as the foundation for building
customized agents, a task manager for constructing agents from
primitive work units called tasks, a conversation manager that
ensures protocol compliance while also providing conversation
utilities for tasks, and a message transport service for sending and
receiving messages. Factories are provided for databases and
parsers. FIPAOS can also be used with the JESS [7] rule-based
system. These subsystems are connected by defined interfaces
enabling component interchange. FIPAOS includes runtime tools
for managing agents, viewing thread pools, and monitoring task
execution. A task generator tools is also included that takes a
protocol declaration and generates all of the classes required to
implement each role. FIPAQS provides a name server, directory
facilitator, and agent communication channel agents. An input-
output agent with a GUI interface allows ACL messages to be sent
as specified manually by the user.

1.2.2 JADE

Just as FIPAQS, the JADE MAS framework has implemented all
of the mandatory components of the FIPA specifications.
Developed at CSLET, the primary objective of this framework is
to make it easier to program multi-agent societies whose agents
interact in compliance with FIPA. JADE provides [2] the same
FIPA infrastructure agents as FIPAOS, and a container paradigm
for associating JVM’s, agents, and hosts. Also included is an
agent foundation class for writing customized agents, a library of
protocol skeletons for tailoring agent conversation, a behavior
hierarchy for programming function-based agent execution, an
interface for using the JESS rule-based system, and a suite of
development tools. The tools provided include runtime agent
management, directory facilitation monitoring and editing,
message exchange debugging, agent life-cycle control, and a
conversation monitoring tool that draws a sequence diagram of
agent interaction.

1.2.3 Zeus

Zeus was developed at the British Telecom Labs [4]. It adopts a
layered approach to agents. Basic agents are able to follow an
agent communication protocol with other agents in the
community. They have the ability to plan sequences of steps
needed to accomplish a goal, to monitor the execution of plans,
and backirack when necessary. Also, these agents can be supplied
with forward-chaining rules that respond to perceived changes in

the environment. Zeus agents are goal directed. The MAS
framework provides a comprehensive suite of monitoring tools at
the agent and society level. Also provided is an agent generator
toal for configuring agent subcomponents and internal recourses
at compile time.

1.3 Research Questions

The general purpose of agent-oriented programming is to raise the
level of abstraction of components composing a software system
and minimize the coupling (and increasing the antonomy) that
exists between these distributed pieces of software. The
engineering of agent systems further requires identifying reusable
agent-specific and domain-specific abstractions, correctly
partitioning agent code into reusable components, tool support for
agent construction and monitoring, and maturation of agent
frameworks.

We focus on evolving MAS frameworks to sepport rapid
programming of agent behavior. The following questions are of
importance: 1) what is a good algorithm and implementation for
routing incoming messages to the correct execution unit? 2) What
amount of intelligence is useful in dispatching messages and how
is this intelligence programmed? 3) What high-level message
management policies should the MAS platform provide to an
agent by default? 4) What built-in support, if any, should be
provided by a platform to support state-based agent composition?
5) How can a MAS platform help rapidly construct agents?

Additional questions concerning agent behavior include: 1} How
can agent behavior be decomposed into high-level actions? 2)
How can an agent be constructed from reusable components? 3)
What are these components and what interface do they share? 4)
What architectures make it easier to understand and maintain
agent behavior? 5) Is state-based agent behavior a useful
programming paradigm? 6) How are the processing steps an
agent executes partitioned into states and their transitions?

2. EXPERIMENT DESCRIPTION

This section gives a brief description of the test application that
was written to evaluate the agent behavior programming support
provided by the FIPAQS, JADE, and Zeus MAS frameworks.
The experiment is classified according to criteria defined by
Basilli [1] to establish the context for evaluating the results of this
study. Following this is a description of the meeting scheduling
protocol and corresponding design diagrams.

2.1 Experiment Classification

The motivation of this study is to assess and improve current
MAS framework behavior execution implementations to develop
a second-generation multi-agent system. An experienced Java
programmer, from the perspective of both the framework
developer and user, will evaluate FIPAOS, JADE, and Zeus in the
context of building 2 meeting scheduling protocol. The scope of
the work is considered a replicated project as the same meeting
scheduling protocol is implemented using three different MAS
frameworks.

2.2 Problem Description

Motivation for the experimental application was taken from a
multi-agent meeting-scheduling prototype developed at Hewlett-
Packard Labs. In this scenario an agent initiates a request for a
meeting to be scheduled. The meeting agent receives this request,
which includes a list of invitees, and asks the desired participants
to provide their availability. After receiving their responses, the
meeting agent determines the subset of available times, considers
additional meeting constraints defined by the requester, and then
sends a meeting proposal message to the participants. This
message contains such information as the meeting time, location,
and available room resources. Participants are then expected to
accept or reject the meeting attributes. If the meeting agent
decides to hold the meeting, it informs the participants who are
expected to confirm their attendance. The meeting agent also tells
the meeting requester that a mesting has been successfully
scheduled. The meeting protocol just described includes a
negotiation loop enabling the meeting attributes to be adjusted
until the meeting agent is satisfied with the expected participation.

2.3 Protocol and State Machine Design

Complementing the textual description of the experimental
application is a sequence diagram of the meeting protocol and a

Meeting Meeting Meeting
Requester Arranger Participant
L

[uest
TeqUest

' T
[refise : refuse

¥

| info T
1

refuse

L
K}% Ppropose

]

reject
proposal

l accept i rjﬁosal

inform

H

-

inform ‘]"

Figure 1. AUML sequence diagram of meeting scheduling protocol

sample state machine chart for the Participant role. Notice that
FIPA verbs [5] were used to define the exchanged message types
and AUML [10} was used to model the conversation. While the
sequence diagram in Figure 1 provides a society level view of
interaction, the state machine chart in Figure 2 illustrates the
intemnal processing of agents performing a meeting agent role.

Pl
{waiting)

»

REFUSE

REJECT
PROPOSAL PROPOSE

—_—
P3 REFUSE
(accept proposal

| —

INFORM |

f_;j

riggeriess P4
(inform)

PROPOSE

Figure 2. State chart diagram of meeting participant role

This view is particularly usefil for agents implemented using
state-oriented programming.

3. BEHAVIOR ARCHITECTURES

The meeting scheduling protocol described above was
implemented using the FIPAOS, JADE, and Zeus frameworks.
Each provides a function-based behavior execution mechanism
that allows programmers to constrect agents from primitive
processing elements. A discussion of the architecture and
implementation for each framework is provided and a few
platform comparisons are made. Further analysis is found in the
subsequent section in which the elements common to these
frameworks are evaluated.

3.1 FIPAOS

The primary components of the FIPAOS behavior execution
mechanism are a conversation manager, conversation, task
manager, task, task state, and task event. These components, and
additionally the agent shell and message transport service (MTS),
are connected via well-defined Java interfaces to assist
programmers with sending, receiving, and processing ACL
messages.

The conversation manager, implementing the message receiver
interface, is forwarded incoming messages from the agent society
by the MTS. The conversation id is checked to determine if the
message is associated with an outstanding conversation. If it is,
the comesponding conversation object is retrieved, protocol
compliance is checked if the conversation follows one, and the
conversation object stores a copy of the message. If the incoming
message indicates the beginning of a new conversation, a new
conversation object is instantiated, compliance is checked if a
protocol is specified, and the message is added to the
conversation. The final responsibility of the conversation
manager is to add the new or updated conversation object to a
queue that is monitored for objects implementing the conversation
listener interface.

The task manager of the behavior execution subsystem
implements the conversation listener interface. When it receives a

conversation object it inspects the conversation id to determine if
a task has already been associated with the conversation. If it has,
a task event containing the conversation object is created and
added to the task. If no task is associated with the incoming
conversation, then the idle task is given the event task object. An
idle task must be written to handle incoming new conversations
where the receiving agent is not the initiator.

Once a task event is added to the appropriate task, the task
manager informs the task manager listener that a new task event
was generated. The task manager listener replies by telling the
task manager where to place the task in the quene of tasks waiting
to execute. The task manager executes tasks in appropriate order.
The queue is checked for tasks, all events for each task are
handled, and then a second elapses before the next execution
cycle begins.

Task execution involves decoding the type of event requiring
service and calling the appropriate task method. FIPAOS defines
the following event types: Initialized event, conversaon update
event, child timeout event, child failure event, and child done with
result event. Naming conventions are used to map incoming
events to the correct task method. For example, a conversation
update event with a conversation object that contains a request
performative would call the task method named
handlerequest(Conversation). Similarly, when a child done event
is serviced, its parent task is expected to have a method whose
name is the name of the child task with ‘done’ appended to the
end.

A parent-child task relationship is supported by FIPAOS. When a
child task completes the system generates a child done event that
triggers a callback method to execute, as previously described.
Built-in support for sharing of data between parent and child tasks
is provided by get and set API calls to manage a context object.
There is also support for a child to return a value to the parent
after execution.

In concluding this discussion on the FIPAOS behavier execution
subsystemn, several additional features require explanation. First,
the message sending mechanism is analogous to the previously
discussed receiving mechanism both in mechanics and in interface
usage. Second, FIPAOS provides classes for all of the FIPA
protocols. The skeleton of execution code for these protocols is
not provided. Instead, the classes define the legal sequence of
message exchanges for a conversation. A task generation tools is
included with FIPAOS that takes this protocol definition and
generates tasks with appropriate method stubs. Finally, as with
JADE, FIPAOS was designed to work with the JESS rule-based
system.

3.2 JADE

Similar to Zeus, the JADE MAS framework provides a behavior
engine for programming agent behavior using homogeneous
processing elements thet are executed In pseudo-concurrent
fashion. JADE, however, defines a hierarchy of behavior classes
implementing common execution patterns rather than tailoring the
engine to process state machines. New versions of JADE do offer
state machine execution support on top of their existing
infrastructure. But this mechanism is not nearly as well
developed as in Zeus. The JADE engine processes behaviors as
opposed to states within a given state machine behavior.

Behaviour, the root class of the behavior hierarchy, defines
several core methods whose semantics are similar to methods of
the UML state concept. The onStart and onEnd methods are
executed upon entry and exit of a behavior. An action method
embaodies the core code for the behavior. The JADE MAS does
not have predefined states for behaviors as with Zeus. Instead,
programmers are left the task of defining functionality specific (as
opposed to general states such as ready, waiting, finished) states
and it is suggested that these states be implemented using a Java
switch statement. Like Zeus nodes, every behavior has the option
of implementing the reset method to undo state changes and
therefore enable backtracking.

The JADE MAS provides a round-robin dispatching mechanism
for routing incoming ACL messages. The pool of currently
interested behaviors is woken-up and the first behavior has an
opporiunity to process the message. A logical combination of
string matching on the attributes of the incoming message is
performed to determine if the action method of this behavior is
executed. If the matching criteria are not satisfied, the current
behavior is put back to sleep and matching with the next behavior
is attempted. Once a behavior accepts a message, the pool of
active behaviors are put back to sleep. Explicit reposting of a
message is tequired when it should be handled by multiple
behaviors.

Behaviour is the top-level class whose children are
CompositeBehaviour and SimpleBehaviour. JADE provides
classes descending from SimpleBehaviour that fix the number of
times the behavior rmuns. Classes descending from
CompositeBehaviour implement support for handling multiple
behaviours according to a policy. The most sophisticated class
from this branch of the hierarchy is FSMBehaviour. The policy
for this behavior is implemented by defining 2 state machine of
behaviors. Because each state is itself a behavior, it is possible to
embed state machines.

The FSMBehaviour class has the responsibility of maintaining the
relationships (transitions) between states and selecting the next
state behavior to execute. When a state is registered, a string
name is associated with the corresponding behavior object. After
naming all states, the transitions between them are defined and
stored. Each transition is assigned an integer representing its
event number. Once the start and finish states are noted, the state
machine is ready for execution. When a stale behavior finishes,
the onEnd method returns the event number that determines the
one-and-only next transition to fire. If no tansitions are
associated with the current event number, the default transition is
taken if one was specified. Note that transitions only serve to link
states; they do not encapsulate agent behavior.

3.3 Zeus

The Zeus MAS platform provides a coordination engine that
executes state machines. These state machines are called graphs
in Zeus. A graph defines the processing nodes of a piece of agent
behavior and the associated arcs that link nodes together. The
main portion of agent behavior code is divided into two node
methods called exec and continue_exec. Precondition code is
defined in the exec method of arcs that determine what node
should be executed next. Backtracking of node traversal is
supported as each node defines a reset method that is responsible
for undoing processing.

The coordination engine manages executing nodes and provides
convenience functions. Pseudo-parallel executicn is supported by
interleaving node processing using a first-in-first-out policy.
Nodes typically perform some processing, are placed back on a
queue while waiting for dependent processing to finish, and then
re-queucd for execution. There is built in support for node
timeouts. The engine, to reduce the tedium of managing ACL
message exchange and subsequent data structure transiation,
provides conversation utilities. It also has built-in methods that
execute graphs for buying, selling, and a general problem solver
called achieve.

All ACL messages are routed by a message handling class. This
class allows rules to be registered that match incoming messages
with the comect processing object. Rules are regular expression
strings for specified fields of the arriving performative. For
example, it is possible for a single processing object to handle all
incoming messages that have a content field starting with ‘R’.
There is no direct support for logically connecting regular
expressions. Once a nule is satisfied, the registered method of the
processing object is executed with the performative as its
parameter. After execution, the message handler checks the next
rule to see if it is satisfied by the incoming message. This
continues seguentially until all active rules are given an
opportunity to process the message. Rules can be registered with
the message handler dynamically. There is built-in support for
one-shot rules such that after processing a message for the first
time, the rule is deregistered.

Zeus provides several useful miscellaneous features. The Zeus
coordination engine can process multiple graphs in parallel.
Nodes are in one of several predefined states that dictate how they
are processed. A visualization tool is provided that represent state
information about the nodes and executing graphs. The message
handler object contains statically defined rules that ensure agents
follow society conventions. This is problematic when building
agent societies with different norms.

4. BEHAVIOR COMPARISON

To compare MAS platform support for programming agent
behavior, the meeting scheduling protocol, defined in Section 2,
was implemented. A high-level parent task was defined in
FIPAOS to coordinate child tasks for each of the individual states
in the protocol. Return values from the children dictated entry
into the next state. In JADE, a single behavior with a case
statement was used to implement the mecting scheduling protocol.
The Zeus implementation defined graphs for each role of the
protocol and implemented the individual states using nodes.
Table 2 provides a summary comparison of FIPAOS, JADE, and
Zeus. In this table, PPE is an abbreviation for primitive
processing element. The subsections that follow discuss these
features in detail.

4.1 Primitive Processing Elements

FIPAQS includes a base task that can be subclassed but includes
few other tasks that can be used as is by customized agents (tasks
are included for the infrastruciure agents). Each task has a task
state object that keeps track of the task status. Code in the task is
split primarily according to the type of messages that are handled.
Aside from that imposed structure, programmers have the freedom
of architecting solutions of any form. Zeus splits nodes up into
two sections; one executed the first time the node is processed,

and another that is executed for all subsequent processing of that
node. This paradigm was useful when implementing meeting
availability collection. The first responsibility of the node was to
send a request and thereafter collect subsequent inform messages.
Zeus nodes are always in one of several predefined states but a
textual status flag can be used to communicate application
specific status. Zeus provides three agent behavior graphs and
their accompanying nodes and arcs. It also includes a few small
protocol graphs. Similarly, JADE provides implementations for
the FIPA protocols. It also includes a behavior hierarchy that was

Table 2. MAS lramework comparison

Canorpt Description FIPAOS JADE Teus
Euppori for functsonally besed sk agenl co-ondination
estension of apent capabilitics menager cagine

FPE of ooit of work for & funetion [T behrvior node
tanend
| FPE's provided no yes yau
(individual, {indiesdual)
hicrarchy)
Piedefmed states for PPE yes oo you
Aggregar contriner of PPE parenl task compasite reph
3 ‘behrvioe
FPE execution schedufing configurable | pecudo romd round robin
round robim robin
by defanlt
Seheduling locus of contral centralized dastribaied cepivelized
Buill-in supporet for mocisage ronting | conversstion logical pofornmtive
id and combination sttriboie
perfamuitve of . matching with
fype pafommlive reguler
mitribute EXARFEOn
matching
Timeoul suppoct yos yo b
Protncol checking yes w e
Anite siate machine prpport BO yes
{simplc} | (compreberrive) |
Buill-in dals charing across PPE's pareni-child [input cutmt
pbject transler berween
sharing ond oodes and
et value agend-wide
shared yesonroe
space

utilized in writing the meeting scheduling protocols.
Unfortunately, JADE behaviors do not include predefined states
and no built-in mechanism is available to note stams information.
All MAS platforms provide a timeout mechanism for primitive
processing elements; however, Zeus does not easily support nodes
with no timeout.

FIPAOS and Zeus, though suggesting nodes and tasks are
reusable, fail to make a convincing argument that such is the case.
In programming the meeting scheduling protocol, task and nodes
tended to encapsulate minimal functionality; code was distributed
across many objects. The architecture of JADE seems to
encourage higger behaviors. It may be suggested, however, that
while nodes, tasks, and behaviors are the primitive processing
clements; they are not reusable components because the level of
abstraction is too low. Ipstead, composites containing these
elements are more likely reusable assets that can be used to
program agent behavior. These composites could be
parameterized to ensure a reasonable amount of code flexibility.

4.2 Data Sharing

Support for sharing data between primitive processing elements is
implemented different for each MAS framework. In writing the
meeting scheduler with FIPAOS, the context object provided by
the framework was used to save ACL messages and transfer them
from child to parent tasks. This was needed because the states for
each role in the protocol were written as child tasks spawned by a

single parent task. The parent task also used the retum object of
child tasks to determine state transitions. Because the JADE
implementation used only a single behavior, no data sharing was
needed. This framework, however, does not have built-in support
for data exchange across behaviors. One solution is for parent
behaviors to pass its child 2 reference to a commeon object when it
is constructed. Zeus provides the most comprehensive data
sharing solution as adjacent nodes pass an Object via input and
output variables. The API does not support this feature, it is
implicitly understood that the input and output attributes will be
appropriately set by the programmer and the co-ordination engine
will handle the forwarding. Zeus also has a resource database that
is accessible to all parts of the agent. ‘This is particularly nseful
when nodes are not related but their functionality may still affect
one another.

4.3 Message Routing

Message routing in JADE and Zeus is similar while FIPAOS more
rigidly defines how messages are routed to their comect primitive
processing element. JADE and Zeus both use ACL message
templates to match messages. JADE uses a logical combination
of ACL message attributes as shown in the following code to
collect meeting availability:

Request = agent.blockingReceive(Message Template.or(
MessageTemplate. matchPerformative(ACLMessage. INFORM),
MessageTemplate. matchPerformative(ACLMessage. REFUSE)));

JADE also allows string matching of ACL message attributes.
Zeus uses rules written as attribute value pairs of an ACL message
where regular expression matching can be specified. The GNU
regular expression classes are used but the framework does not
provide higher-level API calls. This forces the programmer to
write cryptic matching strings with escape character sequences.

FIPAQS does not have built-in support for customizing message
routing, Instead, every message is associated with a specific
conversation and task. FIPAOS uses performative type to choose
what method is invoked within a task. Task code is split into
methods such as handlerequest or handleinform. This is fairly
inflexible and depending on the application, it might not be
convenient or even helpful. For example, consider a protoco] that
handles only requests with a differing content field.

4.4 Execution Scheduling

Execution scheduling affects agent behavior when multiple
primitive processing elements are active. Though this was not the
case when executing the meeting scheduling protocol, tme was
taken to study the source code implementations for each MAS
framework. All three frameworks interleave processing elements
using z round robin scheduling scheme. JADE behaviors are
responsible for putting messages back on the queue if they should
be serviced multiple times. This contrasts Zeus where all nodes
(and customized message handlers) are given an opportunity to
process a message. The architecture is slightly different in
FIPAOS as task events are associated with a single task before the
task is scheduled. FIPAOS and Zeus use centralized scheduling
schemes. In Zeus the scheme is fixed as round robin. FIPAQS
provides a default class that implements the round robin scheme.
This class, however, can be customized to implement any policy.

4.5 Protocol Usage

FIPAOS comes closest to supporting protocols, the legal ordering
of message exchanges between agents involved in a conversation.
A FIPAOS protocol defines allowable message sequences that can
occur during a conversation but does not provide an
implementation for handling those messages. This is the
responsibility of coresponding tasks. A mecting scheduling
protocol was defined and the task manager used this to check
incoming and outgoing messages for compliance. Protocols in
JADE are behaviors with method stubs to handle the types of
messages that are expected. The accompanying FIPA protocols
provided by JADE were not applicable to building the meeting
scheduling software. In Zeus, protocols are just graphs that are
stored in the protoco! database. This database can be accessed to
dynamically load agent behavior. Typically, a higher-level graph
provides a fixed agent behavior solution whose flexibility points
load protocols at runtime. Though multiple protocols can be
stored, the version of Zeus used did not permit choosing from the
available pool. The meeting scheduling code was split into three
Zeus protocols, one for each role of the conversation. Each agent
loaded this protocol from the database.

4.6 Conversation Management

Conversation management in JADE is minimally supported.
Tools are available to monitor and debug agent conversations but
no additional mechanisms are available when programming agent
behavior other than simple message routing. FIPAOS provides
conversation management by checking for protocol compliance,
offering message retricval and storage utilities, conversation
tracking by id, a generation tool that integrates conversation and
task control code, and a messaging agent for manually driving and
debugging conversations. These facilides were useful in
constructing the meeting scheduling protocol although the
message routing mechanism was restrictive. Conversation
management support provided by the Zeus co-ordination engine
was not utilized when writing protocols for the meeting scheduler.
Convenience functions for managing messages were inadequate.
The message retrieval mechanism translated incoming ACL
messages into an internal object but some information in the
original message was filtered out in the process (for example,
envelope information). Monitoring of message exchanges at the
society and agent level was well supported. A customized tool
was developed to view messages from the entire society that was
used to debug the meeting scheduling protocol.

4.7 State Machine Support

Built-in state machine support is not provided in FIPAOS. In
implementing the meeting scheduling protocol, a parent task was
used to manage child tasks that implement individual states.
Coding the application in this way was not difficult, however,
more built-in state machine mechanisms, as with Zeus, were
desirable. Non-rule oriented programming in Zeus forces state-
oriented programming of agent behavior. The graph, node, and
arc paradigm, especially when agent behavior is defined with state
charts, makes coding straightforward. Zeus keeps track of the
state information for graphs and nodes making monitoring easier.
Arcs in Zeus allow transitions to be defined that dictate which
state to process next. In FIPAOS, the programmer must provide
this mechanism. The meeting scheduling protocol was
implemented in JADE using a single behavior for each role and
did pot utilize the finite state machine behavior class. This

mechanism, evaluated during previous research, supports state
based programming of more limited scope than Zeus. State
machines are composed from a top-level state machine behavior
containing behaviors representing states that are connected by
named transitions. When one state finishes processing, a value is
returned naming the next transition to take, This infrastructure is
very similar to the ad hoc FIPAOS meeting scheduler.

5. CONCLUSION

Although further analysis is needed across both the domain of
problems that MAS frameworks attempt to solve and current
MAS framework implementations, FIPA, JADE, and Zeus offer
valuable case studies that second generation systems can leverage.
Each of these systems provides reusable architectural abstractions
while alsp sharing useful implementation patterns. While
incremental development is currently improving each of these
frameworks individually, the agent community at large would
benefit from reusing ideas across these platforms. Development of
MAS?2 hopes to combine the many successful technique used by
FIPAQS, JADE, and Zeus into a framework where agents can be
rapidly developed and deployed.

The strong points of FIPAOS are its well-placed use of Java
interfaces to separate agent subsystems, translation of incoming
messages and system occurrences into events for intermal
processing, an isolated scheduling policy for task execution, use
of a conversation object to enforce protocols and hold messages,
and a task generation tool for constructing tasks from protocol
definitions.

Most of the features of JADE don't stand out in comparison to
FIPAOS and Zeus. Iis main contributions are the gquality
conversation monitoring tools it provides. The Sniffer agent
responsible for drawing sequence diagrams of agent interaction is
valuable. The concept of programming agent behavior from a
heiarchy of support classes is useful. But those classes offered by
JADE, because they are primitive, don't offer programmers much
in terms of reusable code. The finite state machine class is also a
step in the right direction, though it is ightweight.

The Zeus state machine support and menitoring tools are well
developed. A simple refactoring of the coordination engine and
raising the API abstraction layer would make for a really nice
solution to state-oriented programming. The regular expression
message matching mechanism is also reusable. An additional
layer of method calls should replace cryptic regular expression
string making. Dynamic introduction of protocols into higher-
level functionality is a reusable architectural element.

6. ACKNOWLEDGMENTS
We give special thanks to our colleagues at Hewlett-Packard Labs
for their continued support, insights, and encouragement.

7. REFERENCES

[1] Basili, V.R. et al. Experimentation in Software Engineering.
IEEE Transactions on Software Engineering. July, 1986. p.
733-743

[2] Bellifemine, Fabio et al. JADE — A FIPA-Compliant Agent
Framework. Proceedings of Practical Application of
Intelligent Agents and Multi-Agents. April 1990. p. 97-108

[3] Booch, Grady. Object-oriented analysis and design with
applications. Benjamin/Cummings Pub. Co. 1994

[4] Collis, J. The Zeus Technical Manual. British Telecom, BT
Labs, 1999

[5] Foundation for Intelligent Physical Agents. FIPA
Communicative Act Specification, PCOO0O3TE, 2000

[6] hitp://fipa-os.sourceforge.net/features.htm
[7] uttp://herzberg.ca.sandia.gov/jess/docs/

{8] Jennings, Nicholas R. An Agent-Based Approach for
Building Complex Software Systems. Comm. ACM. April
2001. p. 3541

[9] Jennings, Nicholas R. On Agent-based Software
Engineering. Antificial Intelligence, vol 117, (no.2),
Elsevier, March 2000. p.277-96.

[10] Odell, James et al. Extending UML for Agents. AQIS
Workshop at AAAT 2000.

[11]Poslad, Stefan et al. The FIPA-OS agent platform: Open
Source for Open Standards. Nortel Networks. Manchester,
UK. April 2000.

[12] Shoham, Y. Agent-oriented programming. Artificial
Intelligence, vol.60, (no.1), March 1993. p.51-92.

[13] www.agentbuilder.com/AgentTools

