

Iteration Over Vectors in
Genetic Programming

Evan Kirshenbaum
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-327
December 17th , 2001*

E-mail: kirshenbaum@hpl.hp.com

genetic
programming,
machine
learning

This paper describes the results of using genetic programming
with bounded iteration constructs, which allow the
computational complexity of the solution to be an emergent
property. It is shown that such operators render the even-6-
parity problem trivial, and the results of experiments with
other, harder, problems that require 0(n) complexity are shown.
This method is contrasted with Automatically Defined
Iterators.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 1

Iteration Over Vectors in Genetic Programming

Evan Kirshenbaum

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

kirshenbaum@hpl.hp.com

Abstract

This paper describes the results of using genetic
programming with bounded iteration constructs,
which allow the computational complexity of the
solution to be an emergent property. It is shown
that such operators render the even-6-parity
problem trivial, and the results of experiments
with other, harder, problems that require O(n)
complexity are shown. This method is
contrasted with Automatically Defined Iterators.

1 BACKGROUND
This paper builds on the work presented in (Kirshenbaum
2000), which demonstrated that genetic programming
could be used to evolve programs that contained statically
scoped local variables. In this paper, we describe how the
presence of such variables makes it straightforward to add
new classes of operators which make it possible to easily
(and in some cases trivially) solve problems previously
recognized as difficult as well as to attack whole new
classes of problem.

One of the main limitations of traditional genetic
programming (Koza 1990, Banzhaf, et al. 1998) is that the
solutions that are discoverable are limited to the class of
algorithms known as constant time or O(1) algorithms,
those that make a single pass through the operators, with
no loops or recursion. This is an especially severe
limitation when the problem naturally presents its inputs
in terms of complex data structures such as lists, sets,
vectors, or arrays.

When attacking a problem known to require more
computational complexity, the typical approach is for the
experimenter to hand-craft a “harness” which, for
example, evaluates the candidate programs once for each
element of an input data sequence and averages the result.
The main problem with this is that it requires the
experimenter to assert the basic control flow beforehand
rather than allowing this to be discovered as an emergent
property of the run.

In other work, the higher complexity is encapsulated in
special purpose operators which perform specific
operations such as summing or finding the mean of a

vector of numbers. While adding such operators expands
the class of problem that can be addressed, the class is
still bounded by the particular operators chosen.

Another, more significant, move in the direction of
emergent computational complexity is demonstrated by
the automatically defined iterations, loops, and recursions
of (Koza, et al. 1999). We will have more to say about
the comparison of their mechanisms and ours in section
12.

In this paper, we present bounded iteration operators that
allow the discovery of programs with arbitrary poly-
nomial-time complexity. The fact that the iteration is
bounded means that we do not have to be concerned that
the presence of iteration will result in candidates
containing infinite loops, although the fact that the
programs can be arbitrarily (and therefore atrociously)
complex does have some performance implications,
which will be addressed in section 11.

The paper is organized as follows. In section 2 we detail
the default parameters used in the experiments reported in
the paper. In section 3 we present the first and more
general of the iteration operator schemata. In sections 4
and 5 we demonstrate the utility of this operator by
showing that it leads to trivial solutions of the even-6-
parity problem as well as higher-order and mixed-order
parity problems. In sections 6 and 8 we show ex-
perimental results for a more difficult Boolean problem,
the mixed-order majority problem, solvable with the more
general operator, but trivial with a somewhat more
specific operator described in section 7. In section 9 we
investigate the general applicability of these operators to
Boolean function discovery as well as the implications of
certain experiment parameters. In section 10 we present
results for a significantly more difficult problem: the
regression from a sequence of real numbers to the
statistical variance of the sequence.

In section 11 we discuss the performance considerations
as well as the actual setup used in the experiments
described. In section 12 we compare this mechanism with
a similar mechanism described in (Koza, et al. 1999). In
section 13 we describe other bounded iteration operators
that can also be easily added using static local variables,
and finally, in section 14 we present our conclusions.

 2

2 EXPERIMENT PARAMETERS
Unless stated otherwise, all experiments described in this
paper involved a single population of 5,000 candidate
programs evolving in lock-step generations for a max-
imum of 25 reproduced generations. Experiments con-
sisted of 25 runs. Effort numbers given are those required
to achieve 99% confidence of finding a solution.

Candidates were chosen to reproduce using tournament
selection with a tournament size of five. For Boolean
problems, the fitness was taken to be the number of
mismatches. For arithmetic problems, the fitness was the
mean of the relative error. 80% of the children were
produced by uniform single-point crossover, 8% by
straight reproduction, 8% by point mutation (the
replacement of the operator of a randomly selected node
by another operator type-compatible with the actual
arguments and required result type), and 4% by constant
drift (Boolean flipping or integer nudging ±1).
Traditional mutation was not used.

The system used in the experiments implements strongly-
typed GP (Montana 1995) with hierarchical types. For
problems involving Boolean operators, and, or, nand,
nor, and not were used, as well as the Boolean
constants true and false. For problems involving
arithmetic operators, addition, subtraction, multiplication,
and division (with 0 1x =) over the real numbers, as well
as the integer constants from –10 to 10. When both sets
are used, greater-than and less-than over reals are added
as well as a real-valued if.

For the initial generation, the trees in the population are
generated with a ramped target depth from 4 to 7, with
two thirds of the trees containing at least one longest path
that extends exactly to the target level and the remaining
third bounded by the target level.

For each problem (except even-6-parity) 1000 random
fitness cases were generated with no noise. For each run,
100 cases were randomly selected as training cases and (a
non-overlapping) 100 were randomly selected as
validation cases. Each candidate was presented with the
first twenty training cases, and as long as a candidate
scored at least 90% hits on presented cases, new cases
were presented in batches of 10 until the full complement
of 100 training cases was seen. For real-valued problems,
a hit is defined as a value within 610− of the target.

Finally, the tree generation algorithm was biased 4:1
toward selecting non-leaf operators and 5:1 toward
selecting variables, when possible. The importance of
these parameters will be discussed in section 9.

3 THE ACCUM OPERATOR SCHEMA

The first iteration operator schema1 we describe is a
generic “accumulate”:

1 Following (Kirshenbaum 2000), accum is an operator schema while
“the accum binding B17 and R12” is an actual operator.

(accum (elt-var over vector)
 (result-var from initial)
 body)

Such a form takes three subtrees. The first is evaluated
and returns a vector. The second is evaluated and the
value it returns is bound to the result variable as its initial
value. Then the third is repeatedly evaluated, once per
element of the vector argument. During each evaluation,
the element variable is bound to a specific element of the
vector, and both variables are available for use within the
body. After each evaluation, the result returned by the
body is stored as the new value of the result variable, and
when the vector is exhausted, the value of the result
variable is returned as the value of the form as a whole.

As an example

(accum (R1 over V2)
 (R2 from –infinity)
 (if (< R1 R2) R2 R1))

selects the maximum value of the vector V2 while

(accum (R15 over V1) (R42 from 0)
 (+ R42 R15))

computes the sum of V1. Note that these forms can nest,
so, for example

(/ (accum (R1 over V1) (R2 from 0)
 (+ R2
 (accum (R3 over V2)
 (R4 from 0)
 (if (< R1 R3)
 (+ R4 1)
 R4))))
 (accum (R5 over V1) (R6 from 0)
 (+ R6 1)))

computes the average number of elements of V2 that are
greater than an element of V1. The inner loop counts up
the number of elements greater than the current element
of the outer loop, the outer loop sums these numbers, and
the result is divided by the value of the third loop, which
simply computes the length of the V1.

4 PROBLEM 1A: EVEN-6-PARITY
One of the classic problems in machine learning is to
discover a model which detects, given a sequence of
Boolean arguments whether the sequence contains an
even number of true values. In the context of genetic
programming, it was first explored in (Koza 1992), which
demonstrated that the GP approach is capable of solving
the problem, at least for small numbers of arguments.
Later works (Koza 1994a, Koza 1994b, Koza et al. 1999)
demonstrated that with extensions to the basic GP
paradigm, the problem could be solved more efficiently.

Using only the canonical GP paradigm, Koza (1994a) was
able to solve the parity problem with up to five
arguments. The even-6-parity problem, however, re-
mained out of reach, and an optimistic minimum estimate

 3

of the effort that would be needed to find such a solution
was given as 70,176,000 candidate evaluations.

In the same work, Koza showed that with the addition of
automatically-defined functions, and in particular, with a
specific architecture of two ADFs each taking five
arguments, the problem could be solved with an expected
effort of 1,344,000 candidate evaluations.

In (Koza et al. 1999), the authors recast the problem from
one involving six input parameters to one taking a single
vector of six Boolean values and applied their GPPS 1.0
to it. They showed that with the availability of auto-
matically-defined functions, recursions, and loops, the
problem could be solved with an expected effort of
31,250,000 candidate evaluations.2

When we added an operator schema to walk a Boolean
vector and return a Boolean value to the operator set, the
results were astounding. In 25 runs,3 every single run
found a solution by generation 3, and 72% of the runs
(18) found a solution in the initial random generation.
The problem is therefore guessable with 99% confidence
in a population of 20,000, and doing so is, in fact, an
optimal strategy (equivalent in cost to a single run to
generation 3).

Clearly, something interesting is going on here. To see
what it is, consider an unsimplified, randomly-generated
correct solution:

(nor
 (and (accum (B3 over Data)
 (B4 from FALSE)
 (and (or B3 B4)
 (nand B3 B4)))
 (and (and (accum (B5 over Data)
 (B1 from TRUE)
 TRUE)
 (nand FALSE TRUE))
 TRUE))
 FALSE)

The second loop simply computes the constant value
TRUE, and the logic of the rest of the constant operations
render the entire form equal to the complement of the first
loop, which must, therefore, implement odd-6-parity. If
we look at that loop we see that its body computes the
odd-2-parity (XOR) function and that by starting with a
value of false, the loop as a whole does, indeed, compute
odd-6-parity when Data is a six-element vector.

What has happened is that a very difficult search has been
decomposed into two extremely simple searches. On the
one hand, the basic behavioral structure is a single pass
over the data, while on the other hand, the function to be
computed at each iteration is just even-2-parity. Genetic
programming can discover solutions to these two prob-

2They also show the application of GP using architecture-altering
operators to parity problems, but we were unable to find a number for
the even-6-parity problem. Presumably it would be higher than the
figure of 1,789,500 given for the even-5-parity problem.
3 Using all 64 cases as training cases.

lems in parallel and combine them into a complete
solution to the more difficult problem.

5 PROBLEM 1B: GENERALIZATIONS
One of the most intriguing things to note about this result
is that nowhere does it depend on the fact that the input is
a vector of precisely six elements. In fact, the same
method will serve to solve even-parity problems of any
size. In 25 runs of the even-15-parity problem, results
were found in 23 of the runs by generation 2, with 80%
(20) having solutions in the initial random generation,
rendering the problem guessable in a population of
15,000.4 Note that even though there are 32,000 possible
cases for this problem, every asserted solution to the 100
training cases was a perfect solution to the 100 validation
cases. In fact, every solution that correctly solved the
initially-proffered 20 training cases also correctly solved
the remainder of the 100 training cases and the 100
validation cases.

That the approach scales should not be a surprise since as
far as the candidate solutions are concerned, it is the same
problem. The only thing that will change is the absolute
amount of time it takes to walk the different sized vectors.
Indeed, with the input given as a vector, the problem can
be cast as a general “even-parity” problem, with fitness
cases containing vectors of varying length.

In 25 runs in which the input vectors varied from length
seven to length 20, solutions were found in 22 runs with
32% (8) solutions in the initial random generation and the
latest found in generation 12. The optimal strategy is to
guess in a population of 60,000.

This difference in performance is somewhat perplexing.
On the one hand, the increase in complexity is under-
standable, as there is now more information contained in
each fitness case: the length of the vector. Indeed, some
of the candidate solutions appear to be considering
whether the vector has an even or odd number of elements
by including code similar to

(accum (B1 over Data)
 (B2 from TRUE)
 (not B2))

and some candidates appear to be attempting to solve the
problem separately for even- and odd-length fitness cases.

On the other hand, though, the drop in performance is
surprising because, since a solution to the earlier
problems will be a solution to this one, it should be just as
easy to guess an answer. It is therefore surprising that the
number of correctly guessed solutions has dropped from
72–80% down to 32%. This is likely simply a statistical
anomaly, but more work needs to be done to confirm
this.5

4 The two runs which did not yield solutions will be discussed in
section 9.
5 In other experiments on the same data (with different parameters),
solutions were guessed in 44% (11) and 68% (17) of the 25 runs.

 4

When cast as vector problems, parity problems can also
be solved using arithmetic, rather than Boolean, operators.
Using the arithmetic operators of addition, subtraction,
multiplication, and division, integer constants ranging
from –10 to 10, a real-valued if, and an accum that
ranges over Boolean vectors and returns reals, solutions
were found in all 25 runs, the last in generation 10, with
64% (16) of the runs guessing the solution in the initial
random generation. The optimal strategy is to guess in a
population of size 25,000.

An example of such an arithmetic solution is

(< (- (/ 5 9) –4)
 (accum (B7 over Data)
 (R4 from 4)
 (* (- (if B7 –9 1) (/ 6 10))
 (- (accum (B10 over Data)
 (R9 from –7)
 R4)
 (/ R4 R4)))))

The loop here starts with a value of four and multiplies by
a negative number every time it sees a true value. At the
end it checks the sign. While this is not a method for
computing parity that would normally occur to a pro-
grammer, it is completely correct and one of the most
frequently discovered in our runs.

With both Boolean and arithmetic operators added to the
function set, solutions were found in 24 of 25 runs, the
latest in generation 17 and 36% (9) in the initial random
population. The optimal strategy is to guess in a pop-
ulation of size 55,000. Of the 24 successful runs, only
one solved the problem primarily as a Boolean function.

6 PROBLEM 2A: MAJORITY
A somewhat more difficult problem is to compute, given
a collection of Boolean values, whether or not a majority
of the values are true.

In the first experiment using this problem, we ran 25 runs
with fitness cases ranging from eight to 20 elements and
with arithmetic operators and accum. Solutions (all
validated) were found in 14 runs, the earliest in generation
5, and the latest in generation 25. The optimal strategy is
to run eight runs to generation 16, with a 40% probability
of success in each run, for a total of 680,000 evaluations.

7 THE REDUCE OPERATOR SCHEMA
TEMPLATE

While accum is a very general operator schema and
avoids the introduction of experimenter bias, we found
that it was often worthwhile to help the system out by
adding in iteration schemata that encapsulated behavior
that is common in human-written programs. In particular,
the higher-order operator schema

(reduce<op,init> (var over vec)
 body)

is a big help. This form is roughly equivalent to

(accum (var over vec)
 (result from init)
 (op result body))

except that the result variable is not visible in the body.
The actual schemata introduced into an experimental run
will instantiate the two parameters. Using this templated
schema, one can build many useful control operators. For
example, reduce<+,0> can be thought of as sum,
reduce<*,1> is product, reduce<min,∞ > finds
the minimum term, and reduce<and,true> returns
true if all terms are true.

Note that unlike the superficially-similar special-purpose
operators discussed in section 1, these operators still
contain bodies which can be arbitrarily complex functions
of their control variables. So, for instance

(sum (R1 over V1)
 (* R1 R1))

computes the sum of the squares of the elements of a
vector. The combining operator is folded into the
iteration, but the terms being combined are still subject to
the evolutionary process. Note also that, like accum,
these forms can nest, with inner loops having access to
the control variables from enclosing loops. The example
from section 3 could be written

(/ (sum (R1 over V1)
 (sum (R3 over V2)
 (if (< R1 R3) 1 0)))
 (sum (R5 over V1) 1))

Finally, since the term is an arbitrary expression, the
values in the vector need not be of the type required by
the combining operator, so forms like

(all (R1 over V1)
 (> R1 0))

can evolve.

8 PROBLEM 2B: MAJORITY WITH SUM

With accum replaced by sum, the majority problem
becomes trivial, with solutions found in the initial
population of 23 of 25 runs and the remaining two runs
finding the solution in the next generation. The canonical
solution is for the term to be n when the element of the
vector is true and –n when it is false, for some number n.
This will result in a sum with the same sign as n just in
case the number of true values exceeds the number of
false values.

9 DISCUSSION

9.1 POWER OF THE APPROACH

Before continuing, it is worthwhile to note that, while the
addition of iteration operators appears to make the
discovery of some otherwise difficult-to-find Boolean

 5

functions trivial, it is not a panacea. Clearly, one cannot
hope to discover all

6 19(2)2 1.9 10≈ × six-argument
Boolean functions with an expected effort of a few tens of
thousands of evaluations. So there must be something
about the particular functions investigated that makes
them particularly amenable to this approach.

The most likely answer is that these functions are
totalistic—the value of the function only depends on the
number of values that are true and the size of the input,
rather than the specific pattern of values. For an input
vector of length n, there are only 12n+ possible totalistic
functions, which is a substantially smaller number. For

6n = , this is 128, so under this analysis it becomes
unsurprising that all (or substantially all) of the possible
totalistic functions will be represented in a population of
5,000 functions, most of which will, of course, not be
totalistic.

There are two potential problems with this line of
reasoning. First, even the number of totalistic functions
grows quickly. For 20n = , there are 2,097,152 of them.
Second, one would expect that one of the most common
ways of solving a problem would involve counting the
number of true values in the input, especially as this can
be trivially done. Indeed, the most likely way that a
human programmer would solve the majority problem
would be something like

(> (* 2 (sum (B1 over Data)
 (if B1 1 0)))
 (sum (B2 over Data) 1))

but no solution even remotely taking this form was
discovered in any run.

It is probably also not wise to jump to the conclusion that
only totalistic functions are easily solvable. The fact that,
for example, the solution to the n-multiplexer problem
can be stated simply as

(element Data
 (accum (B1 over Addr) (R1 from 0)
 (+ (* 2 R1) (if B1 1 0))))

gives us hope that other useful non-totalistic functions can
also be easily discovered. Indeed, it may well turn out
that the set of “useful” Boolean functions is largely
contained within the set of easily discoverable functions,
if only because the useful functions are typically those we
can simply characterize.

This brings up what can be seen as another advantage of
this approach. By altering the search landscape so that
useful or interesting functions are simpler to represent and
discover than idiosyncratic ones, the useful functions are
discovered more quickly, and the tendency to overfit the
particular fitness cases is reduced considerably. One of
the biggest objections to early work on evolving Boolean
functions is that they can be characterized as little more
than “exercises in overfitting the data,” as progress is
made by repeatedly solving “one more case”. By making
the generalized cases so much easier to find, there isn’t
time to get stuck in such ruts before either a solution is

found or you have passed the point at which the optimal
strategy is to restart the experiment.

9.2 UNSUCCESSFUL RUNS

While almost all of the “trivial” runs above produced
solutions, not all of them did, and it is instructive to look
at some of those that did not. In the 15-parity experiment,
there were two unsuccessful runs. In both of them the
best-of-generation individual from the initial random
population was a one-point solution. In run 10, true
solved 13 of its initial 20 fitness cases, while in run 24,
false solved 12 of its.

In these experiments structural complexity was only taken
into account as a tie-breaker, but that appeared to be
enough in these cases. This effect can probably be
mitigated by either providing a larger number of training
cases (thereby making it less likely that they will be
biased one way or the other), ensuring that the training
cases are drawn in a balanced fashion, or shuffling the
training cases each generation or before each candidate
evaluation.

9.3 BIAS PARAMETERS

As mentioned in section 2, two parameters are used to
bias the initial tree generation toward choosing non-
terminals over terminals and choosing variables over
other terminals. For all the runs described above, these
parameters were left at their canonical values of 4:1 and
5:1 respectively. While we do not present a full
sensitivity analysis for these parameters, we did do one
even-6-parity experiment with the biases turned off (set to
1:1).

The results are interesting. Only 24 of 25 runs get
solutions by generation 25, with the last occurring in
generation 20. More importantly, not a single solution
was found in an initial population. The optimal solution,
three runs to generation nine, requires an estimated effort
of 150,000 evaluations. Recall that in section 4 we
showed that with the bias, all runs were successful by
generation three, and 72% found solutions in the initial
population, with an estimated effort of 20,000
evaluations. These parameters are clearly important, and
more work needs to be done to determine their optimal
values.

10 PROBLEM 3: VARIANCE
It could easily be argued based on the above presentation
that, while the addition of iteration operators may indeed
make some problems trivial to solve, it does not actually
contribute much to the paradigm as a whole, as little
actual evolution is required, and we may simply be
“getting lucky” by having it be so likely that there is
either a solution or a candidate near to the solution in the
initial population.

 6

To address these concerns, we ran an experiment to
discover a solution to a significantly harder problem:
regressing from a vector of real numbers to the statistical
variance of the values. The training cases ranged in size
from five to ten elements and each element was a real
number (to four decimal places) between –10 and 10.
The target was computed as6

where n is the number of elements. For this experiment,
the arithmetic operators and sum were available as a
size operator that takes a vector and returns the length
of the vector as an integer. As this is a more complex
problem, the maximum number of generations was raised
to fifty and each candidate was initially presented with
fifty training cases.

We ran 20 runs of this experiment, and solutions were
found in half (10) of them7. That the problem is difficult
is attested by the fact that the earliest solution found was
not until generation 16 and the latest was in generation
46. The optimal strategy is to run 11 runs to generation
28, by which point 35% of the runs are successful, for an
expected effort of 1,595,000 evaluations. Things look
even better when the unsuccessful runs are examined in
detail:

Run Training
Fitness

Validation
Fitness

Best-of-Run
Generation

Initial
Validation

Fitness8

2 0.036% 0.036% 49 16.7%

4 1.8% 3.0% 50 45.7%

6 5.5% 10.5% 39 24.1%

8 0.60% 2.5% 49 11.2%

9 6.1% 9.7% 50 37.1%

11 1.9% 2.3% 47 16.4%

13 2.2% 3.5% 50 24.5%

15 0.41% 0.48% 49 31.5%

18 0.042% 0.044% 50 12.2%

20 0.16% 0.21% 49 27.4%

6 Yes, this is incorrect. The second term should be subtracted rather than
added. We discovered while simplifying the solutions that there had
been a bug in the fitness case generator. This should not invalidate the
results, and, indeed, it is heartening to know that the process found what
we actually asked for rather than what we wanted.
7 One of the solutions was not perfect, resulting in hits on only 99 of the
100 validation cases. The mean relative error on the validation cases
was 0.00036%.
8 The fitness of the best candidate of the random generation on the
validation cases.

In all of these runs, both the training fitness and the
validation fitness improved substantially, and there is no
indication that the problem was overfitting the particular
training cases. Four of the unsuccessful runs had the
remaining error on the validation cases less than 1%, and
in two cases it was less than 0.1%, and in nine of the ten
runs the best candidate seen was found in the last four
generations, implying that the runs were still making
progress and that it may simply be that fifty generations is
too small of a cut-off for this problem. Only one of the
twenty runs, number 6, appeared to have gotten stuck,
having gone twelve generations without improvement and
having the highest remaining error on both training and
validation sets.

One particularly nice solution was found in generation 28
of run 3:

(let ((R2 (size Data)))
 (let
 ((R2 (- (let ((R5 (sum (R2 over Data))
 R2)))
 (+ 0 (/ (* R5 R5) R2)))
 2)))
 (/ (+ (+ 4 0)
 (- (+ R2 (sum (R1 over Data)
 (* R1 R1)))
 (- (+ 1 2) 1)))
 (- (size Data) 1))))

The elements of the vector are summed in the first loop
and the let-binding, introduced by the crossover
described in (Kirshenbaum 2000), binds this value to R5.
The underlined portion of the code uses this variable
twice, as well as R2, which is bound to the length of the
vector, to compute the square of the sum divided by the
length. The second loop computes the sum of the squares
of the elements, and the resulting logic adds the two
(along with constants that cancel out) and divides the
result by 1n − to obtain a perfect solution.

11 PERFORMANCE CONSIDERATIONS
The experiments in this paper were run on a 700MHz
Hewlett-Packard Omnibook 6000 running Windows 2000
and using GPLab, a flexible framework for genetic pro-
gramming developed and used for data mining research at
Hewlett-Packard Laboratories. The time taken to evaluate
the population ranged from approximately 3 seconds/
generation to about 55 seconds/generation. Variance runs
tended to start at about 15 seconds/generation and grow to
about 40 seconds/generation.

The flip side of allowing the computational complexity to
become an emergent property is that different candidate
programs will try out different strategies, and some of the
attempts will almost certainly be horrendously complex.

Since the iteration operators we introduce are bounded in
the number of iterations by the length of the vectors they
iterate over, we do not have to worry about a candidate
going into an infinite loop, but it is quite reasonable to

2 2()

(1)

i i
i i

n x x

n n

+

−

∑ ∑

 7

expect that we will encounter programs that will contain,
say, five sequentially nested loops, for a computational
complexity of 5()O n . If left to themselves, such
candidates would make runs take an unacceptably long
time, so we do two things to reduce their impact.

The first thing we do is to impose a computation budget
on each fitness case evaluation. This is simply a counter
that counts down with every operator invocation. If the
counter hits zero, the candidate is considered to be
infinitely bad. For the experiments described in this
paper, the computation budget was set to 500 operations.
This number is somewhat arbitrary, and further work
needs to be done to learn how to tell if the budget is set
correctly. Note that the budget is reset for each fitness
case, although it may be worthwhile to experiment with
allowing some or all of the unused budget from one
fitness case to carry over to the next to allow a candidate
to be occasionally computationally complex.

In addition to limiting the complexity, we also reduce it
by noting that certain computation is unnecessary. For
the accum operator schema, we note that if the result
variable is not needed in the computation of the value of
the body, then the results of all iterations before the last
are discarded and the initial value of the result variable
also need not be computed. In the absence of side-effects
in the body, this means that the loop can be reduced to a
single execution of the body, with the element variable
bound to the last element of the vector.9 If the element
variable is also unneeded, then the vector argument also
need not be evaluated.

For the sum operator schema, a similar optimization notes
that if the element variable is not required to compute the
value of the term, then the term need only be computed
once and the value of the sum is simply this value
multiplied by the length of the vector.

The result of these optimizations is that many syn-
tactically-present loops are skipped entirely. For instance,
in

(accum (B1 over V2)
 (R1 from (sum (R2 over V2)
 (sum (R1 over V3)
 (* R1 R2)))
 17)

R1 is not needed to determine the value of the outer loop,
and so its complex initialization is not performed. Other
loops have their complexity simplified. In

(sum (R1 over V)
 (sum (R2 over V) R1))

the apparent complexity is 2()O n , but the actual
complexity is only O(n) since the body of the inner loop
does not refer to R2.

9 If there are side-effects in the body, it must be executed for side-effects
for each of the iterations before the last. Since we keep separate track of
variables needed for value and side-effect, this can often be considerably
cheaper than fully evaluating the body.

The advantage of such optimizations for evolutionary
methods is that it means that an otherwise-good program
is not penalized because it contains within it a complex
calculation whose value would not have contributed to the
final value.

In the current implementation, the optimizations are
detected at the time the tree is created and stored as
annotations on the nodes.

With these optimizations in place, in the variance
experiment we found that between 8% and 12% of the
candidates in the random generation tended to exceed
their budget in the initial random population, essentially
removing them from the breeding pool. This number
invariably dropped to approximately 1% for the next four
generations and then began to rise again, typically
remaining between 2% and 15% for the remainder of the
run. Interestingly, the one “bad” run was the only one in
which the number exhausting their budget ever exceeded
20%, and the number was in fact growing to the end, with
1,102 of the 5,000 candidates doing so. On the other
hand, a high number does not apparently necessarily
imply problems, as seen by the fact that in the generation
before finding a solution, the number exceeding budget
was as high as 16.5% and (in that run) had been growing
steadily from a low of 1% for 28 generations.

12 COMPARISON WITH
AUTOMATICALLY DEFINED
ITERATIONS

The closest mechanism in the genetic programming
literature to the iteration schemata described in this paper
are the automatically defined iterators (ADIs) of (Koza et
al. 1999). Like iteration schemata, ADIs perform single-
pass iteration over data structures executing terms that are
arbitrary expressions built up under evolutionary pressure.
Also like iteration schemata, any candidate program may
contain an arbitrary number of ADIs.

The principal advantages of iteration schemata over
ADIs10 are

1. All ADIs iterate over a single data structure fixed
ahead of time by the experimenter. With
iteration schemata the data structure11 is an
argument to the iterator, computable by an
arbitrary expression. This allows the program to
evolve to select or even create the structure to
use for each loop, with nested loops iterating
over different structures.

2. With iteration schemata, loops may syntactically
nest, facilitating their movement as a unit during
crossover. While one ADI may refer to another,

10 As defined. The actual implementation used in (Koza et al. 1999) was
a simplified version which did not allow parameters or nesting, limiting
the complexity of evolvable programs to O(n).
11 Or, potentially, structures, given schemata that walk in lockstep down
multiple sequences.

 8

achieving the behavior of nested loops, they are
in different parts of the trees and move
independently, so it is likely difficult for the
importance of the coupling to be preserved and
communicated by means of crossover once it is
discovered.

3. With iteration schemata, inner loops may see and
even modify the control variables from enclosing
loops. ADIs have arguments, which allow
information to be passed from outer loops to
inner loops, but (1) the number of such
arguments is fixed at ADI creation time, and
(2) the arguments are passed by value, making it
difficult for the inner loop to modify the outer.

4. With iteration schemata, the iterators are part of
the initial random population, and so there is a
range of computational complexity from the very
beginning. ADIs are only created by abstraction
from trees already present.

The principal advantage of ADIs would appear to be that
they are named constructs. This means that an ADI that
would be useful more than once will be easier to reuse
once discovered. It also means that having named a loop,
different candidates can compete to decide what its
implementation should be.

13 FUTURE WORK

13.1 OTHER ITERATION OPERATORS

With support for local variables and data structures in
GPLab, the addition of new iteration schemata is
reasonably trivial. Functional languages such as Scheme
and APL provide a rich source of iterators that human
programmers have found useful, and it will be interesting
to see how these fare in the genetic programming
environment. Besides specific operators, we intend to try
out (1) operators that only iterate over part of a sequence,
(2) operators that create new sequences by mapping or
selecting values from a sequence, (3) operators that iterate
over multiple structures simultaneously, and (4)
generalized reduce taking its combinator as a (function-
valued) argument,

13.2 OTHER PROBLEMS

Genetic programming with iteration schemata appears to
work well for some types of problem, but we have not yet
characterized what this class of problem is. It will be
instructive to try it out on other problems, such as non-
totalistic Boolean functions or problems known to require
superlinear complexity.

13.3 OPTIMIZATION

The ad hoc optimizations currently implemented are
definitely helpful, but a more principled approach could

almost certainly discover other computation that can be
avoided.

13.4 UNDERSTANDING PARAMETERS

As pointed out in sections 9.3 and 11, there are several
parameters whose values appear to influence the
performance of the system, but this influence has not yet
been adequately characterized.

14 CONCLUSIONS
The addition of iteration schemata to genetic pro-
gramming makes it possible for the computational
complexity of the solution to be an emergent property just
as are the size and particular configuration of operators.
Such operators can render otherwise difficult operators
trivial and make new classes of problem solvable.

References

Banzhaf, Wolfgang; Nordin, Peter; Keller, Robert E.; and
Francone, Frank D. 1998. Genetic Programming: An
Introduction. San Francisco, CA: Morgan Kaufmann.

Kirshenbaum, Evan. 2000. Genetic Programming with
Statically Scoped Local Variables. In David Whitley,
et al., (eds.) GECCO 2000: Proceedings of the
Genetic and Evolutionary Computation Conference,
July 10–12, 2000, Las Vegas, Nevada. San
Francisco, CA: Morgan Kaufman Publishers, pp.
459–468.

Koza, John R. 1990. Genetic Programming: A Paradigm
for Genetically Breeding Populations of Computer
Programs to Solve Problems. Stanford University
Computer Science Department Technical Report
STAN-CS-90-1314. June, 1990.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA, MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Architecture-Altering Operations
for Evolving the Architecture of a Multi-Part
Program in Genetic Programming. Stanford Uni-
versity Computer Science Department technical
report STAN-TR-CS-94-1528. October 21, 1994

Koza, John R. ; Bennett, Forrest H, III; Andre, David; and
Keane, Martin A. 1999. Genetic Programming III:
Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Langdon, W. B. 1996, Using data structures within
genetic programming. In John R. Koza, et al., (eds.)
Genetic Programming 1996: Proc. of the First
Annual Conference, July 28–31, 1996, Stanford Uni-
versity. Cambridge, MA: MIT Press, pp. 141–149.

Montana, David J. 1995. Strongly typed genetic
programming. Evolutionary Computation 3(2):199–
230.

