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Abstract 
 

 

This paper describes the results of using genetic 
programming with bounded iteration constructs, 
which allow the computational complexity of the 
solution to be an emergent property.  It is shown 
that such operators render the even-6-parity 
problem trivial, and the results of experiments 
with  other, harder, problems that require O(n) 
complexity are shown.  This method is 
contrasted with Automatically Defined Iterators. 

1 BACKGROUND 
This paper builds on the work presented in (Kirshenbaum 
2000), which demonstrated that genetic programming 
could be used to evolve programs that contained statically 
scoped local variables.  In this paper, we describe how the 
presence of such variables makes it straightforward to add 
new classes of operators which make it possible to easily 
(and in some cases trivially) solve problems previously 
recognized as difficult as well as to attack whole new 
classes of problem. 

One of the main limitations of traditional genetic 
programming (Koza 1990, Banzhaf, et al. 1998) is that the 
solutions that are discoverable are limited to the class of 
algorithms known as constant time or O(1) algorithms, 
those that make a single pass through the operators, with 
no loops or recursion.  This is an especially severe 
limitation when the problem naturally presents its inputs 
in terms of complex data structures such as lists, sets, 
vectors, or arrays. 

When attacking a problem known to require more 
computational complexity, the typical approach is for the 
experimenter to hand-craft a “harness” which, for 
example, evaluates the candidate programs once for each 
element of an input data sequence and averages the result.  
The main problem with this is that it requires the 
experimenter to assert the basic control flow beforehand 
rather than allowing this to be discovered as an emergent 
property of the run. 

In other work, the higher complexity is encapsulated in 
special purpose operators which perform specific 
operations such as summing or finding the mean of a 

vector of numbers.  While adding such operators expands 
the class of problem that can be addressed, the class is 
still bounded by the particular operators chosen. 

Another, more significant, move in the direction of 
emergent computational complexity is demonstrated by 
the automatically defined iterations, loops, and recursions 
of (Koza, et al. 1999).  We will have more to say about 
the comparison of their mechanisms and ours in section 
12. 

In this paper, we present bounded iteration operators that 
allow the discovery of programs with arbitrary poly-
nomial-time complexity.  The fact that the iteration is 
bounded means that we do not have to be concerned that 
the presence of iteration will result in candidates 
containing infinite loops, although the fact that the 
programs can be arbitrarily (and therefore atrociously) 
complex does have some performance implications, 
which will be addressed in section 11. 

The paper is organized as follows.  In section 2 we detail 
the default parameters used in the experiments reported in 
the paper.  In section 3 we present the first and more 
general of the iteration operator schemata.  In sections 4 
and 5 we demonstrate the utility of this operator by 
showing that it leads to trivial solutions of the even-6-
parity problem as well as higher-order and mixed-order 
parity problems.  In sections 6 and 8 we show ex-
perimental results for a more difficult Boolean problem, 
the mixed-order majority problem, solvable with the more 
general operator, but trivial with a somewhat more 
specific operator described in section 7.  In section 9 we 
investigate the general applicability of these operators to 
Boolean function discovery as well as the implications of 
certain experiment parameters.  In section 10 we present 
results for a significantly more difficult problem: the 
regression from a sequence of real numbers to the 
statistical variance of the sequence. 

In section 11 we discuss the performance considerations 
as well as the actual setup used in the experiments 
described.  In section 12 we compare this mechanism with 
a similar mechanism described in (Koza, et al. 1999).  In 
section 13 we describe other bounded iteration operators 
that can also be easily added using static local variables, 
and finally, in section 14 we present our conclusions. 
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2 EXPERIMENT PARAMETERS 
Unless stated otherwise, all experiments described in this 
paper involved a single population of 5,000 candidate 
programs evolving in lock-step generations for a max-
imum of 25 reproduced generations.  Experiments con-
sisted of 25 runs.  Effort numbers given are those required 
to achieve 99% confidence of finding a solution. 

Candidates were chosen to reproduce using tournament 
selection with a tournament size of five.  For Boolean 
problems, the fitness was taken to be the number of 
mismatches.  For arithmetic problems, the fitness was the 
mean of the relative error.  80% of the children were 
produced by uniform single-point crossover, 8% by 
straight reproduction, 8% by point mutation (the 
replacement of the operator of a randomly selected node 
by another operator type-compatible with the actual 
arguments and required result type), and 4% by constant 
drift (Boolean flipping or integer nudging ±1).  
Traditional mutation was not used. 

The system used in the experiments implements strongly-
typed GP (Montana 1995) with hierarchical types.  For 
problems involving Boolean operators, and, or, nand, 
nor, and not were used, as well as the Boolean 
constants true and false.  For problems involving 
arithmetic operators, addition, subtraction, multiplication, 
and division (with 0 1x = ) over the real numbers, as well 
as the integer constants from –10 to 10.  When both sets 
are used, greater-than and less-than over reals are added 
as well as a real-valued if. 

For the initial generation, the trees in the population are 
generated with a ramped target depth from 4 to 7, with 
two thirds of the trees containing at least one longest path 
that extends exactly to the target level and the remaining 
third bounded by the target level. 

For each problem (except even-6-parity) 1000 random 
fitness cases were generated with no noise.  For each run, 
100 cases were randomly selected as training cases and (a 
non-overlapping) 100 were randomly selected as 
validation cases. Each candidate was presented with the 
first twenty training cases, and as long as a candidate 
scored at least 90% hits on presented cases, new cases 
were presented in batches of 10 until the full complement 
of 100 training cases was seen.  For real-valued problems, 
a hit is defined as a value within 610−  of the target. 

Finally, the tree generation algorithm was biased 4:1 
toward selecting non-leaf operators and 5:1 toward 
selecting variables, when possible.  The importance of 
these parameters will be discussed in section 9. 

3 THE ACCUM OPERATOR SCHEMA 

The first iteration operator schema1 we describe is a 
generic “accumulate”: 

                                                           
1 Following (Kirshenbaum 2000), accum is an operator schema while 
“the accum binding B17 and R12” is an actual operator. 

(accum (elt-var over vector) 
       (result-var from initial) 
  body) 

Such a form takes three subtrees.  The first is evaluated 
and returns a vector.  The second is evaluated and the 
value it returns is bound to the result variable as its initial 
value.  Then the third is repeatedly evaluated, once per 
element of the vector argument.  During each evaluation, 
the element variable is bound to a specific element of the 
vector, and both variables are available for use within the 
body.  After each evaluation, the result returned by the 
body is stored as the new value of the result variable, and 
when the vector is exhausted, the value of the result 
variable is returned as the value of the form  as a whole. 

As an example 

(accum (R1 over V2) 
       (R2 from –infinity) 
  (if (< R1 R2) R2 R1)) 

selects the maximum value of the vector V2 while 

(accum (R15 over V1) (R42 from 0) 
  (+ R42 R15)) 

computes the sum of  V1.  Note that these forms can nest, 
so, for example 

(/ (accum (R1 over V1) (R2 from 0) 
     (+ R2 
        (accum (R3 over V2) 
               (R4 from 0) 
          (if (< R1 R3) 
            (+ R4 1) 
            R4)))) 
   (accum (R5 over V1) (R6 from 0) 
     (+ R6 1))) 

computes the average number of elements of V2 that are 
greater than an element of V1.  The inner loop counts up 
the number of elements greater than the current element 
of the outer loop, the outer loop sums these numbers, and 
the result is divided by the value of the third loop, which 
simply computes the length of the V1. 

4 PROBLEM 1A: EVEN-6-PARITY 
One of the classic problems in machine learning is to 
discover a model which detects, given a sequence of 
Boolean arguments whether the sequence contains an 
even number of true values.  In the context of genetic 
programming, it was first explored in (Koza 1992), which 
demonstrated that the GP approach is capable of solving 
the problem, at least for small numbers of arguments.  
Later works (Koza 1994a, Koza 1994b, Koza et al. 1999) 
demonstrated that with extensions to the basic GP 
paradigm, the problem could be solved more efficiently. 

Using only the canonical GP paradigm, Koza (1994a) was 
able to solve the parity problem with up to five 
arguments.  The even-6-parity problem, however, re-
mained out of reach, and an optimistic minimum estimate 
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of the effort that would be needed to find such a solution 
was given as 70,176,000 candidate evaluations.  

In the same work, Koza showed that with the addition of 
automatically-defined functions, and in particular, with a 
specific architecture of two ADFs each taking five 
arguments, the problem could be solved with an expected 
effort of 1,344,000 candidate evaluations. 

In (Koza et al. 1999), the authors recast the problem from 
one involving six input parameters to one taking a single 
vector of six Boolean values and applied their GPPS 1.0 
to it.  They showed that with the availability of auto-
matically-defined functions, recursions, and loops, the 
problem could be solved with an expected effort of 
31,250,000 candidate evaluations.2 

When we added an operator schema to walk a Boolean 
vector and return a Boolean value to the operator set, the 
results were astounding.  In 25 runs,3 every single run 
found a solution by generation 3, and 72% of the runs 
(18) found a solution in the initial random generation.  
The problem is therefore guessable with 99% confidence 
in a population of 20,000, and doing so is, in fact, an 
optimal strategy (equivalent in cost to a single run to 
generation 3). 

Clearly, something interesting is going on here.  To see 
what it is, consider an unsimplified, randomly-generated 
correct solution: 

(nor  
  (and (accum (B3 over Data) 
              (B4 from FALSE) 
         (and (or B3 B4) 
              (nand B3 B4))) 
       (and (and (accum (B5 over Data) 
                        (B1 from TRUE) 
                    TRUE) 
                 (nand FALSE TRUE)) 
            TRUE)) 
  FALSE) 

The second loop simply computes the constant value 
TRUE,  and the logic of the rest of the constant operations 
render the entire form equal to the complement of the first 
loop, which must, therefore, implement odd-6-parity.  If 
we look at that loop we see that its body computes the 
odd-2-parity (XOR) function and that by starting with a 
value of false, the loop as a whole does, indeed, compute 
odd-6-parity when Data is a six-element vector. 

What has happened is that a very difficult search has been 
decomposed into two extremely simple searches.  On the 
one hand, the basic behavioral structure is a single pass 
over the data, while on the other hand, the function to be 
computed at each iteration is just even-2-parity.  Genetic 
programming can discover solutions to these two prob-

                                                           
2They also show the application of GP using architecture-altering 
operators to parity problems, but we were unable to find a number for 
the even-6-parity problem.  Presumably it would be higher than the 
figure of 1,789,500 given for the even-5-parity problem. 
3 Using all 64 cases as training cases. 

lems in parallel and combine them into a complete 
solution to the more difficult problem. 

5 PROBLEM 1B: GENERALIZATIONS 
One of the most intriguing things to note about this result 
is that nowhere does it depend on the fact that the input is 
a vector of precisely six elements.  In fact, the same 
method will serve to solve even-parity problems of any 
size.  In 25 runs of the even-15-parity problem, results 
were found in 23 of the runs by generation 2, with 80% 
(20) having solutions in the initial random generation, 
rendering the problem guessable in a population of 
15,000.4  Note that even though there are 32,000 possible 
cases for this problem, every asserted solution to the 100 
training cases was a perfect solution to the 100 validation 
cases.  In fact, every solution that correctly solved the 
initially-proffered 20 training cases also correctly solved 
the remainder of the 100 training cases and the 100 
validation cases. 

That the approach scales should not be a surprise since as 
far as the candidate solutions are concerned, it is the same 
problem.  The only thing that will change is the absolute 
amount of time it takes to walk the different sized vectors.  
Indeed, with the input given as a vector, the problem can 
be cast as a general “even-parity” problem, with fitness 
cases containing vectors of varying length. 

In 25 runs in which the input vectors varied from length 
seven to length 20, solutions were found in 22 runs with 
32% (8) solutions in the initial random generation and the 
latest found in generation 12.  The optimal strategy is to 
guess in a population of 60,000. 

This difference in performance is somewhat perplexing.  
On the one hand, the increase in complexity is under-
standable, as there is now more information contained in 
each fitness case: the length of the vector.  Indeed, some 
of the candidate solutions appear to be considering 
whether the vector has an even or odd number of elements 
by including code similar to 

(accum (B1 over Data) 
       (B2 from TRUE) 
  (not B2)) 

and some candidates appear to be attempting to solve the 
problem separately for even- and odd-length fitness cases. 

On the other hand, though, the drop in performance is 
surprising because, since a solution to the earlier 
problems will be a solution to this one, it should be just as 
easy to guess an answer.  It is therefore surprising that the 
number of correctly guessed solutions has dropped from 
72–80% down to 32%.  This is likely simply a statistical 
anomaly, but more work needs to be done to confirm 
this.5 

                                                           
4 The two runs which did not yield solutions will be discussed in 
section 9. 
5 In other experiments on the same data (with different parameters), 
solutions were guessed in 44% (11) and 68% (17) of the 25 runs.  
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When cast as vector problems, parity problems can also 
be solved using arithmetic, rather than Boolean, operators.  
Using the arithmetic operators of addition, subtraction, 
multiplication, and division, integer constants ranging 
from –10 to 10, a real-valued if, and an accum that 
ranges over Boolean vectors and returns reals, solutions 
were found in all 25 runs, the last in generation 10, with 
64% (16) of the runs guessing the solution in the initial 
random generation.  The optimal strategy is to guess in a 
population of size 25,000. 

An example of such an arithmetic solution is 

(< (- (/ 5 9) –4) 
   (accum (B7 over Data)  
          (R4 from 4) 
     (* (- (if B7 –9 1) (/ 6 10)) 
        (- (accum (B10 over Data) 
                  (R9 from –7) 
              R4) 
           (/ R4 R4))))) 

The loop here starts with a value of four and multiplies by 
a negative number every time it sees a true value.  At the 
end it checks the sign.  While this is not a method for 
computing parity that would normally occur to a pro-
grammer, it is completely correct and one of the most 
frequently discovered in our runs. 

With both Boolean and arithmetic operators added to the 
function set, solutions were found in 24 of 25 runs, the 
latest in generation 17 and 36% (9) in the initial random 
population.  The optimal strategy is to guess in a pop-
ulation of size 55,000.  Of the 24 successful runs, only 
one solved the problem primarily as a Boolean function. 

6 PROBLEM 2A: MAJORITY 
A somewhat more difficult problem is to compute, given 
a collection of Boolean values, whether or not a majority 
of the values are true. 

In the first experiment using this problem, we ran 25 runs 
with fitness cases ranging from eight to 20 elements and 
with arithmetic operators and accum.  Solutions (all 
validated) were found in 14 runs, the earliest in generation 
5, and the latest in generation 25.  The optimal strategy is 
to run eight runs to generation 16, with a 40% probability 
of success in each run, for a total of 680,000 evaluations. 

7 THE REDUCE OPERATOR SCHEMA 
TEMPLATE 

While accum is a very general operator schema and 
avoids the introduction of experimenter bias, we found 
that it was often worthwhile to help the system out by 
adding in iteration schemata that encapsulated behavior 
that is common in human-written programs.  In particular, 
the higher-order operator schema 

(reduce<op,init> (var over vec) 
  body) 

is a big help.  This form is roughly equivalent to  

(accum (var over vec) 
       (result from init) 
  (op result body)) 

except that the result variable is not visible in the body.  
The actual schemata introduced into an experimental run 
will instantiate the two parameters.  Using this templated 
schema, one can build many useful control operators.  For 
example, reduce<+,0> can be thought of as sum, 
reduce<*,1> is product, reduce<min,∞ > finds 
the minimum term, and reduce<and,true> returns 
true if all terms are true. 

Note that unlike the superficially-similar special-purpose 
operators discussed in section 1, these operators still 
contain bodies which can be arbitrarily complex functions 
of their control variables.  So, for instance 

(sum (R1 over V1) 
  (* R1 R1)) 

computes the sum of the squares of the elements of a 
vector.  The combining operator is folded into the 
iteration, but the terms being combined are still subject to 
the evolutionary process.  Note also that, like accum, 
these forms can nest, with inner loops having access to 
the control variables from enclosing loops.  The example 
from section 3 could be written 

(/ (sum (R1 over V1) 
     (sum (R3 over V2) 
       (if (< R1 R3) 1 0))) 
   (sum (R5 over V1) 1)) 

Finally, since the term is an arbitrary expression, the 
values in the vector need not be of the type required by 
the combining operator, so forms like 

(all (R1 over V1) 
  (> R1 0)) 

can evolve. 

8 PROBLEM 2B: MAJORITY WITH SUM 

With accum replaced by sum, the majority problem 
becomes trivial, with solutions found in the initial 
population of 23 of 25 runs and the remaining two runs 
finding the solution in the next generation.  The canonical 
solution is for the term to be n when the element of the 
vector is true and –n when it is false, for some number n.  
This will result in a sum with the same sign as n just in 
case the number of true values exceeds the number of 
false values. 

9 DISCUSSION 

9.1 POWER OF THE APPROACH 

Before continuing, it is worthwhile to note that, while the 
addition of iteration operators appears to make the 
discovery of some otherwise difficult-to-find Boolean 
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functions trivial, it is not a panacea.   Clearly, one cannot 
hope to discover all 

6 19(2 )2 1.9 10≈ ×  six-argument 
Boolean functions with an expected effort of a few tens of 
thousands of evaluations.  So there must be something 
about the particular functions investigated that makes 
them particularly amenable to this approach.   

The most likely answer is that these functions are 
totalistic—the value of the function only depends on the 
number of values that are true and the size of the input, 
rather than the specific pattern of values.  For an input 
vector of length n, there are only 12n+  possible totalistic 
functions, which is a substantially smaller number.  For 

6n = , this is 128, so under this analysis it becomes 
unsurprising that all (or substantially all) of the possible 
totalistic functions will be represented in a population of 
5,000 functions, most of which will, of course, not be 
totalistic. 

There are two potential problems with this line of 
reasoning.  First, even the number of totalistic functions 
grows quickly.  For 20n = , there are 2,097,152 of them.  
Second, one would expect that one of the most common 
ways of solving a problem would involve counting the 
number of true values in the input, especially as this can 
be trivially done.  Indeed, the most likely way that a 
human programmer would solve the majority problem 
would be something like 

(> (* 2 (sum (B1 over Data) 
          (if B1 1 0))) 
   (sum (B2 over Data) 1)) 

but no solution even remotely taking this form was 
discovered in any run. 

It is probably also not wise to jump to the conclusion that 
only totalistic functions are easily solvable.  The fact that, 
for example, the solution to the n-multiplexer problem 
can be stated simply as 

(element Data 
  (accum (B1 over Addr) (R1 from 0) 
    (+ (* 2 R1) (if B1 1 0)))) 

gives us hope that other useful non-totalistic functions can 
also be easily discovered.  Indeed, it may well turn out 
that the set of “useful” Boolean functions is largely 
contained within the set of easily discoverable functions, 
if only because the useful functions are typically those we 
can simply characterize. 

This brings up what can be seen as another advantage of 
this approach.  By altering the search landscape so that 
useful or interesting functions are simpler to represent and 
discover than idiosyncratic ones, the useful functions are 
discovered more quickly, and the tendency to overfit the 
particular fitness cases is reduced considerably.  One of 
the biggest objections to early work on evolving Boolean 
functions is that they can be characterized as little more 
than “exercises in overfitting the data,” as progress is 
made by repeatedly solving “one more case”.  By making 
the generalized cases so much easier to find, there isn’t 
time to get stuck in such ruts before either a solution is 

found or you have passed the point at which the optimal 
strategy is to restart the experiment.   

9.2 UNSUCCESSFUL RUNS 

While almost all of the “trivial” runs above produced 
solutions, not all of them did, and it is instructive to look 
at some of those that did not.  In the 15-parity experiment, 
there were two unsuccessful runs.  In both of them the 
best-of-generation individual from the initial random 
population was a one-point solution.  In run 10, true 
solved 13 of its initial 20 fitness cases, while in run 24, 
false solved 12 of its.  

In these experiments structural complexity was only taken 
into account as a tie-breaker, but that appeared to be 
enough in these cases.  This effect can probably be 
mitigated by either providing a larger number of training 
cases (thereby making it less likely that they will be 
biased one way or the other), ensuring that the training 
cases are drawn in a balanced fashion, or shuffling the 
training cases each generation or before each candidate 
evaluation. 

9.3 BIAS PARAMETERS 

As mentioned in section 2, two parameters are used to 
bias the initial tree generation toward choosing non-
terminals over terminals and choosing variables over 
other terminals.  For all the runs described above, these 
parameters were left at their canonical values of  4:1 and 
5:1 respectively.  While we do not present a full 
sensitivity analysis for these parameters, we did do one 
even-6-parity experiment with the biases turned off (set to 
1:1). 

The results are interesting.  Only 24 of 25 runs get 
solutions by generation 25, with the last occurring in 
generation 20.  More importantly, not a single solution 
was found in an initial population.  The optimal solution, 
three runs to generation nine, requires an estimated effort 
of 150,000 evaluations.  Recall that in section 4 we 
showed that with the bias, all runs were successful by 
generation three, and 72% found solutions in the initial 
population, with an estimated effort of 20,000 
evaluations.  These parameters are clearly important, and 
more work needs to be done to determine their optimal 
values. 

 

10 PROBLEM 3: VARIANCE 
It could easily be argued based on the above presentation 
that, while the addition of iteration operators may indeed 
make some problems trivial to solve, it does not actually 
contribute much to the paradigm as a whole, as little 
actual evolution is required, and we may simply be 
“getting lucky” by having it be so likely that there is 
either a solution or a candidate near to the solution in the 
initial population. 
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To address these concerns, we ran an experiment to 
discover a solution to a significantly harder problem: 
regressing from a vector of real numbers to the statistical 
variance of the values.  The training cases ranged in size 
from five to ten elements and each element was a real 
number (to four decimal places) between –10 and 10.  
The target was computed as6 

  
 

 

where n is the number of elements.  For this experiment, 
the arithmetic operators and sum were available as a 
size operator that takes a vector and returns the length 
of the vector as an integer.  As this is a more complex 
problem, the maximum number of generations was raised 
to fifty and each candidate was initially presented with 
fifty training cases. 

We ran 20 runs of this experiment, and solutions were 
found in half (10) of them7.  That the problem is difficult 
is attested by the fact that the earliest solution found was 
not until generation 16 and the latest was in generation 
46.  The optimal strategy is to run 11 runs to generation 
28, by which point 35% of the runs are successful, for an 
expected effort of 1,595,000 evaluations.  Things look 
even better when the unsuccessful runs are examined in 
detail: 

Run Training 
Fitness 

Validation 
Fitness 

Best-of-Run 
Generation 

Initial 
Validation 

Fitness8 

2 0.036% 0.036% 49 16.7% 

4 1.8% 3.0% 50 45.7% 

6 5.5% 10.5% 39 24.1% 

8 0.60% 2.5% 49 11.2% 

9 6.1% 9.7% 50 37.1% 

11 1.9% 2.3% 47 16.4% 

13 2.2% 3.5% 50 24.5% 

15 0.41% 0.48% 49 31.5% 

18 0.042% 0.044% 50 12.2% 

20 0.16% 0.21% 49 27.4% 

                                                           
6 Yes, this is incorrect.  The second term should be subtracted rather than 
added.  We discovered while simplifying the solutions that there had 
been a bug in the fitness case generator.  This should not invalidate the 
results, and, indeed, it is heartening to know that the process found what 
we actually asked for rather than what we wanted. 
7 One of the solutions was not perfect, resulting in hits on only 99 of the 
100 validation cases.  The mean relative error on the validation cases 
was 0.00036%. 
8 The fitness of the best candidate of the random generation on the 
validation cases. 

In all of these runs, both the training fitness and the 
validation fitness improved substantially, and there is no 
indication that the problem was overfitting the particular 
training cases.  Four of the unsuccessful runs had the 
remaining error on the validation cases less than 1%, and 
in two cases it was less than 0.1%, and in nine of the ten 
runs the best candidate seen was found in the last four 
generations, implying that the runs were still making 
progress and that it may simply be that fifty generations is 
too small of a cut-off for this problem.  Only one of the 
twenty runs, number 6, appeared to have gotten stuck, 
having gone twelve generations without improvement and 
having the highest remaining error on both training and 
validation sets. 

One particularly nice solution was found in generation 28 
of run 3: 

(let ((R2 (size Data))) 
  (let  
     ((R2 (- (let ((R5 (sum (R2 over Data)) 
                         R2))) 
                (+ 0 (/ (* R5 R5) R2))) 
            2))) 
    (/ (+ (+ 4 0)  
          (- (+ R2 (sum (R1 over Data) 
                     (* R1 R1))) 
             (- (+ 1 2) 1))) 
       (- (size Data) 1)))) 

The elements of the vector are summed in the first loop 
and the let-binding, introduced by the crossover 
described in (Kirshenbaum 2000), binds this value to R5.  
The underlined portion of the code uses this variable 
twice, as well as R2, which is bound to the length of the 
vector, to compute the square of the sum divided by the 
length.  The second loop computes the sum of the squares 
of the elements, and the resulting logic adds the two 
(along with constants that cancel out) and divides the 
result by 1n −  to obtain a perfect solution. 

11 PERFORMANCE CONSIDERATIONS 
The experiments in this paper were run on a 700MHz 
Hewlett-Packard Omnibook 6000 running Windows 2000 
and using GPLab, a flexible framework for genetic pro-
gramming developed and used for data mining research at 
Hewlett-Packard Laboratories.  The time taken to evaluate 
the population ranged from approximately 3 seconds/ 
generation to about 55 seconds/generation.  Variance runs 
tended to start at about 15 seconds/generation and grow to 
about 40 seconds/generation. 

The flip side of allowing the computational complexity to 
become an emergent property is that different candidate 
programs will try out different strategies, and some of the 
attempts will almost certainly be horrendously complex. 

Since the iteration operators we introduce are bounded in 
the number of iterations by the length of the vectors they 
iterate over, we do not have to worry about a candidate 
going into an infinite loop, but it is quite reasonable to 
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expect that we will encounter programs that will contain, 
say, five sequentially nested loops, for a computational 
complexity of 5( )O n .  If left to themselves, such 
candidates would make runs take an unacceptably long 
time, so we do two things to reduce their impact. 

The first thing we do is to impose a computation budget 
on each fitness case evaluation.  This is simply a counter 
that counts down with every operator invocation.  If the 
counter hits zero, the candidate is considered to be 
infinitely bad.  For the experiments described in this 
paper, the computation budget was set to 500 operations.  
This number is somewhat arbitrary, and further work 
needs to be done to learn how to tell if the budget is set 
correctly. Note that the budget is reset for each fitness 
case, although it may be worthwhile to experiment with 
allowing some or all of the unused budget from one 
fitness case to carry over to the next to allow a candidate 
to be occasionally computationally complex.   

In addition to limiting the complexity, we also reduce it 
by noting that certain computation is unnecessary.  For 
the accum operator schema, we note that if the result 
variable is not needed in the computation of the value of 
the body, then the results of all iterations before the last 
are discarded and the initial value of the result variable 
also need not be computed.  In the absence of side-effects 
in the body, this means that the loop can be reduced to a 
single execution of the body, with the element variable 
bound to the last element of the vector.9  If the element 
variable is also unneeded, then the vector argument also 
need not be evaluated. 

For the sum operator schema, a similar optimization notes 
that if the element variable is not required to compute the 
value of the term, then the term need only be computed 
once and the value of the sum is simply this value 
multiplied by the length of the vector. 

The result of these optimizations is that many syn-
tactically-present loops are skipped entirely.  For instance, 
in 

(accum (B1 over V2) 
       (R1 from (sum (R2 over V2) 
                  (sum (R1 over V3) 
                    (* R1 R2))) 
  17) 

R1 is not needed to determine the value of the outer loop, 
and so its complex initialization is not performed.  Other 
loops have their complexity simplified.  In 

(sum (R1 over V) 
  (sum (R2 over V) R1)) 

the apparent complexity is 2( )O n , but the actual 
complexity is only O(n) since the body of the inner loop 
does not refer to R2. 

                                                           
9 If there are side-effects in the body, it must be executed for side-effects 
for each of the iterations before the last.  Since we keep separate track of 
variables needed for value and side-effect, this can often be considerably 
cheaper than fully evaluating the body. 

The advantage of such optimizations for evolutionary 
methods is that it means that an otherwise-good program 
is not penalized because it contains within it a complex 
calculation whose value would not have contributed to the 
final value. 

In the current implementation, the optimizations are 
detected at the time the tree is created and stored as 
annotations on the nodes. 

With these optimizations in place, in the variance 
experiment we found that between 8% and 12% of the 
candidates in the random generation tended to exceed 
their budget in the initial random population, essentially 
removing them from the breeding pool.  This number 
invariably dropped to approximately 1% for the next four 
generations and then began to rise again, typically 
remaining between 2% and 15% for the remainder of the 
run.  Interestingly, the one “bad” run was the only one in 
which the number exhausting their budget ever exceeded 
20%, and the number was in fact growing to the end, with 
1,102  of the 5,000 candidates doing so.  On the other 
hand, a high number does not apparently necessarily 
imply problems, as seen by the fact that in the generation 
before finding a solution, the number exceeding budget 
was as high as 16.5% and (in that run) had been growing 
steadily from a low of 1% for 28 generations. 

12 COMPARISON WITH 
AUTOMATICALLY DEFINED 
ITERATIONS 

The closest mechanism in the genetic programming 
literature to the iteration schemata described in this paper 
are the automatically defined iterators (ADIs) of (Koza et 
al. 1999).  Like iteration schemata, ADIs perform single-
pass iteration over data structures executing terms that are 
arbitrary expressions built up under evolutionary pressure.  
Also like iteration schemata, any candidate program may 
contain an arbitrary number of ADIs. 

The principal advantages of iteration schemata over 
ADIs10 are 

1. All ADIs iterate over a single data structure fixed 
ahead of time by the experimenter.  With 
iteration schemata the data structure11 is an 
argument to the iterator, computable by an 
arbitrary expression.  This allows the program to 
evolve to select or even create the structure to 
use for each loop, with nested loops iterating 
over different structures. 

2. With iteration schemata, loops may syntactically 
nest, facilitating their movement as a unit during 
crossover.  While one ADI may refer to another, 

                                                           
10 As defined.  The actual implementation used in (Koza et al. 1999) was 
a simplified version which did not allow parameters or nesting, limiting 
the complexity of evolvable programs to O(n). 
11 Or, potentially, structures, given schemata that walk in lockstep down 
multiple sequences. 
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achieving the behavior of nested loops, they are 
in different parts of the trees and move 
independently, so it is likely difficult for the 
importance of the coupling to be preserved and 
communicated by means of crossover once it is 
discovered. 

3. With iteration schemata, inner loops may see and 
even modify the control variables from enclosing 
loops.  ADIs  have arguments, which allow 
information to be passed from outer loops to 
inner loops, but (1) the number of such 
arguments is fixed at ADI creation time, and 
(2) the arguments are passed by value, making it 
difficult for the inner loop to modify the outer. 

4. With iteration schemata, the iterators are part of 
the initial random population, and so there is a 
range of computational complexity from the very 
beginning.  ADIs are only created by abstraction 
from trees already present.  

The principal advantage of ADIs would appear to be that 
they are named constructs.  This means that an ADI that 
would be useful more than once will be easier to reuse 
once discovered.  It also means that having named a loop, 
different candidates can compete to decide what its 
implementation should be. 

13 FUTURE WORK 

13.1 OTHER ITERATION OPERATORS 

With support for local variables and data structures in 
GPLab, the addition of new iteration schemata is 
reasonably trivial.  Functional languages such as Scheme 
and APL provide a rich source of iterators that human 
programmers have found useful, and it will be interesting 
to see how these fare in the genetic programming 
environment.  Besides specific operators, we intend  to try 
out (1) operators that only iterate over part of a sequence, 
(2) operators that create new sequences by mapping or 
selecting values from a sequence, (3) operators that iterate 
over multiple structures simultaneously, and (4) 
generalized reduce taking its combinator as a (function-
valued) argument,  

13.2 OTHER PROBLEMS 

Genetic programming with iteration schemata appears to 
work well for some types of problem, but we have not yet 
characterized what this class of problem is.  It will be 
instructive to try it out on other problems, such as non-
totalistic Boolean functions or problems known to require 
superlinear complexity. 

13.3 OPTIMIZATION 

The ad hoc optimizations currently implemented are 
definitely helpful, but a more principled approach could 

almost certainly discover other computation that can be 
avoided. 

13.4 UNDERSTANDING  PARAMETERS 

As pointed out in sections 9.3 and 11, there are several 
parameters whose values appear to influence the 
performance of the system, but this influence has not yet 
been adequately characterized. 

14 CONCLUSIONS 
The addition of iteration schemata to genetic pro-
gramming makes it possible for the computational 
complexity of the solution to be an emergent property just 
as are the size and particular configuration of operators. 
Such operators can render otherwise difficult operators 
trivial and make new classes of problem solvable. 
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