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Abstract

Pangaea is a planetary-scale file service that supports sharing
of frequently written files as well as read-only files. Pangaea
usesmassive replication to achieve low access latency and high
availability. This paper focuses on a key feature of Pangaea—
randomized, optimistic protocols for managing many replicas
efficiently for billions of files replicated on hundreds of servers.
Replica membership is maintained as a sparse but strongly con-
nected graph, per file. Updates to the membership and contents
are propagated along the graph edges. The feasibility of Pan-
gaea is evaluated using a prototype and a simulation.

1 Introduction

Global, seamless data exchange is the holy grail of distributed
systems research. Partially, this is already happening in the
forms of WWW and P2P systems. The Pangaea project aims
to build an autonomous and decentralized file service that can
be used not only to distribute read-only data, but also to serve
people’s daily storage needs—e.g., for document sharing, data
crunching, and archiving. Its primary targets are large multi-
national corporations or groups spread over the world that want
to share data transparently over a file system. Thus, Pangaea
must hide the effects of wide-area networking and data distri-
bution, to the extent possible. Our goals follow:

Performance: Pangaea should look and feel like a local file
service by hiding wide-area networking latencies.

Availability: Any large distributed system experiences fre-
quent changes. Pangaea shouldheal automatically after
server failure or replacement without disturbing users.

Autonomy: With servers spread over the globe, they will be-
long to different, although cooperating, administrative do-
mains. Thus, each server should be able to set its own re-
source management policy, e.g., the amount of disk space
to offer and when to reclaim it.

Pangaea achieves these goals bymassive, decentralized, and
optimistic replication. It replicates popular files massively on

all servers that desire access to the file. There is no single
server that permanently manages data or protocol. Finally, it
requires no synchronous coordination among servers to mod-
ify file contents or to add or remove replicas; all changes to the
system are propagated in the background epidemically. This
paper focuses on a key challenge massive replication faces:
the management of the replica membership and consistency.
We describe randomized algorithms for low-cost, fault-tolerant
replica membership management and optimistic strategies for
data consistency.

1.1 Overview of Pangaea

Pangaea builds a unified file system name space over hun-
dreds of servers spread over the world. We assume that servers
are trusted; relaxing the trust relationship is future work (Sec-
tion 5). It is a peer-to-peer system in a broad sense, in that its
structure is totally decentralized and symmetric, and a user can
theoretically use any server to access any file. To ensure per-
formance, we assume that each user usually mounts (or logs
into) a specific server for a period of time, e.g., a day, although
she can roam over different servers over time. We call such
server her “local server” for the period.

In Pangaea, every file1 a user accesses is replicated at her
local server. Thus, files shared by many people (e.g., the root
directory) are replicated on virtually every server. On the other
hand, the user’s personal files are created on her local server
and a few remote servers for availability, and they stay that
way. An update to a file can be issued at any replica at any time,
and it is “flooded” to all others in the background. Thismas-
sive replication hides network latency and contains the user’s
working set to let her work even when the local server is dis-
connected. Its totally decentralized nature also allows for better
site autonomy by letting any replica (or server) be removed or
replaced at any time transparently to the user.

1Pangaea treats a directory as a file with special contents (Section 2.1).
Thus, we abuse the term “file” to refer to both regular files and a directories
when there is no fear of confusion.
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1.2 Challenges in massive replication

Massive replication certainly has several potential downsides.
The first is the computational and storage overhead of meta-
data management. While this problem is genuine, servers in
cooperative-work environments, which we target initially, are
known to waste much of their resources idle [1]. The second is
the overhead of propagating updates to files with many repli-
cas. We believe this to be a non-issue, because popular files
are updated rather infrequently. The third problem is the algo-
rithmic challenge of managing a large number of replicas in a
decentralized setting. Section 2 presents simple randomized al-
gorithms for maintaining the replica membership of a file. The
final issue is the lack of a strong consistency guarantee because
of our decentralized and optimistic approach. We discuss three
symptoms of this problem—the freshness of contents, update
conflicts, and lack of atomic multi-object updates—and our so-
lutions in Section 3. Section 5 presents other issues we plan to
investigate in the future.

1.3 Related work

Wide-area data sharing is not a new idea. Many systems have
been designed with differing focuses in mind. None of them,
however, solved all our goals.

Massive replication is similar to persistent caching (e.g.,
AFS and Coda [4]) in terms of performance. Pangaea, how-
ever, is more available because of its decentralized and opti-
mistic nature. For example, it provides read-any, update-any
replication, and allows any replica be removed from the system
and yet ensures the consistency of other replicas. LBFS [5]
saves network bandwidth by exchanging fingerprints of file
fragments instead of file contents. Its idea complements ours;
while LBFS reduces bandwidth consumption, we reduce ac-
cess latency. Locus [9] provided a file system with optimistic,
fine-grain replication. Pangaea extends Locus by supporting
frequent replica addition and removal.

Mobile data sharing services, such as Ficus, Roam [7],
RefDBMS [2], and Bayou [6], allow mobile users to repli-
cate data massively and exchange updates epidemically among
them. They, however, lack a replica location service, and hu-
mans are responsible for synchronizing devices to keep repli-
cas consistent. In contrast, Pangaea keeps track of the location
of replicas and distribute updates proactively and transparently
to the users.

Recent peer-to-peer systems (e.g., CFS, CAN, Pastry, and
Oceanstore) provide flat distributed hash tables using ran-
domization techniques. While Pangaea shares many of the
goals with them—e.g., decentralization, availability and site
autonomy—it must solve different problems because of the dif-
ference in application requirements. In particular, Pangaea ex-
plicitly stores a graph of replicas and supports distributed pro-
tocols for its maintenance, because replica locations are chosen

by user activity, not by randomization. Pangaea also supports
hierarchical name spaces, ensuring that links between files are
kept consistent. Pangaea does use hash tables for directory en-
tries, but it simply replicates the entire table on each directory
replica.

2 Managing replica membership

Pangaea experiences very frequent replica additions and re-
movals, because it manages billions of files, each of which is
replicated independently on many servers. Thus, it calls for
inexpensive and scalable mechanisms for efficiently managing
the replica membership for each file and reliably distributing
updates among replicas.
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Figure 1:A replica graph. Each file (an oval) is replicated on
its own set of replicas. Alphabet labels show the names of the
servers that store replicas. An edge between replicas of a file
shows that the replicas know of each other. Updates to the file
are propagated through these edges. Edges are also formed
between some of the file’s replicas and those of its parent di-
rectory. These links enable path traversal.

Pangaea decentralizes both replica membership manage-
ment and update distribution to achieve this goal. There is
no entity that centrally manages replicas for a file. Instead,
Pangaea lets each replica maintain links to a few other ran-
dom replicas of the same file. Links to some of these replicas
are also recorded in the entry of the parent directory, and they
act as starting points for accessing the file. Figure 1 shows
an example. As discussed in the following sections, Pangaea
ensures, with very high probability, that the replica “graph”
of a file exhibits certain desirable properties. In particular, it
keeps the graph’s diameter small and maintains the graphk-
connected (i.e., at leastk disjoint paths between any pair of
replicas), wherek is a configuration parameter usually chosen
to be three or four. This design addresses our goals as follows:

Highly available and scalable update distribution:
Pangaea lets any replica issue a new update andfloods
the update along the graph edges. Thus, the system can
tolerate at leastk simultaneous replica failures. With

2



timely graph repairing (Section 2.2), it can essentially
tolerate arbitrary number of failures over time. The graph
structure also helps distributing the update propagation
overhead among servers.

Highly available and scalable membership changes:This
mechanism can add a replica when it can find anyk
live replicas, no matter how many other replicas are
unavailable. Moreover, adding or removing a replica
only involves adding or removing a small number of
edges between replicas, regardless of the total number of
replicas.

High available and scalable replica location:Each direc-
tory entry records multiple replica locations for the file,
and the directory itself is replicated just like a regular
file. Thus, this mechanism allows for path name traversal
even when some servers are unavailable.

The following sections introduce random-walk-based pro-
tocols for dynamically reconstructing a graph in response to
replica addition or removal.

2.1 Adding a replica

When a file is first created, the user’s local server selects a few
random servers in addition to itself (a gossip-based member-
ship service is consulted during this phase [8]), creates replicas
on these servers, spans graph edges among them, and registers
the locations of the replicas in the parent directory’s entry.

A replica is added when a user tries to look up a file missing
from her local server. The goal is to create a new replica on
the server and span at leastk distinct edges to existing replicas.
As there is no central replica-management authority, nodes are
chosen usingrandom walks, starting from a replica found in
the parent directory’s entry and performing a series of remote
procedure calls (RPCs) along the graph edges. We try to pick
replicas with fewer outgoing edges, based on the presumption
that (1) adding an edge to such replicas will likely improve
the total graph connectivity, and (2) balancing the number of
edges of replicas will help distribute the storage and compu-
tational overhead evenly among servers. Section 4 shows that
this heuristic keeps the graph well and evenly connected, for
modest walking distances. After picking thek “best” nodes,
the server issues a multi-party RPC request to thek replicas
to span edges between them and the new replica. The replica
contents are retrieved from one of these replicas as a side ef-
fect of the RPC. This protocol ensures that the resulting graph
is k-connected (assuming that it wask-connected before).

Directories in Pangaea are files with special contents. They
are replicated using the same random-walk-based protocol.
Thus, to look up a file, the parent directory must also be repli-
cated on the server where the file is accessed from. This recur-
sive step potentially continues all the way up to the root direc-

tory. Replicas of the root directory are discovered through an
external service, e.g., DNS or LDAP.

2.2 Removing a replica

A replica is removed either involuntarily or voluntarily. It is
removed involuntarily when its host server remains down for a
long period or when its disk crashes. When a replica detects
the death of a neighbor in the graph, it autonomously initi-
ates a random walk exactly as in the case of replica addition
and re-spans an edge with another live replica. This protocol
is probabilistic, in that it may disconnect the graph and create
orphan replicas in the worst case. The randomization incorpo-
rated into the protocol, however, makes it extremely unlikely.
We confirm this claim in Section 4.

Pangaea also supports voluntary replica removal, which hap-
pens when a server runs out of disk space or decides that the
replica is not worth keeping. The protocol is the same as above,
except that the retiring replica proactively sends notices to all
its graph neighbors so that they can start adding edges imme-
diately and minimize the window of vulnerability of graph dis-
connection.

2.3 Maintaining minimum replication factor

A downside of the decentralized graph approach is the diffi-
culty of enumerating all replicas for a single file. In particular,
it is not trivial to ensure a minimum number of replicas for a
file. We solve this problem by marking some replicas “golden”.
Servers storing golden replicas must give them a high priority
to stay on disk. We currently mark replicas golden when a file
is first created and keep these initial replicas on the disk as long
as possible. Graph edges to golden replicas are also marked
golden. When a golden replica is suspected dead by a graph
neighbor, the neighbor initiates a whole-graph sweep, similar
to contents-update flooding, to locate live golden replicas and
“engolden” another replica if needed.

3 Dealing with optimism

Wide-area data sharing demands read-any / update-any repli-
cation to ensure availability and performance. Thus, Pangaea
manages both the membership and contents of replicasopti-
mistically without any synchronous coordination. Optimism
causes three potential problems: the lack of consistency guar-
antees for file contents, update conflicts, and the inability to
update multiple files atomically, which in particular affects di-
rectory operations likemkdir and rename . The following
sections discuss Pangaea’s approach for handling these prob-
lems.
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3.1 Consistency of replica contents

The flooding algorithm described in Section 2 currently pro-
vides no hard guarantees about the degree of replica diver-
gence; imposing stronger guarantees, such as an open-close
consistency (cf. Sprite and AFS) orflock(2) , is a sub-
ject for future investigations. We argue below, however, that
our “best-effort” approach can manage the window of incon-
sistency within about a second in most cases, and that it is
practical enough for most applications. First, a new update is
pushed proactively through the graph edges, which minimizes
the propagation delay. Second, since the random-walk pro-
tocol keeps the graph’s diameter fairly small (e.g., 4 or 5 for
graphs with hundreds of replicas; see Section 4), the flooding
terminates in a small number of network hops.

3.2 Conflict resolution

Conflicting updates to the replica membership are detected us-
ing version vectors and resolved by merging. Suppose that
one membership update voluntarily removes replicaa, and an-
other adds replicab and spans edges betweenb and replicas
{a,c}. Then, replicaa or b (or both, in which case another,
cascaded round of resolution happens afterward) will perform
its own random walk, pick a replica, sayd, and issue the fol-
lowing update as the merge result: removea, addb, and span
edges betweenb and {c,d}. The merge result is pushed to
the participants of the three updates, i.e., to{a,b,c,d} and the
neighbors ofa. Because the third update causally follows the
original two (i.e., its version vector dominates the others’), its
recipients will override the original updates. This membership
resolution algorithm provenly ensures the consistency of the
resulting graph under any combination of concurrent updates:
a graph edge is spanned only between two live replicas, and no
“orphan” replicas, disconnected from others, are created be-
cause of merging.

Concurrent updates to file contents are also detected using
version vectors and merged semantically. We currently use a
protocol similar to that of Locus [9].

3.3 Maintaining the consistency of the hierar-
chical name space

The previous sections described Pangaea’s decentralized ap-
proach for maintaining links among replicas of a single file. In
fact, because Pangaea offers a hierarchical name space, it must
also manage links between a file and its parent directory to en-
able path traversal. Pangaea uses the same graph-based tech-
niques to maintain such inter-file links by treating parent direc-
tory replicas as a part of the file’s replica membership. Figure 1
shows an example. Directory “/joe/” is replicated on serversa,
b andc, while file “/joe/foo” is replicated on serversa, d, f and
e. The resulting replica graph for “/joe/foo” includes all seven

100Mb/s 1Mb/s 256Kb/s

Network speed

0
200
400
600
800

1000

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

NFS
Coda
Pangaea

Local ext2

Figure 2:Performance of Pangaea under various network con-
ditions. “Local ext2” shows the elapsed time on a local ext2
file system.

nodes. The directory entries run the full random-walk protocol
to maintain links to the file consistently, but they do not partic-
ipate in contents-update flooding. This design allows for direc-
tory links to be renewed properly after replica removal. Direc-
tory replicas that participate in the file’s replica graph should
not be removed, because doing so would result in cascading
membership changes in the graphs of all the directory’s chil-
dren. Thus, we mark these replicas “golden” (Section 2.3).

4 Evaluation

This section evaluates the feasibility of Pangaea. We study
the performance of our early prototype and demonstrate that
massive replication can effectively hide slow networking con-
ditions. We also use simulation to show that Pangaea’s ran-
domized graph protocols maintain good graph properties.

Our prototype is implemented as a user-space loopback NFS
server [3] on Linux. At this early stage, it is premature and
lacks some of the proposed protocols. In particular, it substi-
tutes random walks with spanning edges to whatever replicas
found in the directory entry. We compare Pangaea to NFS and
Coda [4] by compiling the Linux source code. We set up two
machines, both equipped with 750MHz Pentium 3, 256 MB
of memory, and 8GB SCSI disks. One machine runs either an
NFS server, a Coda server, or a Pangaea server, and it stores
the source files. Another machine, running either a NFS client,
a Coda client, or a Pangaea server, reads the files from the first
machine and compiles. For Coda, the files are cached persis-
tently on the second node; for Pangaea, the files are replicated
on the second node. We simulated slow networking conditions
by restricting the network bandwidth between the two servers.
Figure 2 shows the elapsed compilation time for the three file
systems. Pangaea and Coda show stable performance under
any network condition, although Pangaea’s decentralized ar-
chitecture will offer better availability and autonomy at a large
scale. In contrast, NFS works well when the network is uncon-
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W=2 W=3 W=4
N D=3 D=4 D=3 D=4 D=3 D=4

Average 100 4 4 4 4 4 4
diameter 400 5 5 5 4 5 4
Average 100 - - 3 4 3 4

connectivity 400 - - 3 4 3 4

Table 1: The behavior of the randomized graph maintenance
algorithm. N is the number of nodes in the graph, D is the
number of edges spanned for a new replica, and W is the
random-walk hopping distance. The entries marked “-” show
that the graph disconnected before the simulation was com-
pleted. The graphs disconnected after 10,000 to 300,000 itera-
tions, corresponding to a period of a week to half a year with
one change/minute, or one to 35 years with one change/hour.

strained, but its performance drops rapidly over slow networks,
because of its large network traffic generated due to its stateless
caching architecture.

The simulation studies the behavior of our graph mainte-
nance protocols for a single file. We created a random graph
for the file and stressed it through a series of random node
(replica) addition and removal using our graph-maintenance
protocols. We subjected the graph to up to two million ad-
ditions/removals, which corresponds to a period of four years
when the membership change for a particular file happens ev-
ery minute, or 230 years when the change happens every hour.
We changed three parameters: the number of nodes in the
graph (N), the number of edges spanned for each new node
(D), and the number of edge “hops” taken by each random
walk (W). Table 1 shows the average properties of the graph.
It demonstrates that the graph’s diameter is fairly small for all
configurations, and it grows only slowly atO(logN). The re-
sults also show an interesting trade-off between random-walk
distance and connectivity maintenance. Picking too small a
random-walk distance, while cheap, may disconnect the graph.
The reason, intuitively, is that it can only select nodes in
the neighborhood and skews the distribution of edges. The
random-walk distance of at least the graph’s half-diameter al-
lows selecting nodes truly randomly and can maintain the con-
nectivity for an arbitrarily long period.

5 Future work

Our research on Pangaea opens many questions that demand
further investigation. Currently, Pangaea replicates a file on ev-
ery server that accesses it. We plan to investigate more intelli-
gent replica placement heuristics utilizing information such as
storage capacity, inter-node network bandwidth, content type,
and access demand. On a related issue, massive replication
currently incurs high startup overhead; a roaming user cannot

fully enjoy its benefits until her working set is replicated on the
local server. We plan to investigate integrating mobile storage
devices into our system.

We assume that all Pangaea servers are trustworthy. For now,
this is a reasonable assumption, since we assume servers be-
long to a single administrative domain (e.g., a multi-national
corporation). We plan to relax the level of trust for two types
of information managed by the system: file contents and the
graph structure. For contents, we plan to use end-to-end data
encryption. The challenge is the treatment of meta-data; e.g.,
the directory entries should be encrypted to avoid information
leak, but doing that would obstruct graph-shape maintenance.
For the graph structure, we plan to investigate the prevention
of Byzantine servers from destroying the graph and prohibit
update propagation. For instance, we want to at least let a user
keep all her files in the local server even when remote servers
are Byzantine.
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