

Massive Deployment of Management Agents
in Virtual Data Centers

Sven Graupner, Vadim Kotov, Holger Trinks
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-321
December 7th , 2001*

E-mail: {sven_graupner, vadim_kotov, holger_trinks} @hp.com

virtual data
center,
management
system,
management
agent, control
system,
deployment

The starting point for this work was: What would be the
implications when systems and with them their management
systems would become two orders of magnitude larger then they
are today? We focus on one problem: How management agents
can be automatically deployed in massive amounts (>>104)
providing the infrastructure for management and control
systems of large-scale virtual data center environments?
Management agents perform tasks such as monitoring,
processing and dissemination of management and control data,
decision-making and actuation. Under deployment we
understand the processes of software distribution, installation
and configuration assuming a hierarchical organization of
agents.

Three main areas are discussed: a deployment infrastructure
with its components, the automated deployment process with
protocols and a recursive generation method which allows the
deployment of massive amounts of management agents. The
principles presented in this paper can be generalized for
common services.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1

Massive Deployment of Management Agents
in Virtual Data Centers

Sven Graupner, Vadim Kotov, Holger Trinks

Hewlett-Packard Laboratories, 1501 Page Mill Rd, Palo Alto, CA 94304
{ sven_graupner,vadim_kotov,holger_trinks} @hp.com

Keywords: virtual data center, management system, management agents,
managents, deployment, control system, planetary-scale computing.

Abstract

The starting point for this work was: What would be the implications when systems
and with them their management systems would become two orders of magnitude
larger then they are today? We focus on one problem: How management agents can
be automatically deployed in massive amounts (>>104) providing the infrastructure
for management and control systems of large-scale virtual data center environments?
Management agents perform tasks such as monitoring, processing and dissemination
of management and control data, decision-making and actuation. Under deployment
we understand the processes of software distribution, installation and configuration
assuming a hierarchical organization of agents.

Three main areas are discussed: a deployment infrastructure with its components,
the automated deployment process with protocols and a recursive generation method
which allows the deployment of massive amounts of management agents. The
principles presented in this paper can be generalized for common services.

1 Introduction
Data centers have been and will continue providing the backbone for services in the
Internet and in enterprise environments. With continuing growth of Internet-based
services, backbone data centers are expected to grow as well. We anticipate significant
growth in storage and processing capacities by at least two orders of magnitude in the
foreseeable future. Further more, data centers will evolve from rather separated islands
hosting applications to platforms providing capacity for virtual service environments
potentially distributed across several data center locations. We summarize this trend
under Virtual Data Centers [1]. Virtual service environments are comprised by the total
virtualization of resource capacities and the virtualization of service execution
environments leading to an isolation of applications from the actual machines where
applications are running. Isolation means that applications are not installed and operated
on individual machines and thus are bound to those machines, but are installed and
operated in virtual environments, which are mapped onto underlying data center resource
infrastructures in a programmable manner enabling dynamic resource provisioning for
fluctuating demands [2], [3]. Virtual environments may be dispersed across several

2

organizational or geographic regions. Another trend is the need (caused by scale) for
raising the levels of consideration and abstraction from hardware-oriented resource and
component views (processing, storage, network) to higher, service-oriented notions of
services providing capacities to meet other services’ demands throughout all system
layers [4].

These trends will have impact on how data centers, resources, applications and services
will be operated, controlled and managed. We summarize these trends under planetary-
scale computing:

- scale – two orders of magnitude more components, resources, services;

- virtualization – isolation of applications, services and data from machines and
equipment by introducing a dynamic mapping capability;

- raising the level of consideration and abstraction – component views need to be
evolved into uniform service-oriented views throughout system layers, including
hardware and software; control will be driven by keeping demands and capacities
in balance throughout all areas and layers of systems [5].

The implications for data center management and control systems are:

- control systems need to deal with scale – two orders of magnitude more elements
and components, which need to be observed, monitored and controlled,

- controlling much more components implies further automation of management
and control operations,

- the degree of automated decision-making needs significantly be extended,

- control systems need to be able to operate in virtual environments crossing
geographic and organizational boundaries;

- control systems need to coordinate and control virtualization,

- radical simplification and stratification of abstractions and control operations by
raising the granularity and abstraction of controlled units,

- tolerating partial failure by moving from deterministic to statistical operation.

Management and control systems will be very large with >>104 components and
relationships. Hierarchies with domain structures have proven to scale well as
organizational method. We do not anticipate a global singular hierarchy, rather loosely
coupled federations of large hierarchies, which will be distributed across various
geographic and organizational boundaries.

In this report, we focus on one aspect: the automated deployment of massive amounts of
management agents we refer to as managents. Managents are local representatives of a
management system in a managed system performing tasks of monitoring, data
collection, event detection, data dissemination [6], local decision-making and actuating
decisions. Managents are responsible for a certain scope of components in the controlled
system. Managents are organized in a communication topology among themselves mostly
formed as a hierarchy. Leaf-node managents are performing direct monitoring and
actuation tasks in the controlled system and higher-ordered, non-leaf managents provide a

3

reporting and delegation hierarchy connecting the managent hierarchy to other parts of
the control system such as administrator consoles, repositories, and instances for
decision-making [7], [8].

1.1 Impact of Scale on Systems of Management Agents

Managents and managent hierarchies exist today in management systems. They exist in
form of sensors and management servers such as the Network Node Manager [9] in HP’s
OpenView product [10]. Managents are mostly implemented in software, which needs to
be distributed, installed and configured on destination systems.

We understand as the deployment of managents the process of distributing software and
the installation, configuration and activation of managent instances. Today, a high degree
of manual work is involved in the deployment process of managents. For example,
management servers need to be manually configured in order to establish a reporting
hierarchy. This is not a problem in a deployment environment with 50 or 100
management servers. Anticipating two orders of magnitude more management servers
(translating into 5,000 or 10,000 management servers in this example), this is becoming
an issue. Software distribution, installation and configuration for managents as well as
maintenance of existing managent instances are becoming a problem.

We propose an infrastructure for the automated deployment of massive amounts of
managents comprising software distribution, installation, configuration and activation of
large-scale managent hierarchies. We also address maintenance by automating re-
configuration and re-deployment of managent instances. The proposed solution has been
built as a prototype and operated in a 524-node Linux cluster [11].

The proposed solution addresses the following questions:

1. How to deploy massive numbers of managents?

- How to distribute managent software among hosting systems?

- How to install managent software on each hosting system?

- How to configure large numbers of managents?

2. How to organize large numbers of managents?

- How to provide managents with their roles and functions?

- How to provide managents with their identity they use for communicating
with others and to obtain proper configuration information?

- How to establish and where to place managents in a topology?

3. How to maintain and control managents in large topology?

Maintenance and control refers to operations such as ‘start’ and ‘stop’ as well as
‘ reconfigure’ , ‘ redeploy’ and ‘uninstall’ applied on active managent instances.

Viewing managent deployment and maintenance processes under the perspective of
massive amounts of managents, the following questions arise:

4

- How to deal with numerous sets of configuration data for large numbers of managents
and how to organize a topology among managents without having to configure them
individually?

- How can be avoided that each individual managent needs to be configured to which
supervisor managent it is supposed to report?

- How to establish a topology among managents in general? Can this topology be
established automatically?

- How managents can obtain an identity and a role independently of their physical
location provided by the local hostname or IP address in order to work in virtual
environments? This is particularly important when management or control systems
span multiple virtual LAN environments, as it is the case in virtual data center
environments.

- How can be avoided that each individual managent installation and configuration
process needs to be initiated separately by a human operator?

1.2 Structure of this Report

The report is structured as follows. We start with a brief comparison with the state of the
art in system management and control systems regarding two common technologies:
software distribution and configuration engines. We explain why these do not provide
sufficient support for the scenario described above. We then state assumptions we make
before we subsequently explain our approach in detail.

In section 2, we start with the description of the managent deployment infrastructure
explaining the basic components such as boot stubs, repositories, directories, and
initiators. In section 3, we explain the automated process of managent deployment with
state machines defined for boot stubs and managents followed by a detailed description
of related protocols in section 4. In the following section 5, we explain how this
infrastructure is used to deploy massive amounts of managents in a controlled, recursive
process. The main innovations are: the automatic recursive deployment process
(recursively means that deployed managent instances may be assigned roles to further
deploy sub-instances), controlling this process by matching very dense descriptions
maintained in repositories, the automatic assignment of identity to all generated managent
instances independently of the underlying communication infrastructure (no IP addresses
or hostnames are used), and the proper configuration of all managent instances providing
them with their roles.

1.3 Comparison With the State of the Art

Remote software installation and configuration systems exist today. Configuration
engines provide the centralization of configuration information and centralized interfaces
for operators to perform remote configuration tasks in a distributed environment. An
example of a configuration engine is cfengine [12] used in distributed Linux
environments. Another example is to some extend HP’s itsm change & configuration
manager [13]. Configuration engines by themselves do not provide remote software
installation. They provide support for centralization of configuration information and

5

remote execution of configuration operations. They assume complete configuration
information in their databases.

Installation and configuration systems are also not designed with very large amounts of
entities in mind. Configuration engines are “operator-driven” , operators need to initiate
management operations. They do not support full automation. They usually provide
remote configuration based on remote execution of commands summarized in scripts.
The engine knows all locations where managed software is installed and also configures
each individual instance according to the information maintained in the engine’s
configuration base. Each installation and configuration must be completely pre-
configured in the engine. Configuration engines are not designed to install and configure
whole topologies as one controlled process described in a dense format. Configuration
engines also do not facilitate automatic assignment of identity and roles to individual
instances. All these reasons make clear that configuration engines need to be extended in
order to address these issues stated at the beginning.

Another shortcoming is that each instance requires individual configuration information,
which is difficult to maintain when the number of instances increases dramatically. It is
no longer affordable to maintain individual configuration information for each individual
instance. Our proposal allows summarizing configuration information for whole
(assuming large) groups of managent instances in singular, condensed descriptions
exploiting some managent properties and making some assumptions.

Another principle of configuration engines is that they would perform deployment as one
flat process. We propose the deployment of “deployment engines” , managents with
dedicated roles of initiating deployment processes of sub-ordered managents, which may
themselves be assigned with roles to initiate further deployment processes leading to a
recursive, decentralized deployment process spawning a potentially large hierarchy.

1.4 Assumptions

We make several assumptions for our approach.

- We assume a high degree of similarity among groups of managent instances. This
means that software packages for managents are widely shared, even when managents
perform different functions. Managents obtain their specific roles during
configuration implying that managent roles can be reduced to configuration data. We
assume that only few software packages need to be maintained for large amounts of
managents.

- We assume some protocol handler does exist on hosting systems for handling the
initiating deployment protocol (BIP, the Boot Stub-Initiator-Protocol, see section
4.1). This protocol handler is referred to as Boot Stub. It is the least common
functionality we assume on potential managent hosting systems. This assumption is
comparable to the need for the BOOTP protocol handler required for bootstrapping in
diskless workstations [14]. There might be multiple incarnations of Boot Stubs: they
might be realized as processes launched by inetd, or they might be activated during
the machine’s bootstrap.

6

- We assume a hierarchical organization of the managent topology. This assumption is
caused by the recursive deployment process for large amounts of managents
described in section 5.

- Since we aim to avoid maintaining large amounts of individual configuration data for
large amounts of managent instances, we assume a high degree of similarity in
configuration data among managents as well. The more similarity exists, the more
configuration data can be shared and do not need to be maintained separately for
different sets of managents. Ideally, the only different property among all managent
configurations is their identity tag that is generated automatically during the
deployment process. The other extreme case is that each deployed managent instance
requires an own set of configuration data, which needs to be maintained separately. In
this case, large amounts of managents cause large amounts of configuration data. No
benefits of sharing and compact notations can be exploited in this case.

7

2 Deployment Infrastructure
Automatic deployment1 of managents includes the following steps:

- downloading the managent installation code,

- downloading configuration data for the installation process and for the managent,

- launching the installation code with its specific installation configuration data,

- activating the managent with its specific managent configuration data.

The infrastructure that supports this consists of the following components (see Figure 1):

- An underlying topology of protocol handlers called boot stubs on machines capable
of hosting managents,

- Repositories containing information about installation code (boot code) and
configuration data for managents,

- Directories containing topology models defining where boot stubs and managents are
physically installed, and

- Initiators controlling the deployment and (re-)configuration of managents. Initiators
may be management applications or may be managents themselves assigned with
roles of deploying and controlling other managents.

Figure 1: Infrastructure components for the deployment of managents.

1 sometimes also referred to as “bootstrapping” which gave the initial name for the “boot stub” .

initiator
repository with info for:

 - installation code
 - configurations

directory with:

 - topology
 models

managent

boot stub

 controlled
 environments

8

2.1 Topology of Boot Stubs

The existence of a topology of boot stubs is assumed in an environment where managents
will be deployed. Boot stubs are capable of receiving control messages from the initiator
requesting the deployment of a managent on this location or requesting other control
actions. Boot stubs may be implemented in different ways: as servlets behind web servers
or as daemon processes launched on an initiator’s request received on a certain port,
through inetd on Unix, for example. It is assumed that the boot stub is running after its
hosting machine has been booted. This is a valid assumption as the boot stub is a generic
program that does not need any host-specific configuration. The boot stub could also be
part of the boot image of the hosting machine. The boot stub’s internal structure and its
external protocols are described in sections 3 and 4.

2.2 Repositories

Repositories contain the information needed to control the deployment process of
managents (software distribution, installation, configuration). For managents, three kinds
of information are maintained:

1. References to bootable managent installation code: This is the code booted for a
managent. Managent code will be shared for managents that have similar roles.
Platform or role-specific differences should be controlled through configuration data.

2. References to configuration data for the installation code: This configuration data is
passed to the managent installation code when it is launched. It can be used to control
platform or role-specific differences during the installation process such as setting or
testing specific environment variables, creating directories, etc.

3. References to configuration data for managents: This configuration data is passed to
the managent when it is launched. It should contain information that is specific for a
particular managent instance, e.g. references to managed objects, references to other
managents in the control infrastructure (parent, children), interval times for status
reports, etc.

Since we assume a high degree of sharing of code and configuration data among
managents, we store references to these data in three separate lists in repositories each list
containing entries for sets of managents sharing particular information. The selection of
individual entries from the three lists for a particular managent deployment is based on
matching the managent’s unique identifier represented as a path expression (a node in a
hierarchy can uniquely be identified within this hierarchy by the path starting from the
top node; see section 5.2 how these path identifiers are automatically created and
assigned to managents during the recursive deployment process). Path identifiers
represent the position of a managent in a managent hierarchy.

The repository matches managent’s path identifiers presented for a particular deployment
against patterns defined for entries in each of the three lists. All references are returned
from all three lists for which matches have occurred. This provides a fine-grained
mechanism for sharing individual configurations from each list independently.
Managents may share code, but may not necessarily share installation or managent
configurations or vice versa.

9

The more information can be shared, the less entries in the three lists are needed and the
more compact descriptions can be provided. Similarity and sharing code as well as
configuration data is an important condition we assume. In the extreme case that nothing
can be shared, each individual managent would require its own entry in each of the three
lists. The number of list entries would be equivalent to the number of managents, a
situation we want to avoid in order to effectively deal with large amounts of managents.

The repository contains references to bootable code and configuration data. The actual
code and configuration data may be stored somewhere, e.g. code at a web site of a
company providing managent software and configuration data may be obtained from
another company’s web site providing management services for customer environments.
Managent code and configuration data may also be stored in the same repository, then
just referenced by the address of that repository.

After the boot stub has sent a request with the managent’s path identifier, this identifier is
sequentially matched against patterns of all entries in each list. References to code or
configuration data of all entries with matching patterns will be returned. The boot stub
then follows these references in order to obtain actual code and configuration data.

Figure 2: Deployment information maintained in a repository.

Figure 2 shows an example. A boot stub deploying a managent with a path identifier:

 /hp_mgmt_domain/dc_paloalto/cluster_21/customer_x

would be provided with references for:

<r eposi t or y- i nf or mat i on>

 <managent - code> <! — t wo pat t er ns mat ch t wo shar ed code r ef er ences - - >
 <ent r y>
 <pat t er n pat h=” */dc_paloalto/*” / >
 <pat t er n pat h=” */dc_berlin/*” / >
 <r ef ur l =” ht t p: / / sos. hpl . hp. com/ r eposi t or y/ dc_al l . sh” / >
 </ ent r y>
 . . .
 </ managent - code>

 <i nst al l - conf i g > <! — t wo pat t er ns mat ch t wo di f f er ent conf i g set s - - >
 <ent r y>
 <pat t er n pat h=” */cluster*/*” >
 <r ef ur l =” ht t p: / / sos. hpl . hp. com/ r eposi t or y/ cl ust er _al l . xml ” >
 </ ent r y>
 <ent r y>
 <pat t er n pat h=” */SAP/*” >
 <r ef ur l =” ht t p: / / conf i g. sap. com/ r eposi t or y/ pr occf g. xml ” >
 </ ent r y>
 . . .
 </ i nst al l - conf i g>

 <managent - conf i g>
 <ent r y>
 <pat t er n pat h=” */customer_x/*” / >
 <r ef ur l =” ht t p: / / sos. hpl . hp. com/ r eposi t or y/ cust omer _x_al l . xml ” >
 </ ent r y>
 . . .
 </ managent - conf i g >

</ r eposi t or y- i nf or mat i on>

10

- the installation code (matches ‘*/dc_paloalto/*’),

- the installation configuration information (matches ‘*/cluster*/*’), and

- the managent configuration information (matches ‘*/customer_x/*’).

The boot stub can be implemented in a way that it can launch managent installation code
of different formats, e.g. java classes, scripts or executable binaries according to the code
obtained from code references. Configuration data are stored in form of XML documents.
An example is shown in Figure 3. It contains configuration data obtained from a
reference for the managent installation. When the installation code is launched, the boot
stub provides it with the appropriate environment (<env- par ams>) and command-line
(<ar g- par ams>) parameters. In the same way, managent configuration data are provided
when the actual managent program code is started.

Figure 3: Example configuration data for managent installation code.

2.3 Directories

Directories contain topology models that describe where boot stubs and managents are
currently installed in the system. Directories form the logical container for topology
information. Physically, they may reside within repositories (see section 2.2).

A boot stub topology model contains information about where boot stubs are located in an
environment such that an initiator can contact them and initiate the deployment of
managents. The boot stub topology model can initially be obtained in several ways:

- A management application could initialize the directory with all the machines in
an environment that host a boot stub.

- When a machine boots, and the boot stub is initialized, it could send a registration
message to a pre-configured directory service.

- When the boot stub is initialized, it could send a broadcast message to find the
directory service and could then register with it.

- The directory service could periodically send broadcast messages within its
domain to find existing boot stubs. Boot stubs reply to this broadcast with a
registration message to the directory.

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<conf i gur at i on>
 <env- par ams>
 <env name=” TMP_DI R” val ue=” / t mp” / >
 . . .
 </ env- par ams>

 <ar g- par ams>
 <ar g name=” MGMT_PORT” val ue=” 7078” / >
 . . .
 </ ar g- par ams>
</ conf i gur at i on>

11

The managent topology model reflects all managents in an environment, which have been
deployed through some initiator. The initiator registers a managent when it is booted and
un-registers it when a managent becomes uninstalled.

2.4 Initiators

Any management application can act as an initiator. Or initiators can be exposed
managents in the system whose purpose is to initiate the deployment of other managents.
Initiators can also be implemented specifically for this purpose. Even human initiation
shall be allowed, for instance to trigger the top-most initiator.

Based on information of the boot stub topology model, the initiator is capable of
initiating deployment processes on potentially all boot stubs2 in its environment.

Figure 4: Deployment processes of a managent with obtaining software and configuring the managent.

2 Some more sophisticated policy may further refine this deployment.

 0. obtain information about a boot stub from the
 boot stub topology model

 8. update managent registration information in the
 managent topology model

repository with:

 - bootable code
 - configurations

 1. initiate

 deployment

 2. obtain references for
 managent install code
 and configuration data

5. install managent
6. launch managent

boot stub

initiator

directory with:

 - topology
 models

managent

install
code

 3. obtain managent
 install code

 .

.

.

4. obtain config.
 data

7. report
 deployment

code

12

3 Deployment Process
The deployment process is sketched in Figure 4 and consists of the following steps:

1. Based on the information of the boot stub topology model, the initiator sends a
message to each boot stub in its domain instructing it to initiate the deployment
process.

2. The boot stub subsequently communicates with the repository in order to obtain
references to the bootable code and configuration data based on the identity of the
managent to be deployed.

3. The bootable installation code is obtained from the referenced location.

4. Configuration data are obtained from the referenced locations. It can consist of
several XML documents from different locations.

5. The boot stub runs the installation code and provides it with the given installation
configuration data. After completion of this step, all necessary managent software is
installed and configured.

6. The boot stub launches the managent and provides it with its configuration data.

7. The successful deployment of the managent is reported to the initiator.

8. The initiator updates the managent topology model in the directory to reflect the new
managent in the domain.

On request of the initiator, existing managents can be reconfigured after they have been
deployed. Two basic means exist:

• Managent configuration meaning that the boot stub basically modifies configuration
parameters of managents and triggers a managent to restart with the new
configuration settings.

• Managent environment configuration means that the boot stubs terminates the
managent, obtains a new configuration (maybe even new boot code) and re-runs the
managent installation code with new configuration settings.

More details can be found in the next section that describes the boot stub.

3.1 The Boot Stub

The boot stub is a protocol handler that runs on all machines that might need to host a
managent. It is capable of receiving control messages from some initiator that either
requests deployment of a managent or some other control commands.

The boot stub can be described by its internal behavior and its external interfaces defined
by protocols. It communicates with three different entities:

13

- The initiator that sends control commands to the boot stub. An initiator could be
some management application or another managent that recursively deploys and
configures other managents.

- The repository that contains references to bootable managent installation code
and configuration information.

- The managent itself, after the stub has launched it.

Figure 5: Structure of a boot stub with a managent.

The boot stub can have different implementations. It could be, for example, a daemon
process listening on a certain port, or it could be a servlet behind a web server. It is
assumed that the boot stub is running after its hosting machine was booted. We can
assume this since the boot stub is a generic program that does not need any host specific
configuration. The boot stub could, for example, even be part of the boot image of the
hosting machine.

Following, the boot stub’s internal structure and behavior will be described. The external
protocols will be discussed in section 4.

Two state machines represent the boot stub’s internal behavior. One controls the external
managent environment and the other the managent itself.

3.2 Control of the External Managent Environment

The external managent environment comprises all the installation code, installation
configuration data and actions that are necessary to deploy a managent. In general, the
deployment process consists of the code distribution, configuration and installation.
Figure 6 shows the states and transitions that are here discussed in more detail:

1.) Load Install Code: The boot stub sends a request to the repository in order to obtain
references to the managent installation code (boot code) and configuration data. The
repository determines the appropriate code and configuration data based on the
managent’s identity. The boot stub then obtains the boot code from the specified

hosting
system

boot stub protocol

handler

managent

External
managent

environment repository

initiator

BIP BMP

BRP

14

location. The boot code could also already contain all the managent’s code or it could
be an installation program that obtains more code files and configuration data from
further installation servers.

2.) Configure: As for the boot code, the repository provides references to the installation
configuration data of the managent. The boot stub obtains the configuration data from
the specified locations. Configuration data can, for example, include environment
variables and initialization parameters that are passed to the managent installation
program. It is possible to reconfigure the managent environment after the installation
process. This implies that the boot stub requests new references for the configuration
data from the repository, downloads the actual data and then needs to re-run the
installation program with the new configuration.

3.) Install: The boot stub runs the managent installation program with the given
configuration data. The installation process can include typical actions such as
creating directories, updating application configuration files, downloading more
program files or libraries, etc.

4.) Uninstall: The uninstall process removes all the managent and installation program
code and data from the system and reverses all actions taken during the installation
process. We assume that managent software and configuration data allow clean un-
installation.

Figure 6: The external managent environment state diagram.

3.3 Control of the Managent

Figure 7 shows the state diagram of the managent itself. The managent remains in the
state non-existent as long as the managent environment is not yet in the state installed.
The deploy transition is made when the managent environment enters the installed state;

Non-

Existent

Install Configure

Uninstall

 Configure

Installed Code
Loaded

Configured

Uninstall
Uninstall

Load Install
Code

Configure

15

the remove transition is performed whenever the managent environment leaves the
installed state.

Managent configuration includes the same actions as for the configuration of the
installation process. References to configuration data are obtained from the repository
based on the managent’s identity. The actual configuration data are then obtained from
the specified locations. Managent configuration data can include parameters like the port
number where the managent will be listening at, identifiers and/or addresses of other
managents in the control hierarchy, interval times for reporting etc. They can be passed to
the managent in form of environment variables or as command line arguments passed to
the managent when it is launched. Reconfigurations of the managent can also be
performed at any later point in time.

Once the managent is deployed and configured, the boot stub can start the managent. The
managent can be in an active or passive state. In the active state, the managent fulfills his
specific management tasks. It receives and sends messages from or to other managents,
sensors and management applications. The passive state is used to temporarily deactivate
the managent without shutting it down.

State transitions for both, external managent environment and the managent itself, are
caused by the execution of control commands received from the initiator.

Figure 7: The managent state diagram.

Start

Configure

Remove

Configure

Shut-
down

Deployed

Active

Deploy

Remove

Non-

Existent

Activate

Deactivate
Passive

Configured

Shut-
down

16

4 Protocols

4.1 Boot Stub – Initiator – Protocol (BIP)

The boot stub receives messages that include control commands, which can change the
state of the external managent environment or the managent itself. Control commands
can be categorized into those that affect the external managent environment and those
that affect the managent itself. However, there are some dependencies so that both can be
affected. The first part of Table 1 describes the protocol messages for the external
managent environment, the second the ones for the managent.

Cont r ol Command
Request s

Ext er nal Managent
Envi r onment St at e Machi ne

Managent St at e Machi ne

deploy
 r eposi t or y- ur i
 managent i d

uri: Uni ver sal
Resour ce I dent i f i er ,
RFC 1630 (and
subsequent RFC’ s)

- condi t i on: must be i n
st at e non-existent,

- t r ansi t i ons: l oad i nst al l
code, conf i gur e, i nst al l ,

- r esul t i ng st at e:
installed

- condi t i on: must be i n
st at e non-existent,

- wai t s unt i l ext er nal
managent envi r onment i s
i n st at e installed,

- t r ansi t i ons: depl oy,
conf i gur e, st ar t ,

- r esul t i ng st at e: active

configure-env
 r eposi t or y- ur i
 managent i d

- condi t i on: must be i n
st at e code loaded,
configured or installed,

- t r ansi t i ons: conf i gur e,

- Resul t i ng st at e:
configured

- condi t i on: must be i n
st at e non-existent,

uninstall
 managent - i d

- condi t i on: none,

- t r ansi t i ons: uni nst al l ,

- r esul t i ng st at e: non-
existent

- condi t i on: must be i n
st at e non-existent,
deployed or configured,

- t r ansi t i ons: r emove,

- st at e: non-existing

start
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
st at e configured,

- t r ansi t i ons: st ar t ,

- r esul t i ng st at e: active

shutdown
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
st at e active or passive,

- t r ansi t i ons: shut down,

- r esul t i ng st at e:
configured

restart
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
st at e active or passive,

- t r ansi t i ons: shut down,
st ar t ,

- r esul t i ng st at e: active

17

activate
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
passive st at e,

- t r ansi t i ons: act i vat e,

- r esul t i ng st at e: active

deactivate
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
active st at e,

- t r ansi t i ons: deact i vat e,

- r esul t i ng st at e: passive

configure-managent
 r eposi t or y- ur i
 managent - i d

- condi t i on: must be i n
st at e installed

- condi t i on: must be i n
st at e deployed or
configured,

- t r ansi t i ons: conf i gur e,

- Resul t i ng st at e:
configured

4.2 Boot Stub – Repository – Protocol (BRP)

The protocol between the boot stub and the repository consists of the boot stub’s requests
for references to managent installation code and/or configuration data. Four different
request types exist:

1. request managent installation code reference,

2. request managent installation configuration references,

3. request managent configuration references,

4. request all references (1. to 3.) for one managent.

An example of a request to the repository and its response is shown in Figure 8.

Figure 8: Example of a message exchange in the Boot Stub – Managent – Protocol (BMP).

Request:

<r equest >
 <t ype>i nst al l - conf i guar at i on</ t ype>
 <i d>/ dc_pal oal t o/ cust omer _x/ cl ust er _12</ i d>
</ r equest >

Response:

<r epl y>
 <t ype>i nst al l - conf i guar at i on</ t ype>
 <i d>/ dc_pal oal t o/ cust omer _x/ cl ust er _12</ i d>
 <r ef t ype=” ur l ” >ht t p: / / sos. hpl . hp. com/ r eposi t or y/ cust omer _x/ conf i g. xml </ r ef >
 <r ef t ype=” ur l ” >ht t p: / / sos. hpl . hp. com/ r eposi t or y/ dcmgmt / pal oal t o. xml </ r ef >
 <r ef t ype=” ur l ” >ht t p: / / sos. hpl . hp. com/ r eposi t or y/ cl ust er mgmt / basi c. xml </ r ef >
</ r epl y>

18

4.3 Boot Stub – Managent – Protocol (BMP)

The boot stub must know how to configure, start and shutdown a managent’s program.
There could be different implementations how the boot stub determines how to start the
managent, for example:

• The boot stub recognizes the file format (e.g. binary executable, perl script, java
program),

• the managent installation program returns a string that represents the command
line that starts the managent when subsequently being executed by the boot stub,

• or the initiator explicitly tells the boot stub the start command.

Configuring the managent can be done by passing environment variables and
initialization (command line) parameters to the managent program.

Additionally, the managent program must be able to receive the following control
commands from the boot stub:

• activate: start or continue work (receiving requests, processing, sending event and
decision notifications),

• deactivate: intercepts the managent’s current work in a consistent way such that
no data will be lost and work can be resumed after reactivation.

In the prototype, a the boot stub is realized as a java servlet. The communication between
initiator and boot stub is based on HTTP. The message format is XML-based, files are
attached as binary MIME extensions to XML messages. An example control message
sent to a boot stub that initiates the deployment of a managent is:

Figure 9: Example control message that initiates the deployment of a managent.

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<header >
 <t o addr =" ht t p: / / pal mt r ee. hpl . hp. com: 8080/ cs/ boot st ub" / >
 <f r om addr =" ht t p: / / sos. hpl . hp. com/ Cont r ol Ser vi ce" / >
 . . .
</ header >

<?xml ver si on=" 1. 0" encodi ng=" UTF- 8" ?>
<body>
 <cmd name=" depl oy" >
 <r eposi t or y ur i =" ht t p: / / sos. hpl . hp. com: 8080/ cs/ r eposi t or y" / >
 <i ni t i at or ur i =" ht t p: / / sos. hpl . hp. com/ Cont r ol Ser vi ce" / >
 <boot - f i l e t ype=" j ava" name=" Si mpl eAgent . c l ass" / >
 </ cmd>
</ body>

19

5 Recursive Deployment of Managents
Full automation of the managent deployment process is inevitable in order to deal with
massive amounts of managents. Individual instances cannot be installed or configured
manually any more. The goals of our approach is:

- total automation of the managent deployment process as a requirement to address
large numbers of managents,

- compact configuration descriptions applying to whole (potentially large) sets of
managents rather than individual descriptions per instance, and

- decentralization of the deployment process by deploying sub-branch “deployment
managents” leading to a recursive, hierarchical structure.

In this section we explain how the mechanisms introduced before will be used to deploy
large numbers of managents using a recursive method. The proposed method automates
all three stages of the deployment process for managents: software distribution,
installation, and configuration under some assumptions explained in section 1.4

- managents form a hierarchical topology, and

- groups of managents are “similar” to each other meaning they run the same
software using the same or similar configurations. The more configuration
information can be shared, the higher is the compactness in configuration
descriptions.

Figure 10: The recursive deployment process.

top-level initiator managent

 deploys…

next-level initiator managents,
which deploy…

next-level initiator managents,
which deploy…

next-level managents…

domain repository
with:
 - bootable code
 - configurations
 - topology models
 (part of the directory)

20

Domain repositories contain information about managents and relationships among
managents in form of topology models (in the directory), references to the bootable code
and respective configuration information for managents. The repository information thus
entirely controls the managent deployment process. References to bootable code may
include scripts of any suitable scripting language (sh, per l , pyt hon) or Java classes as
used in the prototype. References to configuration information include environment
settings, paths, command line arguments etc. Topology models maintain the information
where boot stubs are residing in an environment and where managents have already been
installed and started. After activation, initiators register the deployed managents with
their directory. The repository information is outside and thus independent of the
managed system, though repositories may well reside inside the managed systems.
Repository information can thus be managed and maintained separately at a location
where it is best suited. A variety of repositories can exist in order to provide means to
structure configuration information and maintain it separately for different regions.

5.1 The Recursive Deployment Process

The recursive deployment process of managents is based on the classification of
managents into two categories (see Figure 10):

• managents with initiator roles (non-leaf node managents) – these are managents
which obtain code and configuration information during their own deployment
process providing them with initiator roles for deploying sub-ordered managents,
which on their part can again be assigned roles as initiators for sub-sub-ordered
managents;

• managents with no initiator role (leaf-node managents) – these are typically
managents performing the actual managent tasks of monitoring, data processing
and dissemination, event detection, decision-making and actuation. The recursive
deployment process stops here.

A hierarchy builds up during this recursive generation process controlled by providing
managents at each level with appropriate configuration information. Configuration
information also determines the role of either of the two categories. Controlling the
overall deployment process is thus reduced to configuration information in the
repositories passed to managents providing them with their roles during their deployment.

In Figure 10, the top levels of the hierarchy are controlled by information contained in the
top-level repository. Each initiator managent obtains the repository reference as part of its
configuration information from the parent initiator managent. A sub-ordered repository
then controls lower levels of the hierarchy. It is part of the configuration information,
which repository a managent will refer to for deployment and control of sub-ordered
managents. This allows establishing separate repositories, see also section 5.6.

5.2 Assigning Identity to Managents During the Deployment Process

A managent’s identity is the information that uniquely identifies a managent when it
communicates with other instances. Management agents in existing management systems
are often identified by IP addresses or hostnames of systems where they reside since the

21

management agent can automatically obtain this information. Another approach is to
assign a unique identification string to each managent instance during deployment. This
identification information can be pre-configured for each managent, or it can be
generated while building the managent hierarchy.

Since we assume a hierarchy of managents, we can apply a total enumeration schema in
this hierarchy in order to generate hierarchy-wide unique identification strings for each
managent instance. Concatenated, these strings represent paths starting from the top level
to all individual managent instances. Paths are unique for all managents, and such paths
can easily be generated during the deployment process.

Initiator managents at each level of hierarchy know all their direct children. This
information is passed to them as part of their deployment configuration information.
Children are enumerated uniquely among all siblings within the scope of the parent
managent. The initiator managent then initiates deployment processes for all children and
concatenates its own identification path obtained during its deployment with respective
children identifiers and passes the result to each child as identification string:

chi l dPat h : : = par ent Pat h + “ / ” + l ocal chi l d enumer at i on.

Path expressions are unique within the hierarchy and can thus be used as managent
identifiers. Using path expressions also provides the advantage that these strings can
easily be matched in order to obtain proper configuration information from repositories as
shown in the following section. Figure 11 shows an example.

Figure 11: Generating managent identifiers based on paths in the hierarchy.

5.3 Obtaining Managent Deployment Data from Repositories

Repositories maintain the deployment information as shown in section 2.2. The boot stub
receives a ‘deploy’ request from an initiator (see BIP in section 4.1)

initiator
�

 boot stub: deploy
 r eposi t or y- ur i ,
 managent i d.

The initiator passes a reference to the repository and the new generated managent
identifier path to the boot stub. The boot stub then contacts the indicated repository
providing the managent identifier path to the repository where it is matched against
patterns in the three lists containing references to managent code, installation

Initiator managents

” leaf” -node managents

MA

M7 M9

M_LA M_CH M_PA M_LI

Path ID: “ /MA/M7/M_PA”

sibling
enumeration:

22

configuration and managent configuration data (Figure 2 on page 9). Matching managent
identification paths with patterns in the repository is based on regular expressions.
References matching the managent’s identifier path are returned from the repository to
the boot stub. The boot stub then obtains the actual data from these references.

5.4 Controlling the Recursive Deployment Process

Managent deployment data obtained during deployment determines the role a managent
will have, whether it will be assigned a role of an initiator for sub-ordered managents or it
will be a leaf-node managent with no further deployments. Since the role of an initiator is
entirely reduced to managent’s configuration data, its control is also provided by
configuration data. The recursion stops at a hierarchy level where no configuration data
for initiator managents is obtained.

The termination of the recursion is defined by patterns of entries, which do not represent
further initiator roles in repositories (see Figure 12). Patterns are matched against
managent identifier strings growing through the levels of hierarchy. This ensures that the
recursion can be controlled entirely through patterns and can be terminated at designated
points indicated by patterns. Multiple levels of initiator managents can easily be
described by patterns like:

Figure 12: Example for controlling a recursive deployment process.

Figure 12 shows an example of a hierarchy growing across four levels of initiator
managents. The recursion terminates when at level five a regular (non-initiator)
configuration is matched. Assuming that each initiator managent deploys 10 child
managents each, the shown description would spawn a five-level, symmetric hierarchy of
altogether 10k managents (1+10+100+1000+10000).

Managent identifier paths growing through the levels of hierarchy could be:

initiator managent at level 1: “ /region1”
initiator managent at level 2: “ /region1/zone3”
initiator managent at level 3: “ /region1/zone3/dc6”

<r eposi t or y- i nf or mat i on>

 . . .

 <managent - conf i g>
 <ent r y> <! —t er mi nat i on of r ecur si on - - >
 <pat t er n xpat h=” /*/*/*/*/*” / > <! —l evel 5 - - >
 <r ef ur l =” ht t p: / / sos/ r egul ar _managent _conf i g. xml ” >
 </ ent r y>
 <ent r y> <! —r ecur si ve gener at i on - - >
 <pat t er n xpat h=” /*/*/*/*” / > <! —l evel 4 - - >
 <pat t er n xpat h=” /*/*/*” / > <! —l evel 3 - - >
 <pat t er n xpat h=” /*/*” / > <! —l evel 2 - - >
 <pat t er n xpat h=” /*” / > <! —l evel 1 - - >
 <r ef ur l =” ht t p: / / sos/ i ni t i at or _conf i g. xml ” >
 </ ent r y>
 </ managent - conf i g >

</ r eposi t or y- i nf or mat i on>

23

initiator managent at level 4: “ /region1/zone3/dc6/core7”
regular managent at level 5: “ /region1/zone3/dc6/core7/sos.hpl.hp.com”

with the level 5 managent identifier path matching the termination pattern.

When differences in configuration data among levels or even among managents within
one level exist, these differences would reflect in separate entries in the repository
information with patterns matching only the appropriate managent identifier paths.

The proposed repository description is very effective for managent hierarchies with a
high degree of similarity and symmetry. The more configurations become different, the
more extensive the description will become. It is our belief that very-large scale systems
will have a high degree of similarity and symmetry in order to be controllable and
maintainable.

5.5 Parallel Deployment Processes

Each initiator managent initiates (spawns) a deployment process for child managents,
which on their part may spawn further deployment processes. All branches starting from
each initiator managent are independent of each other and can thus proceed in parallel.

Figure 13: Parallel deployment processes.

5.6 Domain Repositories

The information from which repository a boot stub will obtain the deployment data for a
managent is part of the initial deploy request (see section 4.1):

initiator � boot stub: deploy
 repository-uri,
 managent i d.

The reference to a repository issued with a deploy request is part of an initiator’s own set
of configuration data. References to multiple repositories can be configured. This allows
to organized configuration information in separate, domain-specific repositories.

Figure 14 shows an environment where two repositories are used. The top-level
repository maintains the configuration information for the two top-level initiator
managents (MA and M7 in the figure). The managent M-PA, sub-ordered to M7, then
refers to its own domain repository. This selection was made based on configuration data
passed to initiator managent M7, that includes also the reference to the repository used

24

for further deployed sub-managents, in order to initiate a deployment of managent M-PA
using the sub-domain repository.

Figure 14: Domain repositories.

Managent identification is always based on full paths through the hierarchy. In order to
avoid dependencies from the overall hierarchy occurring in domain repositories,
identifiers and patterns are used relatively to the scope of the domain repository. This
means that the full path of managent M-PA

 /MA/M7/M-PA

is cut by the path of the position of the domain repository in the hierarchy indicated by
/MA/M7. The actual identifier of this managent within the scope of the sub-domain
repository then is

 /M-PA.

Relative paths can only be used when domain repositories fit into the hierarchy that can
be specified by a path such as /MA/M7 in the figure. Otherwise domain repositories must
be managed with full path identifiers.

MA

M7

M-PA

absolute path:
“/MA/M7”

top-level repository

domain
repository

relative path: “M-PA”
used within the scope of this
domain repository to identify
managents within this domain

stores: “M-PA”

deploy with uri of
domain repository

25

6 Summary
In this report, we propose a schema for the automated deployment of massive amounts of
management agents (managents) used in next-generation data center management and
control systems anticipating that these environments will become two orders of
magnitude larger than they are today and will be characterized by the total virtualization
of resources, platforms and execution environments. From this space, we have addressed
the problem of how massive amounts of managents can be deployed, a process that
includes the distribution of software for managents and the installation and configuration
of this software. We compare our approach with configuration engines used today for
managing software and configurations in larger environments. Shortcomings are outlined
and addressed by our solution.

The infrastructure consists of so-called boot stubs responsible for handling the initial
deployment protocols, repositories forming the information base for references to all
needed deployment and configuration data, and directories maintaining topology models,
which is the information about where boot stubs reside in a system and where existing
managent instances are registered. The deployment process for individual managent
instances is described in detail in form of state diagrams and three protocols: BIP, BRP
and BMP. We assume that managents will be organized in hierarchies, and we exploit
this property to automatically generate and assign unique identifiers to managent
instances during their deployment.

In section 5, the recursive deployment process for massive amounts of managents is then
presented built on the primary mechanisms of the deployment infrastructure to deploy
theoretically unlimited amounts of managents forming hierarchies. It is explained how
this process is controlled and how the recursion is terminated. Control, configuration and
termination is described in a very dense format using patterns formulated as regular
expressions that are matched against path identifiers of individual managents in order to
obtain the proper deployment information for them. We assume large groups of
managents and whole hierarchies of them will share software and configuration data.

Advantages of the proposed solution:

The proposed solution overcomes problems by automatically assigning identifiers to
managent instances based on their position in the managent topology rather than using
their current physical hosting address. We thus achieve the automation of assigning
identity to managent instances independently of the physical location of managents.

Another addressed issue is how managent topologies are established. A managent
topology defines communication relationships among managents. Sub-ordered managents
need to know to which supervisor managent they report. Typically, this is configuration
information passed to managents during configuration. This information needs to be
described and maintained in the configuration base separately for each managent
instance. We avoid the need for configuring topologies separately by using the recursive
deployment process for establishing a default communication topology. Links between
parents and children are kept in managents throughout the hierarchy. This approach is
slightly less flexible since it assumes a deployment hierarchy as the only managent

26

communication topology, but it avoids the need for additional configuration on the other
hand. However, other topologies may be established as well. They then need to be
configured separately.

To summarize, the proposed method has advantages over prior art regarding

• the automatic assignment of identity to managent instances independently of
physical hosting addresses;

• very dense deployment descriptions for large amounts of “similar” managents;

• regular expressions used to effectively formulate pattern used in repositories to
match managent’s identifier paths;

• using only references to managent software as well as configuration data allows
rather than this data itself provides the reduction and simplification of data
maintained in repositories (XML and XML references can be used);

• maintenance in repositories is simplified and reduced to maintain references
rather than particular versions of software and configuration data;

• entirely relying on references in repositories also allows the “webification”
(establishing hyper-linked structures) of configuration data and software
incorporating offerings from a multitude of vendors (it can also be seen as a new
way for distributing and managing software and configuration data based on a
web -model);

• the self-establishment of a default communication topology among managents
based on the recursive generation of the deployment hierarchy;

• domain structures can easily be established using domain repositories;

• the isolation of configuration data form the management system as well as from
the managed system by maintaining them in separated repositories;

• requirements to potential managent hosting systems are reduced to a minimum by
only assuming the initial bootstrap protocol handler (boot stub) on those systems;

• the explicit representation of topology information in the directory, and finally

• the complete automation of the deployment process for managents applied in
massive amounts.

The principles presented in this paper for managents can be generalized for common
services or software systems.

The proposed solution has been prototyped in Java, and we experimented with it in a 524-
node Linux cluster, the largest system available to us at that time this work was done.

27

Table of Contents
Massive Deployment of Management Agents in Virtual Data Centers..............................1

1 Introduction...1

1.1 Impact of Scale on Systems of Management Agents..3

1.2 Structure of this Report ...4

1.3 Comparison With the State of the Art ...4

1.4 Assumptions..5

2 Deployment Infrastructure..7

2.1 Topology of Boot Stubs..8

2.2 Repositories...8

2.3 Directories...10

2.4 Initiators ..11

3 Deployment Process..12

3.1 The Boot Stub..12

3.2 Control of the External Managent Environment ...13

3.3 Control of the Managent ...14

4 Protocols..16

4.1 Boot Stub – Initiator – Protocol (BIP) ..16

4.2 Boot Stub – Repository – Protocol (BRP) ..17

4.3 Boot Stub – Managent – Protocol (BMP) ...18

5 Recursive Deployment of Managents...19

5.1 The Recursive Deployment Process..20

5.2 Assigning Identity to Managents During the Deployment Process..................20

5.3 Obtaining Managent Deployment Data from Repositories...............................21

5.4 Controlling the Recursive Deployment Process..22

5.5 Parallel Deployment Processes...23

5.6 Domain Repositories...23

6 Summary ...25

Table of Contents..27

References...28

28

References

[1] Kotov, V.: On Virtual Data Centers and Their Operating Environments, HP Labs Technical Report,
HPL-2001-44, March 8th, 2001.

[2] HP Utility Data Center (UDC), http://www.hp.com/go/hpudc, or http://www.hp.com/go/always-on,
November 2001.

[3] Rolia, J., Singhal, S., Friedrich, R.: Adaptive Data Centers, Proceedings of SSGRR 2000 Computer
and eBusiness Conference, L’Aquila, Italy, Proceedings on CD-ROM, ISBN 88-85280-52-8, or
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm, August 2000.

[4] Kotov, V.: Towards Service-Centric System Organization, HP Labs Technical Report, HPL-2001-54,
March 21st, 2001.

[5] Graupner, S., Kotov, V., Trinks, H.: A Framework for Analyzing and Organizing Complex Systems,
Proceedings of the 7th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 2001), pp. 155-165, Skövde, Sweden, June 11-13, 2001.

[6] Mansuri-Samani, M.: Monitoring of Distributed Systems, Ph.D. Thesis, 165 pages, University of
London, UK, December 1995.

[7] Graupner, S., Kotov, V., Trinks, H.: Distributed System Management with System Factory, HP Labs
Technical Report, HPL-2000-152, November 17, 2000.

[8] Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Self-Organizing Control in Planetary-Scale
Computing, submission to the IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), 2nd Workshop on Agent-based Cluster and Grid Computing (ACGC), May 21-24, 2002,
Berlin.

[9] HP: OpenView Network Node Manager (NNM), http://www.openview.hp.com/products/nnm.

[10] HP: OpenView, http://www.openview.hp.com.

[11] Chemnitz University of Technology, CLiC 524-node Linux Cluster, http://www.tu-
chemnitz.de/urz/anwendungen/CLIC.

[12] http://cfengine.org.

[13] HP ITSM, http://www.openview.hp.com/products/itsmchange/.

[14] Croft, B., Gilmore, J.: The Bootstrap Protocol (BOOTP), RFC 951, September 1985, with related
DHCP extensions, see RFC 15[32-34], http://www.ietf.org/.

