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Abstract. We introduce a new security property for undeniable and confirmer signatures in
the multi-user setting, namely, anonymity. We show that many existing systems do not have
this property. We modify the original undeniable signature scheme of Chaum and van Antwer-
pen and the RSA-based undeniable/confirmer signature scheme of Gennaro, Krawczyk and
Rabin so that they achieve anonymity. We also provide a new, more efficient, denial protocol
for the undeniable signature scheme of Chaum and van Antwerpen.

1 Introduction

Undeniable signatures are public key digital signatures which cannot be verified without interacting
the the signer. Confirmer signatures are undeniable signatures where signatures may be verified
by interacting with an entity (the confirmer) designated by the signer. Implicit in this notion is
the principle that information about the signature cannot be obtained without some interaction.
The security of undeniable and confirmer signatures has been considered in the single user case
under the notion of ‘invisibility’ [5], which is essentially the inability to determine whether a given
message-signature pair is valid for a given user. In [5] invisibility is defined in terms of being able
to be simulated. In [2] this notion is phrased in terms of distinguishing whether a signature s
corresponds to a message mg Or mj.

In this paper we suggest that in the multi-user setting it is also important to consider the
notion of ‘anonymity’. Informally, this security property is as follows. Imagine a system with n
users and suppose we are given a valid message-signature pair and are asked to determine which
user generated the signature. By running signature confirmation or denial protocols with a given
user (or their designated confirmer) we can determine whether or not they generated the signature.
An undeniable or confirmer signature scheme has the anonymity property if it is infeasible to
determine whether a user is or is not the signer of the message without interacting with that user
or with the n — 1 other users. A more precise definition of anonymity is given in Definition 1 where
the problem is distilled down to the case of two users.

For example, one application of undeniable signatures is for open bid auctions. Suppose bidders
submit public bids together with their undeniable signature on the bid. On completion of the
auction the winning bidder can prove to the auctioneer that they signed the winning bid. Similarly,
other bidders can prove that they are not the winners. In order to preserve anonymity of the
bidders it is essential that it be computationally infeasible to guess the identity of a bidder from
the published signature.

As this example shows, anonymity is an important security property for undeniable and con-
firmer signatures. The analysis of this property has been overlooked in the existing literature. The
main purpose of this paper is to give a precise definition for anonymity in this setting and to
provide practical and efficient schemes with this security property.

* This author thanks Hewlett-Packard Laboratories, Bristol for support.



Many existing schemes do not provide anonymity. For instance, as we show below, the unde-
niable signature scheme of Chaum and van Antwerpen does not provide anonymity, but may be
easily modified (see Section 4) so that it has this property. The RSA-based schemes of Gennaro
et al [8] and Galbraith et al [7] also do not provide anonymity. These schemes may be modified
so that they provide anonymity, but this process is considerably more subtle than the finite field
case.

For confirmer signature schemes we should stress that we do not study the problem of whether
the signature reveals who the designated confirmer is (though our solutions do have this property).

1.1 The Chaum and van Antwerpen undeniable signature scheme

As a taster for the rest of the paper we now recall the scheme of [3] and show that a naive
implementation of it in the multi-user setting does not provide anonymous signatures. Note that,
in [3], the anonymity aspect was not explicitly discussed.

The undeniable signature scheme of [3, 4] is as follows. Let g € F;,. Each user has a secret key
x and a public key h = ¢g*. The undeniable signature on message m is s = H(m)* where H(m) is
a one-way padding scheme involving a hash function. To confirm the signature one must interact
with the signer and perform an interactive proof of equality of discrete logarithms on the tuple
(g, h, H(m),s). The signer must also have the ability to deny invalid signatures by performing a
‘proof of inequality’ protocol.

Assume that all users work in the same finite field (we discuss in Section 8 the harder case
where users do not share the same group). In [3,4] it was specified that g have prime order, but
the values taken by m were not explicitly specified.

The problem of determining if a signature was generated using a certain user’s public key is
essentially the decision Diffie-Hellman problem. As is well known, this problem is not necessarily
hard in groups whose order has small prime factors. If users allow H(m) to be such that (%) =
—1 then, by considering the Legendre symbol of a known valid signature s, one can determine
whether the secret key = of a given user is even or odd. One can construct a database of parity
information about the various users in a system by considering known confirmed signatures. Then,
for some other message-signature pair (m,s) such that (@) = —1 one can reduce the number
of candidate signers of the message by considering the value (£). Users whose secret key has the
opposite parity can be eliminated from the list of possible signers without having to execute denial
protocols with them. This shows that one cannot have anonymity without insisting that messages

be such that (@) =+1.

1.2 Plan of the paper

In Section 2 we mention some other undeniable and confirmer schemes and show why some of them
do not provide anonymity. In Section 3 we give a precise definition for anonymity.

In Section 4 we give a modification of the undeniable signature scheme of Chaum and van
Antwerpen and introduce a new denial protocol which is more efficient than any previous schemes
in the literature. We prove that our new scheme has the anonymity property under the assumption
that the Decision-Diffie-Hellman problem is hard.

We then discuss anonymity for some RSA-based undeniable and confirmer signature schemes.
Our main result is Theorem 3 which shows that a modified version of the RSA-based schemes
of Gennaro, Krawczyk and Rabin [8] and Galbraith, Mao and Paterson [7] have the anonymity
property. The proof of Theorem 3 contains an innovative proof technique which will be of interest
to other problems in provable security.

In Section 8 the scheme of Chaum and van Antwerpen is generalised to the case where users
may use different finite fields. We show that anonymity may be achieved in this setting. In Section
9 we discuss the anonymity of several other schemes in the literature.

Finally, in Section 10, we discuss anonymity in the extremely general situation where partic-
ipants may use completely different undeniable and confirmer signature schemes. We argue that
anonymity can be obtained even in this setting, as long as certain conditions on the schemes are
satisfied.



2 Previous schemes

We will discuss the following schemes.

1. The original undeniable signatures of Chaum and van Antwerpen [3,4].

2. The RSA-based undeniable signature of Gennaro, Krawczyk and Rabin [8] (which also has a
confirmer version) and its extension by Galbraith, Mao and Paterson [7].

3. The original Chaum confirmer signature scheme [6].

4. The schemes of Michels and Stadler [11].

5. The scheme of Camenisch and Michels [2].

We now briefly summarise these schemes. The original Chaum and van Antwerpen scheme has
already been mentioned in the introduction. The RSA-based schemes of [8,7] use the standard
RSA signature s = H(m)¢ (mod N) but the difference is that the verification exponent e is not
public but is instead known only to the signer (and confirmer).

The Chaum confirmer scheme [6] uses a discrete logarithm system with generator g and uses
RSA signatures. The public key of the signer is (NN, e). The confirmer has public key h = g*. The
signer chooses a random r, computes a = g",b = h” and a = (H(a,b) ® F(m))? (mod N) (where
F is a hash function and H is an invertible mixing function). The signature is (a, b, ). Both the
signer and the confirmer are able to prove to another user that the signature is valid (see [6] for
details).

Michels and Stadler give two solutions, both using the tool of ‘confirmer commitments’. The
first uses 3-move zero knowledge proofs for signature while the second uses existentially forgeable
signature schemes.

Camenisch and Michels give a general construction built from a signature scheme and an
encryption scheme. Let the confirmer have a public key K¢ for the encryption scheme and a
signer have a public key Kg for the signature scheme. To sign a message m the signer computes
s = Sign(m) and e = Enc(s, K¢) and publishes e as their signature. The confirmer can decrypt
e to obtain s and thus determine the validity of the signature using Kg. The confirmer is able
to prove the validity to other entities using some zero-knowledge proof, which in general requires
binary challenges and is very inefficient. Our solutions are much more efficient than the methods
of Camenisch and Michels.

We will now mention the anonymity properties of these schemes. As shown above, the original
undeniable signature scheme has an attack on anonymity if message digests H(m) are permitted
to have maximal order. We give a modified version of the scheme and prove that it has the
anonymity property in Sections 4 and 5. Similarly, the RSA-based schemes of [8, 7] have an attack
on anonymity which is presented in Section 6. The schemes of [8, 7] are repaired and their security
proven in Sections 6 and 7. In Section 9 we show that Chaum’s confirmer scheme [6] and one of the
schemes of Michels and Stadler [11] (the one using RSA signatures) have attacks on anonymity of
the same form as the attack on the other RSA-based schemes. In Section 9 we also argue that the
Camenisch-Michels scheme [2] does have the anonymity property.

We must note that there is some disparity in the literature about the definition of confirmer
signature schemes. The bone of contention is whether the original signer has the ability to confirm
and/or deny signatures. Camenisch and Michels [2] claim that it is undesirable for signers to be
able to verify or deny their signatures. We have a contrary opinion, that it is important for signers
to be able to confirm and/or deny signatures. In particular, it seems to us to be an important
personal right to be able to ‘clear one’s name’ by denying signatures that are not genuine. The
schemes of [2,11,6] do not allow users to deny signatures, whereas the schemes of [3,4,8,7] do
allow this. In any case, these distinctions are not an obstacle to a discussion of the anonymity
properties of the schemes.

3 Anonymity

The distinguishing property of undeniable and confirmer signatures [3,4,6] is that a signature
cannot be verified without access to the signer or confirmer. This opens the possibility of having a



system whereby signatures are anonymous, in the sense that no information about who generated
a valid message-signature pair can be obtained apart from the one bit obtained by each execution
of a confirm or denial protocol.

We will give a rigorous definition for anonymity. Constructing such a definition is rather com-
plicated as there is the issue of whether signatures are valid or invalid for any user.

The first step is to distill the problem down to the case of just two users (a scheme with the
anonymity property for two users can easily be shown to be secure in the case of n users).

If a signature is known to be valid for some user then the identity of the signer can be obtained
by executing a signature confirmation protocol with that user, or by executing a signature denial
protocol with the other user.

If a signature is not known to be valid for some user then one might expect that the problem
be even harder, since executing denials with all but one user does not give any information about
whether the user is the signer or not. But there are many reasons why a signature might not be
valid for any users, and some of these might conceivably be easily determined by an adversary.
For our definition we specifically exclude this case by imposing the condition that the signature be
valid for one of the users.

Definition 1. (Anonymity) Let (Gen,Sign,Confirm,Deny) be an undeniable or confirmer signa-
ture scheme. An adversary D is said to be a distinguisher under a chosen message attack if it
behaves as follows.

Let (pko, sko) < Gen(1%) and (pky, sky) + Gen(1¥) be two key pairs. The input to D is the pair
(pko,pk1). The distinguisher D is permitted to interact with the hash function oracle(s), to obtain
signatures on messages and to run signature verification and denial protocols (with the signer or
a confirmer as appropriate) with respect to both of these public keys. At some point D constructs
a message m and requests a challenge signature s < Sign;, (m) where the bit b € {0,1} is hidden
from D. The interaction with the cryptosystem continues with the exception that verification and
denial protocols cannot be executed on the challenge message-signature pair (m,s). The output of
D is a guess b’ for the hidden bit b.

A distinguisher D with output b’ is said to be successful with advantage €(k), if with probability
at least 1/2 + €(k), we have b’ = b.

An undeniable or confirmer signature scheme has the anonymity property if there is no distin-
guisher which runs in polynomial time and has a non-negligible advantage.

It is interesting to contemplate the relationship between the definition of anonymity given above
and the definitions of invisibility given in [5,2]. We believe that, as stated, there is no relationship
between these notions. Understanding the relationship between anonymity and invisibility is an
interesting topic for future research.

4 Revised undeniable signature scheme

We now consider how to ensure that the undeniable signature scheme of Chaum and van Antwerpen
has the anonymity property in the case where all users share the same finite field (see Section 8
for the case of different finite fields).

The first step is obviously to ensure that the attack described in the introduction cannot be
applied. This attack relied on the presence of elements of order two, but more general versions can
be applied using elements of small order, since the factorisation of p — 1 is assumed to be public.
Clearly, the attack generalises from prime fields I, to more general finite fields F, where ¢ = p™.

There are two ways to proceed, one is to blind the signature using elements of small order (this
is the strategy used in later sections of the paper). Since the factorisation of ¢ — 1 is known (and is
shared by all users) it is equivalent to work in a subgroup of large prime order [ of the finite field
[F;. In this case all elements will have Legendre symbol +1. It is therefore necessary to modify the
padding scheme H(m) so that it takes values in this subgroup. This is easily done by raising the
value of H(m) to the cofactor (¢ — 1)/I.

As we consider strong active attack models it is necessary that the value for H(m) be ran-
domised. In this paper we assume that a randomised padding scheme such as that given in [1] is



used. The padding scheme of [1] enables us to obtain our security reductions in the random oracle
model.

To obtain the security result it is necessary that executions of the confirm and deny protocols
can be simulated. This is not possible with interactive proofs so we must use non-interactive proofs.
To maintain the security of the system (i.e., that proofs cannot be transferred to other users) it is
necessary to use designated-verifier proofs [9]. Such proofs can be simulated in the random oracle
model. For further details see Jakobsson et al [9, 10].

For the sake of completeness we give the signature confirmation protocol of [9] for the challenge
(g, h, H(m), s) where g, h, H(m) and s all have order [ and where h = g*. We also use the public
key y € (g) of the designated verifier (this is for the trapdoor commitment scheme).

1. Prover chooses random w,r,t and computes ¢ = g¥y",G = g, M = H(m)!, b = H'(¢,G, M)
and d =t + (b + w) (mod [) where H' is some cryptographically strong hash function with
full domain output onto Z/IZ.

2. Prover sends (w,r, G, M,d) to the verifier.

3. Verfier computes ¢ = g¥y" and b = H'(c, G, M) and checks that Gh?*tY = g¢ Mst+* = H(m).

We refer to [9] for the further discussion of this protocol. We note that it is implicit in the above
that the verifier knows the value H(m). Hence this value must be transmitted if the verifier cannot
deterministically calculate it.

We now introduce a new denial protocol for this scheme which is of interest as it is more efficient
than any of the previous methods proposed.

The signature denial protocol runs as follows:

1. Prover chooses a random 1 < v <[ and publishes t; = g*, t = H(m)" and t3 = v/z (mod I).
2. Prover sends the designated-verifier, non-interactive proof of signature confirmation to the
verifier with respect to (g,t1, H(m),t2) (i.e., shows that it is a valid Diffie-Hellman tuple).

3. Verifier checks the confirmation proof, checks that ¢; = h* and checks whether ¢, = s's.
What this protocol is doing is blinding the challenge (g, h, H(m), s) and then publishing the sig-
nature to for H(m) with respect to the ‘new’ public key ¢;. Note that giving a valid signature for
the random public key #; is not a leakage of information since any adversary can obtain such a
signature themselves by choosing a random wv.

Theorem 1. The denial protocol given above is a non-interactive, designated-verifier proof of
(in)validity of signatures. It is sound if the discrete logarithm problem is hard and it is zero knowl-
edge in the random oracle model.

Proof. The completeness of the protocol (i.e., that an honest verifier accepts the proof) is clear.

The protocol is designated verifier since knowledge of the secret key z such that y = ¢g* allows
one to create transcripts easily.

To show that the protocol is zero knowledge in the random oracle model we show how to
simulate transcripts. First choose t3 at random, set t; = h’s and set t» to be (not) equal to s’
depending on whether one wants to confirm or deny. Then choose d, b, w randomly, set G = gd/t?+w,
M = H(m)?/t5"" and choose r randomly. Now, define the value of the random oracle H' at
(g¥y", G, M) to be b.

Soundness follows easily from the soundness of the confirmation protocol. O

The cost of the protocol is two exponentiations more (for both prover and verifier) than a run of
the confirm protocol. This is the most efficient denial protocol in the literature for the undeniable
signature scheme of Chaum and van Antwerpen.

We note that the revised scheme has all the other desirable security properties of an undeniable
signature scheme (see Chaum et al [3,4], Camenisch and Michels [2] and Okamoto and Pointcheval

[12)).



5 Anonymity of revised undeniable signature scheme

The modified Chaum undeniable signature scheme clearly avoids the attack mentioned earlier since
all elements have Legendre symbol +1. We now want to prove the anonymity of this scheme under
the very strong adaptive attack model and the assumption that the decision Diffie-Hellman problem
(DDH) in the subgroup of I of large prime order [ is hard.

Theorem 2. Suppose two players use the modified Chaum undeniable signature scheme above in
the same subgroup of order | in ;. Suppose the Decision Diffie-Hellman problem in this subgroup
s hard. Then, in the random oracle model, the signature scheme has the anonymity property under
an adaptive chosen message attack.

Proof. Suppose that an adversary D to the undeniable signature scheme exists. We will transform
it into a DDH algorithm. Let the input DDH problem be (g1, g2, 93, 94)-

We first set up two public keys with generator g;. The first has hy = g» and the second has
hy = ¢§ for some randomly chosen integer a.

We now run the adversary D on this public key pair. The adversary will expect to consult
hash function and signing oracles and will also expect to engage in runs of the confirmation and
denial protocols. At some point D will produce a message m and request a challenge undeniable
signature from one of the two public keys. We must simulate all these operations.

Hash query: When the adversary D makes a hash query on m we check whether H(m) has
already been defined. If not, then random integers x and y are chosen and, in a standard way
(see [1]) H(m) is defined to be g7 g3.

Signing query: When D makes a signing query with a message m we first ensure that H(m) is
defined and obtain the matching values of z and y. If the query is with respect to public key
1 then output s = g5gf. If the query is with respect to public key 2 then output s = (g5 g3)*.
In the case of the challenge message we choose a bit b at random and sign with respect to that
public key value using the above method.

Confirm/Deny: When the adversary wants to engage in a signature confirmation or denial on
a pair (m,s) with respect to public key i we first have to determine whether the signature is
valid or not.

Within the simulation we can do this by consulting the state information and seeing what
value (if any) has been specified for H(m) and whether or not the value s is the valid simulated
signature for that hash value. If H(m) is not specified then choose random z and y and define
H(m) = g¥g¢¥ and declare the signature to be invalid.

Once the validity (within the simulation) of the signature has been determined we know whether
to respond positively or negatively to the execution of the confirmation or denial protocol. Since
the zero knowledge proofs are perfectly simulatable in the random oracle model we can easily
construct a proof which gives a suitable response.

Finally, the adversary will output its guess b’ to the value of the bit b. If b = b’ then output the
result ‘true’ for the validity of the Diffie-Hellman tuple, and if b # b’ then output ‘false’.

When the input is a valid Diffie-Hellman tuple then the simulation is identical to a genuine
attack on the cryptosystem. Hence the advantage for the Decision-Diffie-Hellman algorithm is
exactly the same as the advantage of D.

When the input is not a valid Diffie-Hellman tuple then transcript of values for H(m) and s is
indistinguishable from a uniform distribution (since for all u,v € (g1) there is some z,y such that
g%98 = u and g%g} = v). Hence the transcript is independent of the hidden bit b. This means that
the adversary D has no chance of correctly guessing the signer and the probability that b = b’ is
1/2.

The above argument includes the case where D detects that the simulation is invalid. Regardless
of what strategy is used by D in this case the probability that b = b’ is 1/2.

Finally, it is clear that the possibility of guessing a correct s from m or H(m) is negligible so
one can ignore the possibility that the some executions of the confirm or denial protocols might
actually fail when, under the simulation, they should succeed. O



In the full version we will make the complexity of this reduction more precise, though it is
obvious that the computational complexity and advantage are basically the same as that for D.

6 Undeniable signatures based on RSA

Gennaro, Krawczyk and Rabin [8] described an undeniable/confirmer signature scheme based on
RSA. In their case the signature for a message m is the number s such that s = H(m)? (mod N).
The verification exponent is fixed by publishing the value h = ¢g? (mod N). This scheme was
generalised by Galbraith, Mao and Paterson [7], who also gave a more efficient denial protocol.

Since d is odd it follows that the Jacobi symbols () and (%) are equal. Hence, given a
pair (H(m),s) and a set of users’ public keys {NN;} one can eliminate some candidate signers by
checking if (§-) # (%) This leads to an increased probability of guessing who the actual signer
is, which means that the scheme does not have the anonymity property. Similarly, the scheme of
Galbraith, Mao and Paterson [7] does not have the anonymity property.

6.1 Preventing the Jacobi symbols attack

The question therefore arises as to whether the schemes of [8] and [7] can be modified to give
anonymity. Note that it is tempting to enforce that H(m) be a quadratic residue in Z%; (and so s
would also be a quadratic residue in Z%;) but this does not provide a solution since the anonymity
could still be broken by computing (#-) and eliminating those N for which the value is —1.

A better solution is to define signatures by

s =&H(m)? (mod N)

where ¢ is a randomly chosen square-root of 1 in Z%};. This choice of s means that there is no

longer necessarily any relationship between (%) and (%). The verification operation is to check
that H(m)? = s%¢ (mod N) where the verification exponent e is only known to the signer and
confirmer.

The first observation is that this is dangerous, since two signatures s and s’ on the same message
leak a square-root of unity s/s’ = £/¢&'. However, this scenario never arises since, to have security
in an adaptive attack model, the value H(m) must be randomised.

We give further details on how H(m) is constructed, following [1]. We want H(m) to be a
k-bit string where k is longer than the modulus length. Choose values ko and k; and choose hash
functions h, g1, g with output lengths k1, ko and k — ko — k1 respectively. To compute H(m) we
choose a random ko-bit string r, compute w = h(m,r), r* =r @ g1 (w) and v = g2(w). The output
value for H(m) is wl||r*||y. Thus, two signatures on the same message m will yield completely
different values for H(m) when the values for r are different.

One consequence of using a randomised padding scheme in the context of undeniable signatures
is that it is necessary to transmit the value H(m) as part of the signature. This is because, unlike
with standard RSA signatures, the value H(m) is not recovered by the verifier as part of the
signature verification process.

6.2 Ensuring that the signature length does not reveal the signer

There is a further attack on anonymity of RSA-based schemes which arises since all users must
have different moduli N. If the moduli have different sizes then some values for s might be too large
to have arisen from the signature process of some users. This reduces the number of possibilities for
the signer.for proofs in the random oracle model A solution to this problem is for users to enlarge
any values s (mod N) to a fixed bitlength by adding a suitable multiple of N and transmitting
s" = s + tN. This padding removes any information about the size of N and does not interfere
with the reduction of the value modulo N. Let k be a bitlength such that there is a multiple TV
close to 2¥ (this is easily achieved if k is significantly larger than the bitlength of N). Then for
signatures s € Z% and random 0 < ¢t < 7' it follows that s+ ¢V is indistinguishable from a random
k-bit string. We assume that this technique is adopted for the scheme below.



6.3 Summary of the modified scheme

We also make two modifications to the RSA-based undeniable/confirmer signature schemes of
[8,7]. First we impose that condition that the modulus is a Blum integer (i.e., product of two
primes congruent to 3 modulo 4). Generalising to non-Blum integers is straightforward. Also, as
in the Chaum and van Antwerpen case above, we insist that these schemes are provided with
non-interactive, designated-verifier proofs which are simulatable in the random oracle model.

In summary, the scheme is as follows.

System parameters: A fixed bitlength k& such that all users’ moduli are at most k bits. A ran-
domised padding scheme as in [1] with output bitlength k for all users. A soundness bound B
as in [7].

Key generation: A signer chooses two primes p = ¢ = 3 (mod 4) such that all prime factors
of (p —1)/2 and (¢ — 1)/2 are greater than B. The signer sets N = pg and chooses e,d € Z
such that ed = 1 (mod ¢(INV)). The signer chooses g € Z% (or possibly many g¢;) and sets
h = g? (mod N) (or h; = g). In the following we assume that there is a single pair (g, k), the
modifications to the general case are trivial. The signer registers with the certificate authority
as in [7] with public key (N, g, h). The signer sends e to the designated confirmer (if there is
one).

Signing: To sign a message m the signer constructs the randomised padding value H(m) (e.g.,
chooses r at random and computes w = h(m,r),r* = r & g1 (w),y = g2(w) and H(m) =
wl|r*[]7). The signer computes s = ¢H(m)? (mod N) where £ € Z% is a random element of
order 2. The signer enlarges s to a bitstring s’ of length k by adding a suitable random multiple
of N. The signature on m is the pair (H(m),s") of k-bit strings.

Confirm/Deny: To confirm or deny a signature the confirmer executes non-interactive, desig-
nated verifier versions of the proofs in [7] which prove the relationships g = h® (mod N) and

2 = H(m)? (mod N).

We note that this scheme preserves the strong security properties of the schemes in [8,7].

7 Anonymity of revised RSA-based undeniable and confirmer
signatures

We will show that the anonymity of the system depends on the following computational problem:

Special Composite Decision Diffie-Hellman Problem (SCDDH): Let N be a Blum integer
(i.e., N = pg with p = ¢ = 3 (mod 4) both prime). Let g,h,u,v € Z% be such that g and u
generate ZY, (and so (&) = (%) = —1), (%) = +1 and h = g% (mod N) for some (unknown)
integer d coprime to ¢(N). Determine whether or not v = £u? (mod N) for some element ¢ € Z%;

of order 2.

We claim that this problem is computationally intractable when N is a product of two large
primes and when g, u,v and d are chosen uniformly at random subject to the conditions.

Theorem 3. In the random oracle model then the RSA-based undeniable/confirmer signature
scheme above has the anonymity property if the special composite decision Diffie-Hellman prob-
lem is hard.

Proof. Suppose we have an adversary D to the scheme. Let (N1, g1, b1, u,v) be a SCDDH challenge
problem. We will transform D into an algorithm to solve this SCDDH instance.

We let (N1, g1,h1) be the first public key. In the general case where several pairs (g;, h;) are
required then we construct them to be of the form g; = g7u¥ and h; = hivY. Then set up a second
public key (Na, g2, ho) using the key generation process for the scheme (in particular, we know the
secret key do for this public key).

We then execute the distinguisher D on these two public keys after randomly switching the
indices 1 and 2 (in this proof index 1 will always refer to the public key coming from the SCDDH



challenge, but this may be the first or second input to D). The distinguisher expects to perform
hash queries, to obtain signatures on messages of its choice, and to run confirm and denial protocols.
We now show how these will be simulated.

Hash query: A hash query could be with respect to any of the random oracles h, g; or g». We
first analyse how to respond to a query of h(m,r) where m is a message and r is a random
ko-bit string.

If the value h(m,r) has not been queried before we choose = and y at random between 1 and
N; and compute a k-bit string which reduces modulo N; to gfu?. All values are stored as
state information. This string is parsed as w||r*||y and h(m,r) is defined to be w. Similarly,
g1(w) is defined to be r* and g»(w) is defined to be 7. If there are any conflicts with previous
definitions of the random oracles then the simulation halts (or retry with a different z, y choice);
this happens with negligible probability if k, kg and k; are large enough.

A query on g; or g» with input value w can be answered as above when w is the output of a
previous query on h(m,r), and can be answered with a random bitstring otherwise.

Since g and u generate ZY, it follows that the output of all the random oracles is indistin-
guishable from uniform random.

Signature query: To sign m we first check whether H (m) has been queried or not (if not, perform
the above process) and obtain the corresponding values z and y from the state information.
If we must sign with respect to public key 1 then output s = hfv¥ (mod Ny). If we must sign
with respect to public key 2 then output s = ¢H(m)% (mod N,) which is the usual signing
process.

For the challenge signature we using the above signing process using public key 1. This deter-
mines the hidden bit b.

Confirm/Deny: It is first necessary to decide whether the signature should be considered valid or
not within the simulation. If the request is with respect to public key 2 then this is performed
in the usual way. If the request is with respect to public key 1 then it is necessary to consider
the hash value H(m) = gfu? and check if s takes the value hiv¥ or not.

Once we have determined whether to respond positively or negatively then an appropriate
proof can be simulated in the random oracle model.

The distinguisher will eventually output a guess b’ for the hidden bit b.

When the SCDDH problem is valid then the simulation is identical to a real attack on the
system, and so D should ouput ¥ = b with the same advantage as the advantage of the SCDDH
algorithm

When the SCDDH problem is invalid then we cannot argue that the simulation is indistinguish-
able from a genuine run of the attack. Therefore, we cannot predict how D will behave in this
situation.

To handle this situation we introduce a new technique for security proofs. The crucial observa-
tion is that, although we do not know how D behaves in this situation, we do know that D is an
algorithm whose behaviour must be consistent across different executions of the game. Hence, we
can experiment with D to determine how it behaves when the inputs are of a certain form. These
experiments with D allow us to be able to predict its behaviour.

For the current application it is sufficient simply to repeat the entire procedure above, except
that the challenge signature is now constructed to be of the form s = h”f’vyl (mod N;) where z'
and y' are chosen at random independently of the value H(m) = gfu? (mod Ny).

We now consider the difference between the two games played with D. When the input is a
valid SCDDH tuple then the first game is identical to a real attack while the second game does not
give D any information about who is the signer of the challenge (it is an invalid signature) and so
the advantage of D will be 1/2. When the input is an invalid SCDDH tuple then both games are
indistinguishable and so the outputs of D should be indistinguishable.

Write by and by for the hidden bits and write b] and b} for the outputs by D from the first
and second games. If by = b} and be # bl then answer ‘true’ for the SCDDH question, otherwise
output ‘false’. When the input is a valid SCDDH tuple then the output of the simulator will be
correct with some advantage. When the input is invalid then D responds with consistently reliable



guesses for b} and so the output will be ‘false’ with probability at least 1/2. Since D is supposed
to have a non-negligible advantage it follows that we have a non-negligible advantage against the
SCDDH problem, after roughly double the computation time. O

In the full version we will make the complexity of this reduction more precise, but it is obvious
that the computational complexity is roughly double and that the advantage is roughly halved in
the worst case.

8 Generalised Chaum and van Antwerpen scheme

In the previous sections we have shown how RSA-based schemes can provide the anonymity prop-
erty even though each user is working in a different group. This opens the possibility that the
scheme of Chaum and van Antwerpen could also be developed in a situation where users do not
share the same finite field. In this section we show how to achieve this without any loss of security.

First we show that the scheme of Section 4 does not have the anonymity property if users do
not all use the same finite field. In that setting the value s always has prime order [ in F;. If two
users have different fields F,, and [, with corresponding primes [y,[> then it is easy to determine
whether a bitstring s corresponds to an element of order /; in [}, or not, and so the anonymity of
the scheme can be broken.

We revise the scheme again as follows. Fix a security parameter k for all users of the system. Let
each user choose a prime (or prime power) g such that ¢ is less than k bits long. Write ¢ — 1 = nl
where [ is a (large) prime and where n is some cofactor. Let g € [, have order [ and let h = g*.
The public key for a user is (g,n,l, g, h) and the secret key is . The signature on H(m) is

s=&H(m)"

where § € Fy is an element of order dividing n. The signature confirmation and denial protocols are
as before, testing the condition that (g, h, H(m)", s™) is a valid Diffie-Hellman tuple of elements
of order [ in [ .

The key point for security is that, since the output size of H(m) is larger than all choices for
finite fields ¢, any element s € F; can arise as some signature on some message with some blinding
factor &.

Finally, it is necessary to extend the signature s to a bitstring of a fixed length &k so that its
length does not reveal the signer. When ¢ is a prime then this is done by adding a suitable multiple
of g. When ¢ is a prime power then natural generalisations of this approach may be used, depending
on the representation used for finite field elements.

We now show that this revised scheme has the anonymity property. The methods used to prove
Theorem 3 can be easily adapted to prove the following result (in fact, the proof is easier than the
proof of Theorem 3, since the simulator can construct elements £ itself when the values n and [
are known).

Theorem 4. In the random oracle model then the generalised undeniable signature scheme above
has the anonymity property if the decision Diffie-Hellman problem in a large prime order subgroup
of F; is hard.

9 Other schemes

It is straightforward to show that the confirmer signature scheme due to Camenisch and Michels
[2] has the anonymity property if the underlying encryption scheme is semantically secure under
an adaptive chosen ciphertext attack (the method of proof is identical to the proof of invisibility
in Theorem 1 of [2]).

In the confirmer signature scheme of Chaum [6] the signature includes a number a such that
a® = m (mod N) where m is known (it is a function of the signature components a and b)
and where (N, e) is the public key for a user. The Jacobi symbols attack given above applies in
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this situation too (just compare (§-) with (w» and so this scheme does not have the
anonymity property.

The RSA-based scheme of Section 5.4 of Michels and Stadler [11] does not have the anonymity
property. In this scheme the signature is a usual RSA signature of a known value m (which is
hp(d) + b in the setting of [11], where all quantities are visible to an adversary). Hence the same
attack as above using values of the Jacobi symbol can be applied.

We note that the protocol in [11] based on Schnorr signatures seems to have the anonymity

property.

10 Anonymity between signatures of different schemes

The above results show that undeniable and confirmer signature schemes can provide anonymity
even when users work in different groups. This can be extended further: One can have anonymity
even when users are using different undeniable and confirmer signature schemes!

There are two primary requirements which must be satisfied for a secure undeniable or confirmer
signature scheme to be anonymous in this setting. The first is that there should be a fixed size k
for bitstrings for all users, so that all signatures are a string of k& bits and all public keys should
specify groups (or output spaces) where the elements are represented by strings of less than k bits.
The second requirement, is that the schemes should be constructed so that the valid signatures are
indistinguishable from random k-bit strings (even when using knowledge of a user’s public key).

It is possible to obtain a security result in this very general setting using the same techniques
as used to prove Theorem 3 and Theorem 4. A more formal definition, and the details of the proof
will be given in the full version of the paper.
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