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ABSTRACT
We study simulations of populations of agents participating
in sequences of overlapping English auctions, using three
different bidding algorithms. We measure various param-
eters of the agents’ success, to determine qualities of the
underlying bidding algorithms. In particular, we show that
a Dynamic Programming approach, in which beliefs regard-
ing the opposition the agent is likely to face are built up
on-the-fly, is robust enough with respect to the inaccuracy
of its beliefs to outperform a greedy approach right from the
moment they both start playing.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.6 [Computing Methodologies]: Simulation
and Modeling; G.3 [Mathematics of Computing]: Prob-
ability and Statistics

Keywords
Multiagent-based Simulation, Electronic Commerce, Bid-
ding and Bargaining Agents

1. INTRODUCTION
As the world of business becomes ever more closely inte-
grated with the tools of computer science, it becomes both
conceivable and (perhaps) inevitable that some decisions of
economic significance which require a degree of autonomy,
analysis and speed of execution that, combined, a human
cannot provide, will be delegated to agents. In this paper
we address the decision problem of an agent faced with pur-
chasing a single private-value good from any of several En-
glish auctions which start at various times, may overlap, and
whose termination times are uncertain. This domain is suit-
able because such auctions1 are in fact conducted electron-

1In fact almost all auctions are for more complicated goods.
This paper addresses the question of economic decision-

ically on a daily basis, the decision problem is sufficiently
complicated that a miss-placed bid could2 lead to signifi-
cant economic loss, and yet the bidding decisions may have
to be made in short periods of time.

In [5] we derived a bidding algorithm based on Dynamic
Programming applied to a formalization of this problem.
While the derived algorithm is optimal within the set of
assumptions [5] makes, it is problematic because it is based
on probability distributions which have to be learned, and
may not accurately reflect important dynamics of the game
the agent is playing – for example, the agent assumes that
the auctions in which it is playing are independent, whereas
in fact they might well not be.

We now addresses this issue by conducting experiments in
which populations of agents with different algorithms com-
pete to buy goods from a sequence of English auctions. The
agents use three different algorithms; one is the Dynamic
Programming (DP) agent mentioned. The agents learn the
probability distributions on which their bidding behaviour
is based from observation of the game itself; not unexpect-
edly, the underlying price distribution shifts considerably
from the start of the game, when nothing is known, to reach
a stable state. More surprisingly, the DP algorithm is not
only the clear long-term winner once the price distributions
have reached a stable state, but out-performs the others
right from the start.

This paper therefore provides evidence that the DP algo-
rithm from [5] is practical, performing well even if the dis-
tributions on which its reasoning is based are only poorly
known, and even if it makes assumptions, such as inde-
pendence of closing-price distributions for different auctions,
which do not in fact hold3.

In the next section we review the design of the various algo-
rithms involved. In Section 3 we describe the experiments
that have been conducted, and analyse the results; Section
5 is for conclusions.

making primarily; we shall expand the domain to more com-
plicated goods and auction protocols in future work
2Especially in often repeated auctions
3This is not, of course, to say that a different, perhaps sim-
pler, algorithm could not do better in such uncertain condi-
tions.
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2. ALGORITHM DESIGNS

In this section we give a brief description of the bidding
algorithms, GREEDY, HISTORIAN, and DP4. For more detail,
see [5]. Broadly speaking, GREEDY always bids in the auc-
tion with the currently lowest price; HISTORIAN bids in the
auction with lowest expected price5, if it is currently open,
or otherwise in the auction with lowest price, so long as
the possible return this can give in the event of a purchase
exceeds the expected return from the best future auction;
DP constructs a Markov Decision Process and solves it with
Dynamic Programming.

To specify the algorithms further it is necessary to impose
simplifying assumptions on the environment, and introduce
corresponding notation.

2.1 Assumptions and Notation
2.1.1 Auction Protocol
We assume that English auctions work according to the fol-
lowing protocol: The auction proceeds in rounds. In any
round except the first there is an active agent which is not
allowed to bid – any other agent can bid, but bid prices are
fixed at a certain increment above the current price. If no
agents choose to bid, the good is sold to the active agent
at the current price. Otherwise the auction proceeds to the
next round, the price rises by the fixed increment, and a new
active agent is chosen at random from those that bid.

We further assume that the different auctions’ rounds are
synchronized: all auctions move from one round to the next
simultaneously. This gives a universal measure of time, in
terms of which auctions have starting times6, but not spec-
ified stopping times.

2.1.2 Agent Utility Model
We adopt a quasi-linear model for the utility function of
each agent. Each agent has a fixed monetary value v for
obtaining one or more goods. Purchasing nothing gives util-
ity 0; purchasing one or more goods at total price x gives
utility v − x. The agent’s value v is its maximal willingness
to pay for the good – if the price exceeds v, it is better not
to buy the good at all. We use risk-neutral agents: if pre-
sented with a certain payment of X, or a gamble, in which n
payments of x1, x2, . . . , xn, have probabilities p1, p2, . . . , pn

of occurring, the agent will prefer the certain payment X if
and only if X >

P
i xipi.

Agents have specified starting times, and hard deadlines:
goods are worth nothing after the deadline has passed, so
that the utility of a set of purchases of total cost x after the
deadline, is −x.

2.1.3 Beliefs
HISTORIAN and DP use beliefs about the expected closing
price of each auction they are bidding in. This is a function

4In [5], this is OPTIMAL
5Actually, in the auction with greatest expected utility,
which is not quite the same thing, in general.
6It is assumed that all auctions announce their starting
times long in advance: all potential auctions are known to
all agents.

Pa(x) giving the probability that the auction a will close
below price x. From Pa(x), the probability that an auction
will close at price x, given that the price is x (i.e. condi-
tioned on it not closing at any lower price) is estimated to
be

pa(x) =
Pa(x + h)− Pa(x)

1− Pa(x)
, (1)

where h is the bid increment of the auction a. They also
use beliefs about the likelihood of a bid at a given price
becoming the active bid in the next round, Ba(x).

2.2 Historian Algorithm
HISTORIAN uses these belief functions to calculate expected
utilities in the following way: For each possible price x an
expected utility if active Aa(x), and an expected utility if
inactive Ia(x) is calculated, according to the following recur-
sive formulas, in which h is the bid increment in the auction
a:

Ia(x) = (1−Ba(x))Ia(x + h) + Ba(x)Aa(x + h),
Aa(x) = (1− pa(x))Ia(x + h) + pa(x)(v − x),
Aa(v) = Ai(v) = 0.

HISTORIAN’s choice of which auction to bid in goes as follows:

1. If active in some auction, do not bid.

2. Otherwise, examine all auctions that are either open,
or set to open before the deadline time, and select the
auction a which maximizes Ia(current price(a)).

3. If a is open, bid in a.

4. Otherwise, examine all current auctions, to find the
auction b with lowest current price.

5. If v − current price(b) ≥ Ia(current price(a)) then
bid in b, otherwise do not bid.

2.3 Dynamic Programming Algorithm
DP uses the same belief functions as HISTORIAN, but in a
very different way. The DP algorithm uses the notions of
state and action: a state is an assignment to each auction
whose start time has passed, of either “active”, “inactive”,
or “closed”; an action is an assignment to each “inactive”
auction of either “bid” or “don’t bid”.

All of the agent’s reasoning is conducted in advance. A table
is constructed, consisting of all time – state pairs (t, s) that
it might consider bidding in7. A pair (t, s) specifies the time,
which auctions are open at time t, and in which auction the
agent holds a bid. Starting from the last time step in which
the agent might bid, the one before its deadline, the agent
iterates backwards (in time) through the table, calculating
the expected utility and optimal action for each of the
pairs (t, s), using the following procedure:

In a given state (t, s) a given action a can lead to many po-
tential successor states – for example, if the agent bids in an

7It excludes those for which the auction price would exceed
its valuation, and also, to bound computation time, removes
auctions which would make the number of simultaneously
open auctions go above a certain fixed threshold, which in
the experiments of Section 3 was 5.
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auction, it might either gain the active bid or not. The prob-
ability of each potential successor state (t + 1, s′) given the
action a can be calculated using the belief functions: For a
given auction a, if the agent is inactive and does not bid, or
if the agent holds the active bid, then the probability of the
auction closing is estimated as pa(x) from (1); if the agent is
inactive in a and bids, then the likelihood of obtaining the
active bid is estimated as Ba(x). Combining these probabil-
ity estimates over all possible consequent states (t + 1, s′),
with the expected utilities of those states, gives the expected
utility of (t, s) given the action a; maximizing with respect
to action gives both the expected utility of the state itself
and the action that the agent will choose in that state. We
present here a pseudo-code version of the above algorithm.

for time ‘t’ = deadlineTime to startTime {
for each state ‘s’ at time t {

value(t,s) = 0
action(t,s) = ‘do nothing’

for each legal action ‘a’ at time t {
newV = getUtilityForAction(t,s,a)
if newV > value(t,s) {

value(t,s) = newV
action(t,s) = a

}
}

}
}

getUtilityForAction(t,s,a) {
if t = deadlineTime

return 0

utility = 0
for each possible successor ‘s1’ of ‘s’

given action ‘a’ {
prob = transitionProbability(s,s1,a)

if cost(s,s1) > 0 {

// Here we calculate the expected cost of all
// eventualities involving a purchase.
//
// Since the agent has bought a good, it will
// ‘do nothing’ in the next time step, but
// might yet buy more goods if it is active
// and not outbid in some auctions.
//
// ‘v’ is the agent’s ‘value’ for the good,
// as in section 2.1.2

for each possible successor ‘s2’ of ‘s1’
given action a2 = ‘do nothing’ {

prob2 = transitionProbability(s1,s2,a2)
utility = utility + prob*prob2*(

‘v’-cost(s,s1)-cost(s1,s2) )
}

} else {
utility = utility + prob*value(t+1,s1)

}
}
return utility

}

transitionProbability(s,s1,a) {
prob = 1.0
for each auction ‘b’ {

if s(b)=‘active’
or (s(b)=‘inactive’ and a(b)=‘no bid’) {

if s1(b) = ‘closed’ {

prob = prob * p_b(current_price(b))
} else {

prob = prob * (1-p_b(current_price(b)))
}

} else if s(b) = ‘inactive’ and a(b)=‘bid’ {
if s1(b) = ‘active’ {

prob = prob * B_b(current_price(b))
} else {

prob = prob * (1-B_b(current_price(b))
}

}
}
return prob

}

cost(s,s1) {
cost = 0
for each auction ‘b’ {

if s(b)=‘active’ and s1(b)=‘closed’
cost = cost + current_price(b)

}
return cost

}

As should be abundantly clear, this algorithm is of high
complexity compared to the others, increasing exponentially
with respect to the number of auctions that are open simul-
taneously (via both the number of states, and the number of
actions). However, as was shown in [5], and will be further
established in Section 3, even small (≤ 5) degrees of simul-
taneity give significant effectiveness improvements, and so
in practice an agent can choose only to consider sets of auc-
tions for which the number of auctions in which the agent
plays at any time is uniformly bounded. Indeed this was a
restriction that we chose to impose in the experiments we
conducted.

3. EXPERIMENTAL RESULTS
To test the relative effectiveness of the various algorithms,
we constructed a trading environment consisting of a se-
quence of auctions, whose start times (measured in rounds)
are determined by a Poisson process. That is to say, the
time between one auction opening and the next is a random
number with density function

λe−λt,

where the variable λ = λauction determines how quickly the
auctions arrive: The bigger λauction, the more often auctions
open8, and hence the greater the supply of goods. In the
experiments we conducted, all auctions started at price 0,
and all had a bid-increment of 1.

To complement the auctions, a sequence of agents is intro-
duced, whose starting times are also given as a Poisson pro-
cess, but with a different parameter, λagent. The constant
λagent parameterizes9 the demand in the system. In our ex-
periments, the agents’ valuations were always selected from
a uniform distribution on the interval [10, 20].

In each round, each agent places its bids according to its
bidding algorithm. At the end of the round, the new state
8The average inter-arrival time of a Poisson process with
parameter λ is 1/λ
9in conjunction with other variables, such as the valuation
distribution
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of play is decided: winners are selected, if appropriate, as
are agents to become “active” in each auction; agents must
stop trading if their deadlines have expired, and start if their
start time has been reached.

In the experiments we conducted, it was assumed that all
agents could observe anonymized versions of every com-
pleted auction: They could observe the closing price of each
auction that had closed, and the number of bidders in each
round. The same distributions were used for all auctions.

For each experimental specification we generated a large
number of populations of agents and auctions, and played
the agents against one-another in the auctions10. This ran-
domization of the game that the agents played ensured that
the algorithms were tested in a great variety of situations,
facing both small and large numbers of opponents, whose
values for the good were sometimes large, sometimes small,
whose deadlines were un-predictably arranged, and who were
sometimes using the GREEDY algorithm, sometimes HISTORIAN
and sometimes DP.

3.1 Effectiveness
In the first series of experiments, we used the following ex-
perimental parameters11:

λauction = 2/15
λagent = 1/3

Number of auctions = 100
Number of agents = 400

Agent operation length = 50

(2)

Figure 1 shows a graph of the distribution of utility ex-
tracted for each type of agent, in a population consisting of
one third of each type of agent. These data are for trades
which occurred after at least 30 other trades, but were ear-
lier than the 90th trade. As we shall soon see, by averaging
in this area, we avoid end effects which will be discussed
later.

The most obvious feature of this graph is that a return of
zero surpasses all other outcomes in terms of likelihood. This
is of course because demand outstrips supply by a factor of
almost 3 - we should expect that almost two thirds of agents
would not trade. In these experiments, the percentage of
times that an agent did not trade at all was 70%, 61% and
51% for GREEDY, HISTORIAN and DP, respectively. in Figure
2 we remove non-trading agents.

Of the agents which did trade, the DP agents extracted a
higher proportion of high value trades than the HISTORIAN

agents, which in turn out-performed the GREEDY agents. Even
though the DP agents sometimes made losses (negative util-
ity), because of over-purchasing, this only happened 0.6% of
the time, on average, which was more than compensated for
by its larger likelihood of obtaining goods relatively cheaply:
the average utility extracted for each type was 4.84, 3.95 and
3.12 respectively.

10The game ends when there are either no more agents trad-
ing, or no more auctions in which to trade.

11The number of agents is actually irrelevant, so long as it is
large enough: see footnote 12

2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Probability

DP

Historian

Greedy

Utility

Figure 1: Distribution of utility obtained after 12–30
trades for each type of agent. Each type represents
one third of the population of agents.
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Figure 2: Distribution of utility obtained after 12–30
trades for each type of agent, ignoring agents which
did not trade.

In Figure 3 the failures to trade are put back in, as are all the
data points associated at the beginning and ends of the time
series. As one can see, DP not only out-performs the other
two algorithms in the region where the trading dynamics
are stochastically stable, but also in the end regions when
the beliefs the adaptive agents hold are inconsistent with
the true supply and demand. In the next section we will
examine the issue of adaptivity in greater depth.

3.2 Adaptivity
Agents adapt to market conditions by adjusting their prob-
ability distributions Pa(x) and Ba(x) in light of observed
trades. It follows that the number of trades observed is
a good measure of the “experience” of an agent, and the
degree to which it has learned an appropriate price distri-
bution. To demonstrate the movement of the price distribu-
tions with respect to time, we break down set of all trades
observed according to the number of results that had been
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Figure 3: Distribution of average utility obtained
with respect to number of previous trades. All
agents are included.

announced before the purchaser started operating. A con-
tour plot of this price density function is shown in Figure 4:
For each number of previous trades, a vertical slice through
the plot gives the likelihood of the next trade occurring at
each price level. The darker the chart at a given price level,
the more likely it is that the next trade will occur there.
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Figure 4: Contour plot of price distribution for DP

agents in the mixed population. Darker means more
likely.

Notice in particular

1. At the very beginning, a lack of agents means that
auctions frequently close at low prices: the price distri-
bution is noticeably concentrated towards the bottom
end of the price scale.

2. After 30 trades the distribution is stable, up to ran-
dom fluctuations in supply and demand that naturally
occur over time. The learning mechanism is thus ef-
fective in adjusting agent behaviour to be consistent
with market conditions.

3. At the very end, a surplus of agents combined with

a dwindling supply of auctions12 leads to very high
prices: the price distribution becomes concentrated
around the highest prices.

In Figure 5 we compare the utility distribution of early
trades for DP agents in mixed and homogeneous populations.
As one can see, the initial end effect is much more pro-
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Figure 5: Contour plots of price distribution for DP

agents in a homogeneous population, and for a ho-
mogeneous population of DP agents.

nounced in the case of the homogeneous population. The
reason for this is that the learning mechanism of DP (and
HISTORIAN) agents tends, over short periods of time, to re-
inforce existing price distributions. As explained before, at
the beginning of the experiment there is a paucity of both
agents and auctions, an inevitable consequence of which is
that the first few auctions to open have few agents to op-
erate in them; they close at low prices, due to the lack of
competition. It follows that the first data points on which
the DP agents13 base their estimates of closing prices are ar-
tificially low with respect to the true balance of supply and
demand. As a result, the agents drop out of auctions as
soon as the prices exceed these low thresholds, hoping to
trade at better prices in later auctions14. Of course the fact

12In all the experiments we ran, agents out-lasted auctions.
This was a deliberate choice: as either auctions or agents run
out, the dynamics of the game inevitably change; assuring
a surplus of one over the other simply forces consistency in
the type of end-effect observed.

13The same is true for HISTORIAN agents
14The effect is not nearly so pronounced for the mixed pop-
ulation because GREEDY agents do not drop out of auctions
to wait for cheaper ones.
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that they drop out means that any agent left in via hold-
ing the active bid, will win the auction, also at a low price.
This self-reinforcing belief that auctions should all close at
low prices, and the corresponding consequence that they do,
changes only as agents reach their deadlines without hav-
ing bought any goods. As the deadline approaches, their
algorithms stipulate staying in the last few auctions until
the prices exceed their valuation, a policy which inevitably
drives prices up to realistic levels.

It is clear that a similar feedback loop would be created if
there was an initial abundance of agents: the agents would
observe high initial closing prices due to the relatively high
demand, and conclude that prices were always high. This
would induce them to bid higher than they needed to, thus
maintaining high prices. Prices eventually come down be-
cause agents would start winning auctions at prices lower
than they had expected, and hence would adjust their rea-
soning to admit the possibility of winning at lower prices.

3.3 Dependence on Simultaneity
In [5] it was observed that the DP algorithm often chooses
to “over-bid” by bidding in more than one auction simul-
taneously even though it risks buying more goods than are
necessary by doing so. It was hypothesized that this be-
haviour is a major contributor to DPs success with respect
to the other algorithms (which only ever bid for a single
good). We measure the simultaneity degree of an agent by
the average over the agent’s lifespan of the number of auc-
tions open at any time.

Figure 6 shows graphs of the distribution of earnings for
agents whose average simultaneity degree is in the ranges 1
– 2, 2 – 3 and 3 – 4. When there are more auctions open, the
earnings curves separate – to the advantage of DP, which ob-
tains a higher proportion of high-value deals: as simultane-
ity increases, the effectiveness of DP relative to HISTORIAN

increases from 7% better to 33% better, then to 41% better.
This shows that DP really does profit disproportionately15

from high simultaneity.

Interestingly, for trades when the degree of simultaneity was
between 1 and 2, GREEDY seems to out-perform DP, by ob-
taining more low-value trades rather than not trading at all.
It could be that this is a manifestation of the assumption
of independence of auctions breaking down: when there are
few auctions, they are strongly correlated.

3.4 Dependence on Valuation
When the data is analyzed with respect to the valuation
of the agents, we find two phenomena of note. The first
is perhaps to be expected: As can be seen in Figure 7, the
greater the agent’s valuation, the greater the relative advan-
tage of using the DP algorithm. The intuition for this result
is that the greater the valuation of the agent, the more pur-
chase options it has, and hence the greater the leverage of
using a relatively intelligent algorithm. Agents with lower
valuations have few options because they are often priced

15All agents benefit from an abundance of auctions, since
higher supply means lower prices. Since all agents had the
same duration, abundance is clearly correlated with simul-
taneity degree.
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Figure 6: Dependence of relative earnings on simul-
taneity degree.

out of the market, a fact that is not altered by using clever
software.

The second phenomenon, shown in Figure 8 is one observed
in [10]: when all agents use DP they all do worse (in expec-
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Figure 7: Comparison of earnings for each type of
agent in the mixed population, indexed by agent
valuation.
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Figure 8: Comparison of earnings for populations
consisting of all-GREEDY and all-DP agents, indexed by
agent valuation.

tation) than if they had all used GREEDY. Notice that this is
true even of the agents with highest valuations, who might
be expected to do better with DP irrespective of the com-
petition. In fact the advantage they get from using DP is
eliminated by the competition using DP as well.

4. RELATED WORK
For a while now, there have existed auction house test-beds
for bidding algorithms, of which the most famous is probably
the Michigan AuctionBot [14]. The Spanish Fishmarket [12]
provides a sophisticated platform and problem specifications
for comparison of different bidding strategies in a Dutch auc-
tion, where a variety of lots are offered sequentially. Cliff at
al. [6] and Preist et al. [11] present adaptive agents able to
effectively bid in many-to-many marketplaces, and are the
first examples of work which borrow techniques from exper-
imental economics to analyze the dynamics of agent-based
systems. Greedy agents for bidding in multiple auctions,

and inspiration for the HISTORIAN algorithm come from [9],
which discusses the multiple-unit case. In [10], Preist et.
al present experiments involving a version of the algorithm
GREEDY, though for a somewhat different auction protocol,
and for use in purchasing multiple goods.

Gjerstad et. al. [8] use a belief-based modeling approach to
generating appropriate bids in a double auction, combining
belief-based learning of individual agents bidding strategies
with utility analysis, as done here. However, it is applied
to a single double auction marketplace, and does not allow
agents to bid in a variety of auctions. Vulkan et.al. [13]
use a more sophisticated learning mechanism that combines
belief-based learning with reinforcement learning. Again,
the context for this is a single double auction marketplace.
Unlike Gjerstad’s approach, this focuses on learning the dis-
tribution of the equilibrium price. In [7], Garcia et al. con-
sider the development of bidding strategies in the context of
the Spanish Fishmarket tournament. Agents compete in a
sequence of Dutch auctions, and use a combination of util-
ity modeling and fuzzy heuristics to generate their bidding
strategy. Their work focuses on Dutch rather than English
auctions, and on a sequence of auctions run by a single auc-
tion house rather than parallel auctions run by multiple auc-
tion houses. Also dealing with multiple protocols, and in a
more open setting than the one considered here, is [1].

The work of Boutilier et al. [2, 4, 3] in this area is relevant
because of its application of Dynamic Programming; typi-
cally a sequence of non-overlapping sealed bid auctions are
considered, selling goods that may have complementarities
or substitutabilities. Thus they investigate the impact of a
complex utility function on agent behaviour, showing that
agents can learn to coordinate their bidding choices so as to
find the best distribution of goods.

5. CONCLUSIONS

In this paper we examined three bidding algorithms of in-
creasing sophistication and computational complexity capa-
ble of bidding in multiple concurrent English auctions, and
tested them by competing them against one another in sim-
ulations. In particular, we wanted to see whether DP, whose
reasoning is built on probability distributions that it can
only approximately know, and on assumptions - such as the
independence of auction closing price probabilities - which
are obviously false, could none the less outperform other
algorithms that have been considered for multiple auction
scenarios in the past.

We found that DP out-performs both GREEDY and HISTORIAN,
despite the problems with its reasoning referred to above.
Furthermore, it out-performs them even initially, when its
beliefs are very crude and often wrong. We find that, as in
[5], DP gains a relatively high proportion of high-value deals
when the degree of simultaneity is high, presumably because
of strategic over-bidding as before.

Having demonstrated that the DP approach works not only
in theory but also in simple simulations, there never the
less remain important questions regarding how well it will
perform when other assumptions, such as the fact that auc-
tions proceed in synchronized rounds, break down. In future
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work we will address the continued effectiveness of Dynamic
Programming-based algorithms to simultaneous bidding in
multiple auctions, when considering the following alterations
to the formal framework:

1. Goods with partial common value,

2. Goods with complementarities and substitutes between
them, as in [2],

3. Auctions with different and more complicated proto-
cols, and

4. Agents with different tasks or capabilities, such as the
ability to sell off excess goods.
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