

Appliance Data Services: Making Steps
Towards an Appliance Computing World

Andrew Huang1, Benjamin Ling1, John Barton, Armando Fox1
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2001-30
February 14th , 2001*

E-mail: ach@cs.stanford.edu, bling@cs.stanford.edu, John_Barton@hp.com, fox@cs.stanford.edu

digital,
appliance,
Internet,
infrastructure,
service

Although digital appliances are designed to be easy to use, their
users often cannot even perform simple tasks because the
devices lack infrastructural support. The Appliance Data
Services project seeks to explore the attributes of an appliance
computing world and develop the infrastructure required to
support users with digital appliances.

* Internal Accession Date Only Approved for External Publication
1 Stanford University, Stanford, CA 94305
 Copyright Hewlett-Packard Company 2001

Appliance Data Services: Making Steps Towards an Appliance

Computing World

Andrew C. Huang

ach@cs.stanford.edu

Benjamin C. Ling

bling@cs.stanford.edu

John Barton

John Barton@hp.com

Armando Fox

fox@cs.stanford.edu

Abstract

Although digital appliances are designed to be easy to
use, their users often cannot even perform simple tasks
because the devices lack infrastructural support. The
Appliance Data Services project seeks to explore the at-
tributes of an appliance computing world and develop
the infrastructure required to support users with digital
appliances.

1 Introduction

Digital appliances, such as digital cameras and digital
photo frames, are designed to be easier-to-use, more
powerful improvements of their non-digital counterparts.
Thus, digital appliances should enable all consumers to
accomplish traditional and advanced tasks more easily.
For example, TiVo� makes recording TV shows exceed-
ingly simple by daily downloading TV broadcast infor-
mation. Being connected to the network also enables
extra functionality; TiVo� recommends shows users are
likely to enjoy by correlating the feedback of all its view-
ers. The simplicity and power of such devices is possible
because they leverage the computational power, network
bandwidth, content, and aggregate user-base of services
in the infrastructure. We capture this e�ect by saying
that these devices are \infrastructure enabled" [4].

Although many infrastructure enabled appliances are
easy to use, the reality for many digital devices is that
users are unable to accomplish even the simplest tasks
with them. Dan Carp, CEO of Kodak�, identi�es us-
ability as the main hindrance to widespread acceptance
of digital cameras [1]:

The industry has made picture-taking more
diÆcult and more complicated by cramming
onto digital cameras more features, more but-
tons and more bells and whistles than most
people want or need... The one lesson that
100 years of consumer marketing should have
taught us: In the picture business, simple
trumps megapixels, every time.

Therefore, despite a digital device's powerful features
and low price, the user-experience turns many consumers
away.

The usability problem does not end with the device.
Extracting data from these devices requires users to in-
stall, con�gure, and learn how to use new software on

their PCs or handheld devices. For example, mobile user-
s that share information in a collaborative setting often
recon�gure the network settings on their devices to gain
network connectivity. Even printing photos from a digi-
tal camera requires the user to install new PC software.
For everyday users, having to deal with these software
issues can turn them away from adopting a digital device.

Hence, although digital appliances are designed to be
easier to use and more powerful, the devices and the sup-
porting services have the exact opposite attributes; they
are more diÆcult to use and have too many fea-

tures. Such devices are unable to achieve the status of
\consumer devices" and the appliance computing world
is still unrealized.

The goal of ADS is to address these usability prob-
lems by integrating digital appliances and Internet ser-
vices, identifying principles that make appliance services
successful for users, and to building a testbed to validate
those principles.

2 An Appliance Computing World

People express high-level tasks in terms of concrete arti-
facts and the data residing on them: \Display the notes
I've taken on my PDA on a wall monitor to be viewed
by everyone at the meeting" or \Put this picture taken
with my digital camera onto my Web page." Our vision
is based on this observation:

An appliance computing world is one in which
people move data e�ortlessly among artifacts
to accomplish a variety of tasks.

In ADS, we attempt to systematically explore this appli-
ance computing vision by:

1. making observations on attributes inherent in this
vision;

2. identifying the principles that underlie these at-
tributes; and

3. building a framework based on these principles to
test their e�ectiveness.

2.1 Bring devices to the forefront

In an appliance computing world, the number of steps
required to perform high-level tasks should be few and
the individual steps kept simple. A key insight into mak-
ing the steps simple is this: people �nd it easier to use

1

concrete artifacts to move data. Thus, our appliance
computing vision has the following attribute:

Attribute 1: People move data using concrete
artifacts.

In a digital world, tangible artifacts include digi-
tal cameras, ash memory cards, wall-mounted displays,
and Web pages. In these examples, users perceive the da-
ta as being produced by or residing on artifacts that are
concrete and permanent, which makes reasoning about
tasks involving these artifacts easier. The problem is
that today's digital devices force users to deal with ob-
jects they do not understand { computers and �les. Ex-
tracting data from digital devices and moving the data
to the desired destination often involves interacting with
PCs. For example, posting pictures on a Web page re-
quires knowing what server hosts the page. File format
conversions are even harder to reason about for some
users who are unaware that �les have di�erent formats.
For example, when posting TIFF images produced by a
handheld scanner onto the Web, a user focused on Web
publishing should not be required to �x the broken icon
that results from trying to display a TIFF �le on a Web
page.

To allow people to reason about the source and des-
tination of data, rather than the path it must take so
that data can be moved seamlessly across artifacts, the
appliances they use should be suÆcient to complete the
task; using a secondary computer, like a PC, should not
be required. Thus, the �rst attribute gives rise to the
following principle:

Principle 1: Bring devices to the forefront.

This idea of bringing devices to the forefront and
pushing the experience of using computers into the back-
ground is related to Mark Weiser's vision of ubiquitous
computing where devices and computers are \invisible"
in that they are embedded into the physical infrastruc-
ture [5]. Both allow users to focus on the task at hand
rather than the mechanisms for accomplishing the task.

2.2 Keep devices simple

One approach to eliminating the PC experience is to
push more functionality onto the devices. For exam-
ple, some high-end cameras have networking and image-
editing capabilities. However, moving computers into
the devices does not solve the problem. As Alan Cooper
explains, such devices do not make tasks easier because
they are basically hard-to-use, complex mini-PCs [2]:

My newest camera... has a full-blown com-
puter that displays a Windows-like hourglass
while it \boots up"... its On/O� switch has
now grown to have four settings... and none
of my friends can �gure out how to turn it on
without a lengthy explanation... The camera
may still take pictures, but it behaves like a
computer instead of a camera.

Cooper's observations suggest that devices must be
be simple so that the steps required to accomplish a task
can be made simple.

Attribute 2: Devices are simple, single-
purpose appliances.

Given that devices should be kept simple, the soft-
ware and hardware placed on the device should be kept
to a minimum. For digital devices that have analog coun-
terparts, this means user-controllable features outside of
the feature set to which users are accustomed should be
kept to a minimum. In fact, the only extra mechanism
required is the ability to transfer data to and from the
device.

Principle 2: Keep the number of user-
controllable features on devices to a minimum.

2.3 Place software in the infrastructure

Up to this point, we have focused on simplifying the step-
s required to perform high-level tasks. We accomplish
this by removing features from devices and eliminating
the need to use PCs. Now the question is, what will
people be able to do with these simple devices? At the
very least, users should be able to use these devices to
perform the same tasks as their traditional, non-digital
counterparts, if not more.

Attribute 3: People perform a variety of tra-
ditional tasks, as well as a new set of advanced
tasks with their devices.

This third attribute, when put next to attributes one
and two, reveals the tension between providing function-
ality and providing a usable experience. We want to
minimize the set of features placed on the device, but
we want to allow users to control data movement using
these devices without having to interact with a PC. At
the same time, we want to provide users with a meaning-
ful set of tasks that they can perform with their devices.
The tension introduces tradeo�s that can be addressed
using human-computer interaction and systems ideas.

So where does the functionality lie to perform the
high-level tasks that users demand? One possible loca-
tion is the user's PC. This software can be designed in
such a way as to eliminate the look and feel of a PC,
thus shielding the user from the PC experience. Howev-
er, this does not relieve the user of other PC experiences
such as installing, con�guring, and upgrading software.
Another possible location for placing functionality is the
network infrastructure. Placing software in the infras-
tructure has the advantage of fully relieving the user of
the PC experience:

Principle 3: Place the software required to
accomplish tasks in the network infrastructure.

2

Taking an infrastructure-centric approach, one where
we move functionality from PCs and devices into the sup-
porting infrastructure, has other bene�ts. Having logi-
cally centralized software makes upgrades and admin-
istration much simpler. Furthermore, by selecting the
Internet infrastructure, we are able to take advantage of
the wealth of existing Internet services.

2.4 Appliance Data Services

The ADS framework is a general application framework
on top of which appliance computing applications are
built. The framework implements the previously men-
tioned principles of appliance computing: bring devices
to the forefront, minimize the number of features on de-
vices, and place software required to accomplish tasks in
the network infrastructure.

Clearly, other principles and challenges exist in the
creation of an appliance computing world. One example
is the challenge of actually designing easy-to-use device
and system user interfaces. Although this area of re-
search is beyond the current scope of this project, we
design the ADS framework such that it is amenable to
new user interfaces and usage models.

In the following sections, we describe the ADS archi-
tecture, observations on building ADS applications, and
next steps for future research.

3 The Architecture

Before discussing the ADS architecture, we describe its
basic data unit. The basic data unit is composed of a
user identi�er, the command to be executed, and the
data to be operated on: (userid, command-tag, data).
The reason the userid and command-tag are part of the
basic data unit is that they are used for:

1. Application selection: The command-tag names
the high-level application the user wants to per-
form. However, since di�erent users may have d-
i�erent semantic meanings for the same tag (e.g.
the mapping for \my Web site" is user-speci�c), a
userid is required to fully specify an application.

2. Access control: The userid is required to determine
what credentials are to be attached to the applica-
tion request since some services may limit access
to a set of authorized users.

3. Other service features: Services such as billing, se-
curity, and personalization are not implemented in
ADS, but we have left the userid as a \hook" for
adding such capabilities later.

The ADS framework architecture, shown in Figure 1,
is described in the rest of this section. The framework is
split into three main components { Data Receive stage,
Application Control stage, and Services Execution stage
{ each of which corresponds to a high-level function that
is performed on the data.

3.1 Data Receive

The components in the Data Receive stage, Access Point
and Aggregator, interface with devices to receive da-
ta and output completed (userid, command-tag, data)
triples.

Access Point: The Access Point consists of the hard-
ware and software needed to receive data from devices.
Examples of hardware are IR transceivers and cradles
for \docking" a device. The software is organized as a
set of device adaptors, each enabling the Access Point to
\speak" a di�erent device communication protocol.

The architectural role of the Access Point is to ad-
dress the issue of dealing with the various devices com-
munication protocols.

Role: Deals with device heterogeneity.

Isolating device heterogeneity to one component relieves
the rest of the system from having to deal with device-
speci�c communication protocols, which makes building
the rest of the system simpler.

The key challenge in designing the Access Point is
extensibility. This challenge exists because of the lack
of device standardization and the increase in the vari-
ety of devices being introduced. Standardization among
competing vendors is not likely anytime soon, and since
general-purpose devices are often diÆcult to use for ev-
eryday consumers, the trend towards single-purpose de-
vices is likely to continue. Thus, the rapid development
of heterogeneous devices makes it crucial to make adding
support for new devices simple.

Aggregator: A stateless Access Point improves its ex-
tensibility because adaptor writers do not have to deal
with state management. To allow statelessness and ex-
tensibility in the Access Point, the Aggregator manages
state by gathering the devices' data and sending com-
pleted triples to the next stage.

Role: Simpli�es adding support for new de-
vices and protocols.

The net e�ect of separating the Data Receive stage into
Access Point and Aggregator components is to separate
the two concerns of device heterogeneity and state man-
agement.

3.2 Application Control

In the Application Control stage, the userid and
command-tag are used to determine the chosen appli-
cation. The data is then added to a list of parameters
required for the selected application. Once all the pa-
rameters for a given application have arrived, they are
sent to the Services Execution stage.

Command Canonicalizer: The Command Canoni-
calizer facilitates the design of \no-futz," easy-to-use
user-interfaces. Canonicalization involves converting the
command-tag from its original data type to plaintext.
Giving the system the ability to handle command-tags

3

 x x x Application
Dispatcher

Modular Composable Services
Devices

Dataflow Manager

Command Canonicalizer

Data Receive Application Control Services Execution

 1

 2

 4

Access
Point

Access
Point

Aggregator

userid x
cmdtag x
data

 3 6 7

 5

 4 cont’d

Template
Database

 1

 2

 3

 4

 5

 6

 7

data sent to Access Point

completed triple sent to Dataflow
Manager
Canonicalizer converts cmdtag to
plaintext
(userid, cmdtag) looked up in
Template Database to find
matching application template

application template and data
sent to Application Dispatcher
when required data is received

Aggregator receives data, which
completes the triple: (userid,
cmdtag, data)

Application Dispatcher invokes
services on data as specified in
the application template

Figure 1: The ADS Architecture

of arbitrary types makes it possible to support arbitrary
devices, even those with limited user interfaces.

Role: Allows devices to have simple user in-
terfaces.

For example, the most natural method for digital
camera users to specify the command-tag might be to
record a short WAV �le annotating each picture. In this
scenario, the user takes a picture and speaks the desired
command-tag into the camera; later, when the pictures
are transfered into an Access Point, the command-tag
has already been speci�ed so the system knows what
to do with the picture. Canonicalization frees the de-
vice designers from being constrained to relying solely
on menu or other text-based user-interface elements, thus
facilitating the most natural user interface for a no-futz,
easy-to-use experience.

Template Database: The canonicalized command-
tag, userid pair is looked up in the Template Database to
�nd a matching application template. Templates de�ne
an application's behavior by describing the data required
for a given application and specifying the services to in-
voke on the data. Binding command-tags to application
templates in the Template Database has the bene�t of
minimizing device con�guration and supporting devices
with non-extensible user interfaces, thus achieving out-
of-the-box operation for devices.

Role: Minimizes device con�guration.

Application templates and the command-tag map-
pings are con�gured for a particular user independent-
ly of the user's devices. Further, in situations where a
command-tag cannot be speci�ed, such as may be the
case for devices with non-extensible user interfaces, the
command-tag \default" can be mapped to the appropri-
ate application template.

This binding mechanism provides a level of indirec-
tion between application selection and application spec-
i�cation, which separates the concerns of applications
users and application creators. This separation provides
an easy way for third-party developers to make their tem-
plates available to ADS users. Furthermore, with au-
thentication mechanisms in place, third-party template
providers can e�ectively restrict access to the templates
it has developed.

For example, say Kodak� develops a set of ADS ap-
plications, which only Kodak� camera customers can
use. If the templates are shipped with each camera, not
only is upgrading or adding new applications diÆcult, it
may be possible for the template to be \pirated" and giv-
en to users with non-Kodak� cameras. With the Tem-
plate Database, the user's act of registering gives that
user the credentials to view and select the Kodak� tem-
plates. Furthermore, upgrading applications or adding
new ones only requires dealing only with the Template
Database.

Dataow Manager: The role of the Dataow Man-
ager is to coordinate data received from the user and
to make certain an application has all the data it re-
quires. When data is received from the Data Receive
stage, the Dataow Manager uses the application tem-
plate to place the data into the proper parameter slot
for the chosen application. Once all necessary data is
received, the Dataow Manager sends the template and
all the data to the Services Execution stage.

Role: Coordinates data input by the user.

Coordinating data in this way allows users to input
the data from di�erent devices and at di�erent periods
of time. For example, a user who uses a PDA to store
captions for the photos taken on a digital camera can
create a Web-based photo album by inputing the data
from these two devices. As an alternative, a user can
input photos into ADS while still on vacation to conserve
the camera's memory. At the end of the vacation, the
user can use a Web browser to �ll in the captions for all
the pictures.

3.3 Services Execution

In the Services Execution stage, the Application Dis-
patcher invokes the services speci�ed in the application
template on the data it receives. The reason modular
composeable services are used is that it results in ap-
plications that are exible and whose components are
reusable. However, such a service framework does not
preclude the use of stand-alone, monolithic applications.
Such an application would simply be a single service in
the framework and would not be invoked in conjunction
with other existing services.

4

3.4 Architecture Summary

The ADS framework was designed to provide applica-
tions built on top of it with the three appliance comput-
ing principles discussed in the previous section:

Principle 1: We bring devices to the forefront so that
people can focus on using concrete artifacts for moving
data. The Template Database separates application se-
lection and creation so that users can perform high-level
tasks simply by selecting a command-tag. Meanwhile,
the extensible Access Point allows ADS to support a va-
riety of devices.

Principle 2: We facilitate keeping the number of fea-
tures on devices to a minimum so that devices can be
made simple and easy-to-use. The Command Canon-
icalizer allows devices to be extended for command-tag
selection in the most natural way without loading-up the
device with features. Meanwhile, the Template Database
minimizes device con�guration by allowing application
creation and customization to be done independently of
the user's devices.

Principle 3: We place the software required to accom-
plish tasks in the network infrastructure so that people
can perform a variety of tasks without dealing with com-
plex devices or the PC experience. The Dataow Man-
ager coordinates data so that a variety of tasks using
one or more devices can be performed. Furthermore, all
components except for the Access Point, which can be
deployed as public Web-kiosks or appliances in people's
homes, are placed in the Internet infrastructure to free
the user from software issues.

4 Development Experience

To test the e�ectiveness of our appliance computing prin-
ciples, we built a prototype of the framework as described
in the previous section. We evaluate the implementation
based on how easy it is for developers to build applica-
tions on the framework. To do this, we built a set of
services and device adaptors that supported two target
applications: Web Photo Album and Guest Book. The
Web Photo Album shows how the usage model of digi-
tal devices can be simpli�ed by infrastructure services;
in this application, users create and publish Web-based
photo albums on Geocities� in a few simple steps using
their digital cameras. The Guest Book exhibits the po-
tential of ADS to coordinate input from multiple devices;
this application takes input from a Web cam, business
card scanner, and PDA to create aWeb-based guest book
containing people's pictures and business card informa-
tion.

Given the necessary services and device adaptors,
building these applications simply involved creating an
XML application template to describe the input data
and services to invoke; no coding was necessary. Our
experience building these applications showed us that:
1. creating and extending applications using XML tem-
plates is simpler than building standalone applications
from scratch, and 2. adding support for new devices is

simple because of the statelessness of device adaptors in
the Access Point. Thus, ADS has been successful in pro-
viding a framework on which appliance computing ap-
plication can be quickly built, customized for each user,
and evolved. Furthermore, the ADS architecture pro-
vides these applications with the desirable attributes of
our appliance computing vision in that people use simple
artifacts to move data around in a variety of ways.

5 Next Steps

Two areas of research we intend to explore in the im-
mediate future involve deploying ADS in \Smart Space"
environments and adding mechanisms to convey status
information back to the user.

In Stanford's Interactive Workspaces Room (IW-
Room) [3], researchers explore new possibilities for peo-
ple to work collaboratively in \meeting rooms of the fu-
ture" using a variety of computing and interaction de-
vices. We intend to explore ways ADS can be deployed in
\Smart Space" environments such as these by installing
a production version of the ADS framework in the IW-
Room. Initial applications will include the Guest Book
deployed at the entryway of the room and an applica-
tion that allows users to share information from their
personal devices by \beaming" data onto wall-mounted
displays via IR-dongles. Since IW-Room is in produc-
tion use for regularly scheduled meetings, we expect to
gain insight on new applications and de�ciencies in the
architecture that need to be addressed.

As ADS is used in production form, we expect user-
s will want more feedback about the status of the data
they send into the system. The solution is not as simple
as adding error dialog boxes with error messages. The
lack of a traditional computer interface and the target
audience of everyday consumers means that novel ap-
proaches to convey status and error information to the
user need to be explored.

6 Conclusion

Our vision for appliance computing is a world in which
everyday users move data seamlessly and e�ortlessly a-
mong various artifacts. While the devices required for
such a world exist, users often cannot even perform the
simplest tasks with current devices. These devices are
simply too diÆcult to use because they lack infrastruc-
tural support. The goal of the Appliance Data Services
project is to explore the attributes of this appliance com-
puting world and develop the infrastructure required to
support users with digital appliances. To accomplish
this, we identi�ed three principles for realizing this vi-
sion and implemented a testbed to see how successful
the principles are in making appliances more useful and
easier to use. Next steps involve putting the ADS frame-
work into production use and gaining valuable user and
developer feedback on how the framework can be im-
proved and what applications are needed.

5

References

[1] Dan Carp. Keynote address. In Advanced Digital
Photography Forum, Boston, MA, USA, April 2000.

[2] Alan Cooper. The Inmates Are Running the Asylum:
Why High Tech Products Drive Us Crazy and How To
Restore The Sanity. Sams, 1999.

[3] Armando Fox, Brad Johanson, Pat Hanrahan, and
Terry Winograd. Integrating information appliances
into an interactive workspace. IEEE Computer
Graphics and Applications, 20(3):54{65, May/June
2000.

[4] Andrew C. Huang, Benjamin C. Ling, John Bar-
ton, and Armando Fox. Running the web backward-
s: Appliance data services. In Ninth Internation-
al World Wide Web Conference (WWW9), Amster-
dam, Netherlands, May 2000.

[5] Mark Weiser. The computer for the twenty-�rst cen-
tury. Scienti�c American, pages 94{100, September
1991.

6

