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Abstract. In this work, we consider a web cluster in
which the content-aware distribution is performed by each
of the node in a web cluster. Each server in the cluster
may forward a request to another node based on the re-
quested content. We propose a new Workload-Aware Re-
quest Distribution strategy WARD, that assigns a small set
of most frequent �les, called core, to be served locally, by
any server in a cluster, while partitioning the rest of the
�les to be served by di�erent cluster nodes. We propose an
algorithm, called ward-analysis, to compute the nearly op-
timal core size. The algorithm takes into account workload
access patterns and cluster parameters such as number of
nodes, node RAM, TCP hando� overhead, and disk access
overhead.

Our simulations driven by a realistic workload show that

WARD achieves super-linear speedup with increased cluster

size. It shows superior performance compared with tradi-

tional round-robin strategy (up to 260% increased through-

put for a cluster of 16 nodes), and outperforms a pure par-

titioning strategy based on a cache-a�nity requests distri-

bution (up to 50% increased throughput for a cluster of 16

nodes).

1 Introduction and Background

Servers based on clusters of workstations are the most
popular con�guration used to meet the growing tra�c
demands imposed by the World Wide Web. A cluster
of servers, arranged to act as a single unit, provides in-
cremental scalability as it has the ability to grow grad-
ually with demand. However, for clusters to be able to
achieve the scalable performance with increase in clus-
ter size, it is important to employ the mechanisms and
policies for balanced request distribution.

Load balancing solutions can be represented by
two major groups: 1) DNS based approaches; 2)
IP/TCP/HTTP redirection based approaches. The
second group, IP/TCP/HTTP redirection based ap-
proaches, employs a specialized front-end node, the
load-balancer, which traditionally determines the least
loaded server (this is the job of the proprietary al-
gorithms implemented in di�erent products) to which
server in a cluster the packet has to be sent (see sur-
veys [3, 8]).

Content-aware request distribution, on the other
hand, takes into account the content (URL, URL type,

or cookies) when making a decision to which back-end
server the request has to be routed. Previous work
on content-aware request distribution [2, 4, 7, 11] has
shown that policies distributing the requests based on
cache a�nity lead to signi�cant performance improve-
ments compared to the strategies taking into account
only load information.

To outline di�erent cluster designs which were pro-
posed to implement content-aware balancing strategies,
we adopt terminology proposed in [2]. There are three
main components comprising a cluster con�guration
with content aware request distribution strategy:

� the dispatcher which speci�es which web server will
be processing a given request;

� the distributor which interfaces the client and im-
plements the mechanism that distributes the client
requests to speci�c web server.

� web server which processes HTTP requests.

To be able to distribute the requests on base of re-
quested content, the distributor component should im-
plement some mechanism such as TCP hando� [7] or
TCP splicing [6].
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Figure 1: Tra�c 
ow with a) Splicing mechanism, b)
TCP hando� mechanism.

Splicing is an optimization of the front-end relay-
ing approach, with the tra�c 
ow represented in Fig-
ure 1 a). The TCP hando� was introduced in [7] to
enable the forwarding of back-end responses directly
to the clients as shown in Figure 1 b). This di�erence
in the response 
ow route allows substantially higher
scalability of the TCP hando� mechanism than TCP
splicing. In [2], authors compared performance of both
mechanisms showing the bene�ts of the TCP hando�
schema.
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Figure 2: Di�erent web server cluster architectures: a) with single front-end distributor, b) with co-located distrib-
utor and server, and a centralized dispatcher, c) with co-located distributor, server, and dispatcher.

For the rest of the paper, we assume that the distrib-
utor component implements some form of TCP hando�
mechanism. Figure 2 a) shows the most typical clus-
ter con�guration with content aware request distribu-
tion strategy and a single front-end. In this con�gu-
ration, the typical bottleneck is due to the front-end
node which combines the functions of both the distrib-
utor and the dispatcher. For realistic workloads, the
front-end node, performing the TCP hando�, does not
scale well beyond four cluster nodes [2]. Most of the
overhead in this scenario is incurred by the distributor
component. Typically, only the dispatcher component
requires centralized control.

Thus, another recent solution proposed in [2] is
shown in Figure 2 b). It is based on alternative cluster
design where the distributor components are co-located
with the server components, while the dispatcher com-
ponent is centralized. We will call this architecture
CARD (Content-Aware Request Distribution). In this
architecture the distributor is decoupled from the re-
quest distribution strategy de�ned by the centralized
dispatcher module. The switch in front of the cluster
can be a simple LAN switch or L4 level load-balancer.
For simplicity, we assume that the clients directly con-
tact a distributor, for instance via RR-DNS. In this
case, the typical client request is processed if the follow-
ing way. 1) Client web browser uses TCP/IP protocol
to connect to the chosen distributor; 2) the distribu-
tor component accepts the connection and parses the
request; 3) the distributor contacts the dispatcher for
the assignment of the request to a server; 4) the dis-
tributor hands o� the connection using TCP hando�
protocol to the server chosen by the dispatcher (if it
is not served locally) 5) the server sends the response
directly to the client.

The results in [2] show good scalability properties
of the proposed architecture above when distributing
requests with the LARD policy [7]. The main idea
behind LARD is to logically partition the documents
among the cluster nodes, aiming to optimize the us-
age of the overall cluster RAM. Thus, the requests to
the same document will be served by the same clus-
ter node that will most likely have the �le in RAM.

However, under the described policy in a sixteen-node
cluster, each node statistically will serve only 1/16 of
the incoming requests locally and will forward 15/16 of
the requests to the other nodes using the TCP hando�
mechanism. TCP hando� is an expensive operation.
That could lead to a signi�cant forwarding overhead,
decreasing the potential performance bene�ts of the
proposed solution. From the other side, web server
workload studies [1, 5] showed strong locality of refer-
ences: 90% of the server requests target only 2-10% of
all the accessed �les, and constitute less than 5% of the
total working set.

We propose a new request distribution strategy
WARD (Workload-Aware Request Distribution) that
takes workload properties into account and identi�es
a small set of most frequent �les, called core. The re-
quests to core �les are processed by any server in a
cluster, while the rest of the �les are partitioned to
be served by di�erent cluster nodes. The goal of the
WARD strategy is to minimize the forwarding overhead
occurring from TCP hando� for the most frequent �les
while still optimizing the overall cluster RAM usage
by partitioning the rest of the �les that typically con-
tribute to the largest portion of the working set. We
have designed a special algorithm called ward-analysis
that identi�es the optimal size core for a given work-
load and given system parameters, such as number of
nodes in a cluster, forwarding overhead, and disk ac-
cess overhead. This way, WARD tunes itself to achieve
the best performance trade-o� for a given workload's
access patterns and cluster con�guration parameters.

Simulations driven by access logs from the HP.com
web site show that WARD achieves super-linear
speedup with increased cluster size. It shows excel-
lent performance improvements compared to the tradi-
tional round-robin strategy by up to 260% in increased
throughput for a 16-node cluster, and outperforms a
partitioning strategy based on cache-a�nity request
distribution by up to 50% for a cluster of 16 nodes.

While the centralized dispatcher component of
CARD simpli�es the design and the distribution policy,
it introduces the additional overhead and delay to send
messages to the dispatcher and to get the responses



with routing decisions back. The second question, we
then address in this paper, is whether a centralized
dispatcher component in CARD shown in Figure 2 b)
can be distributed, or more exactly replicated across
the nodes as shown in Figure 2 c), where the distribu-
tor and dispatcher components are co-located with the
server components in what we call the dec-CARD ar-
chitecture.

We propose a decentralized dispatcher architecture
where the dispatcher components have the same rout-
ing information in all the nodes. In our approach, this
routing information is updated on a daily basis, which
means that current day's routing is performed with the
routing created on the basis of previous day's access
patterns. Our simulation results indicate that the per-
formance of WARD based on the previous day's access
log information is only 1%-15% worse in throughput
than WARD using current day's workload information
(via centralized dispatcher component).

The remainder of the paper presents our results in
more detail. Section 2 formally introduces WARD
strategy with emphasis on the ward-analysis algorithm.
Section 3 presents our simulation results and their anal-
ysis, as well as a brief workload description and the
simulation model.

2 A New Strategy WARD

It is well known that web server performance greatly
depends on e�cient memory usage. The throughput
of a web server is higher when it reads pages from a
cache in memory than from disk. If all �les of the site
�ts in memory the web server demonstrates excellent
performance because only the �rst request for a �le will
require a disk access, and all the following �le accesses
will be served from memory.

With WARD we attempt to achieve two goals:

1. maximize the number of requests served from the
total cluster memory by partitioning �les to be
served by di�erent servers;

2. minimize the forwarding by identifying the subset
of core �les to be processed on any node, i.e. al-
lowing the replication of these �les in the memories
across the nodes. Note, that while serving the core
�les locally by each cluster node helps to minimize
the forwarding overhead, it will most probably re-
sult in additional, initial disk accesses to core �les
on all those nodes. This is why the ultimate goal
here is to identify such a subset of core �les for
which the forwarding overhead savings are higher
than the additional cost of the disk accesses due
to cold misses across the cluster nodes.

A cornerstone in our algorithm called ward-analysis is
the use of frequencies (the number of times a �le was
accessed) and sizes of individual �les. These are de-
noted FileFreq and FileSize, respectively. We gather

these by analyzing web-server access logs from the clus-
ter. Let Freq-Size be the table of all accessed �les with
their frequency and the �les sizes. This table is sorted
in decreasing frequency order.

The algorithm presented in this section assumes that
the cache replacement policy of the �le cache in the
web-server has the property that the most frequent �les
will most likely be in cluster RAM. 1 Here and for the
rest of the paper we de�ne ClusterRAM as the total
size of all the �le caches in the cluster.

If all the �les were partitioned across the cluster the
most probable �les to be in the cluster RAM would be
the most frequent �les that �t into the cluster RAM.
The starting point of our algorithm is the set of most
frequent �les that �t into the cluster RAM, called Base-
Files as shown in Figure 3 a). The other �les we do not
consider in the algorithm. Under the partition strat-
egy PART, the maximum number of the BaseFiles are
stored in the ClusterRAM, at a price that N�1

N
of the

request coming to each node have to be handed o�
where N is the number of nodes in the cluster. Under
the WARD strategy, BaseFiles are represented by three
groups of �les as shown in Figure 3 b): Filescore and
Filespart in the ClusterRAM, and Fileson disk consist-
ing of �les evicted from RAM to disk due to the expan-
sion of the core. They satisfy the following equations:

BaseF iles = Filespart + Filescore + Fileson disk (1)

N � Sizecore + Sizepart � ClusterRAM (2)

The ideal case for web server request processing is when

� a request is processed locally, i.e. it does not in-
cur an additional forwarding overhead (denoted
as ForwardOH); and

� a request is processed from the node RAM, i.e. it
does not incur an additional disk access overhead
(denoted as DiskOH).

Our goal is to identify a set of core �les Filescore that
minimizes the total overhead due to BaseFiles:

OHBaseFiles = OHpart +OHcore +OHon disk (3)

First, let us analyze what the additional overhead in-
curred by processing the requests to Filespart is. As-
suming all these �les are partitioned to be served by
di�erent nodes, statistically a �le in the partition in-
curs forwarding overhead on the average (N � 1)=N
times. The �le from partition will also incur one disk
access on the node it is assigned to the �rst time it is
read from disk. This reasoning gives us the following
overhead for the partition �les:

Penaltyforward =
N � 1

N
�FileFreq �ForwardOH (4)

1It is a reasonable assumption for the whole set of replacement
policies.
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Figure 3: BaseFiles representation under: a) a partition strategy PART, b) a new strategy WARD.

PenaltyDiskAccess = FileSize �DiskOH (5)

OHpart =
X

Filespart

(Penaltyforward+ PenaltyDiskAccess)

(6)
where ForwardOH is the processing time in �sec the
TCP hando� operation consumes, and DiskOH is the
extra time in �sec it generally takes to read one byte
from disk compared to from RAM.

Now, let us understand what the additional over-
head incurred by processing the requests to Filescore
is. If a �le belongs to the core then the request to that
�le can be processed locally, i.e. with no additional
forwarding overhead. The drawback is that the �le has
to be read from disk into memory once on all the nodes
in the cluster, creating additional disk access overhead.
However, this is under the assumption that the �le is
accessed frequently enough that at least one request
for this �le will end up on all nodes. For a �le that is
accessed less frequently this number is expected to be
lower, thus we need to calculate the expected value of
the number of nodes that get at least one access to a
�le given a certain frequency f and a number of nodes
N .

E(f) =

NX

i=1

i � P (f; i) (7)

Here P (f; i) is the probability that exactly i nodes will
have the �le after f references to it. It can be calculate
using the following recursion and starting conditions.

P (f + 1; i) = P (f; i� 1) �
N � (i� 1)

N
+ P (f; i) �

i

N
P (0; 0) = 1

P (0; 1) = P (0; 2) = � � � = P (0; N) = 0

P (1; 0) = P (2; 0) = � � � = P (1; 0) = 0

The overhead due to extra disk accesses to core �les
can then be calculated as follows.

OHcore =
X

Filescore

E(FileFreq;N) �DiskOH � FileSize

(8)
Finally, the requests to Fileson disk will incur addi-
tional disk overhead every time these �les are accessed,

which gives the following equation.

OHon disk =
X

Fileson disk

FileFreq �DiskOH � FileSize

(9)
Using the reasoning and the equations above, a set
Filescore that minimizes the total overhead due to
BaseFiles can be computed.

The next step is then to partition Filespart across
the cluster. We chose to partition the �les in a balanced
manner using load and �le sizes, thus trying to put the
same amount of data and load on all nodes.

The last step is to feed this information into each
web-server node that acts on this in the following man-
ner.

If in core: serve locally

If in partition and local: serve locally

If in partition and remote: hand off to

designated node

Everything else: serve locally

3 Simulation Results

This Section presents simulation results for WARD
strategy using realistic workload. This workload is
brie
y characterized in Section 3.1. We then describe
the main parameters of our simulation model in Sec-
tion 3.2. The simulation results and their analysis are
reported in Section 3.3, which starts with a compari-
son of how well ward-analysis computes the core. After
that we will compare WARD with round-robin and a
pure partitioning strategy on both for the CARD archi-
tecture (Section 3.3) and the dec-CARD architecture
(Section 3.4) .

3.1 Access Log

In our case study, we used access logs from the HP.com
site (www.hp.com). HP.com provides diverse informa-
tion about HP: business news, major events, detailed
coverage of most software and hardware products, and
press related news. For our simulations we used an ac-
cess log consisting of 5 million that covers a few hours
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Figure 4: Log Pro�le: a) density of references, b) working-set locality, c) bytes-transferred locality.

of daily tra�c to the HP.com site. These 5 million en-
tries contain only successful responses with code 200,
which are responsible for all of the �les transferred by
the server. The absolute number of �les in this access
log was 69,067, and the total working set of the log was
2016.6 MB. Figure 4 shows a brief access log pro�le of
the site. Figure 4a) re
ects the reference locality: 90%
of the server requests target only 4.5% of the �les. In
order to analyze the density of references against the
working set size, we use a metric called working-set lo-
cality. It is de�ned as the percentage of the working
set that the most frequently accessed �les occupy, that
contribute to a speci�c percentage of the total number
of requests. Figure 4b) shows that 95.5% of all requests
are to �les that constitute only 5% of the total access
log working set. Figure 4c) shows the bytes transferred
due to these requests: 65% of all the bytes transferred
by the site are due to these frequent �les.

3.2 Simulation Model

Our simulation model was written using an event
driven simulator called C++Sim [9]. The model makes
the following assumptions about the capacity of each
web server in the cluster:

� Web server throughput is 1000 req/sec when re-
trieving �les of size 14.5 KB from the RAM
(14.5 KB is the average �le size under the
SpecWeb96 benchmark [10]).

� Web server throughput is 10 times lower, i.e.
100 req/sec, when retrieving �les from disk.2

� The �le service time is proportional to the �le size.

� The cache replacement policy is LRU.

In the simulations, we used two values for the forward-
ing overhead: 138 �sec and 276 �sec. The experimental
results reported in [2] show that TCP hando� process-
ing overhead is nearly 300 �sec just for the distributor

2We measured web server throughput on an HP 9000/899
machine running HP-UX 11.00 when it supplied �les from the �le
bu�er cache, and compared it against the web server throughput
when it supplied �les from the disk. The di�erence in throughput
was a factor of 10. For machines with di�erent con�gurations,
this factor will vary.

part. This result in
uenced our choice of values for the
forwarding overhead. Our goal is to understand the ef-
�ciency and performance bene�ts of WARD for current
TCP hando� implementation, and to perform a sensi-
tivity analysis on how these results change if the TCP
hando� implementation imposes smaller overhead (in
our case study, twice as small). From these results, we
can interpolate a trend for the performance bene�ts if
the TCP hando� imposes a smaller overhead.

In order to run the model, the requests from the
original trace were split into N sub-traces, where N
is the number of servers in a cluster (in round-robin
manner, since we assume the simplest RR-DNS rout-
ing of the initial clients request to the nodes in the
cluster). These sub-traces were then fed to the respec-
tive servers. Each server has a �nite waiting queue
for both request stemming from the RR-DNS routing
and forwarded requests. The server grabs the next re-
quest from its sub-trace as soon as it is �nished with
the previous request. As the performance metrics, we
have measured server throughput averaged across the
servers after processing all the requests, and the cluster
speedup achieved on the processing of the entire access
log.

3.3 Main Simulation Results

Our �rst goal is to check whether our analysis identi-
�es the core and partition sizes close to their optimal
values. In order to do this, we ran a set of simulations
with varied core sizes.

Figure 5 shows simulation results for four, eight,
and sixteen-node clusters with a forwarding overhead
of 276 �sec. The RAM size in each node was set to 5%
of the access log's working set. This RAM size per node
deserves some special attention, because for a sixteen-
node cluster, the overall cluster RAM is 5% � 16 = 80%
of the total access log working set. In our simulation,
for RAM sizes larger than 5% of the working set per
node and 16-node cluster, WARD shows a little addi-
tional performance improvements, because most of the
working set already �ts in RAM of this large cluster.

In Figure 5, the line labeled WARD shows the av-
erage server throughput when varying the core size as
a percentage of the RAM in the node. The left most
point on this graph corresponds to the WARD strategy
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Figure 5: Graphs showing how well we compute optimal core and partition parameters for web cluster to achieve
best performance for this workload. The RAM of each node is 5% of the access log working set, and the forwarding
overhead is a) 276 �sec, b) 138 �sec.

with zero core size, i.e. the whole working set is par-
titioned among the servers. We will call this strategy
PART. Intuitively, we expect that WARD with cor-
rectly chosen core and partition sizes will outperform
PART.

Figure 5 shows that it is bene�cial to replicate a
small amount of most frequent �les to avoid the for-
warding overhead. However at some point, when less
frequent documents are included in the core and thus
replicated among the cluster nodes, the additional disk
accesses occurring as a result of cold misses to these
documents overweight the bene�ts gained from elimi-
nated forwarding overhead for those �les. The intersec-
tions of the other two lines correspond to the simulation
results of WARD run with the core size computed as a
results of the ward-analysis algorithm described in Sec-
tion 2. It shows that indeed under computed core and
partition sets, the web cluster performance is within 1%
of the best performance for this workload. Thus good
matches between the computed and simulated optimal
core and partition sizes are observed for this workload.

Figure 5 b) shows similar simulation results for the
clusters with a forwarding overhead of 138 �sec. This
set of simulation results shows that a smaller forward-
ing overhead leads to a smaller size core. The intuitive
explanation is that since the savings on the forward-
ing overhead against the price of the additional disk
accesses are decreased, the �les should reach a higher
access frequency to justify their replication via the core
mechanism.

Figure 6 shows the percentage of requests that can
be served locally using WARD with varying sizes of

the core. Additionally, there is a line that shows the
percentage of requests that were served locally from
the core, and a line representing the requests served
locally under the strategy PART, where the core is
zero and the whole working set is partitioned among
the servers. Figure 6 shows that 80%-90% of the re-
quests are served locally under WARD with optimal
core, while under PART, the percentage of local re-
quests is proportional to 1=N where N is the number
of nodes. This �gure demonstrates the intuition and in-
tent that lays the foundation for WARD: by mapping
a small set of most frequent �les to be served by

multiple number of nodes, we can improve both

locality of accesses and the cluster performance

signi�cantly.

The next set of simulation results shown in Figure 7
shows the performance bene�ts of WARD compared to
the Round-Robin request distribution and PART strat-
egy. For a four-node cluster, we evaluate performance
results for three di�erent con�gurations: with RAM
set to 5%, 10%, and 15% of the access log working set,
resulting in 20%, 40%, and 60% of the entire working
set covered by the combined cluster RAM. For a eight-
node cluster, we use two di�erent con�gurations: RAM
set to 5% and 10% of the access log working set, cor-
responding to 40% and 80% of the entire working set
covered by the combined cluster RAM. Finally, for the
sixteen-node cluster, we set the RAM of the node to
5%, corresponding to 80% of entire working set �tting
to the combined cluster RAM.

In Figure 7, WARD and PART have a forwarding
overhead of 276 �sec and 138 �sec respectively. Under
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Figure 6: Percentage of local requests for WARD and PART strategies. The RAM of each node is 5% of the access
log working set, and the forwarding overhead is 276 �sec.
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Figure 7: Average server throughput under Round-Robin (RR), PART, and WARD. The forwarding overhead is
a) 276 �sec, b) 138 �sec.

the traditional Round-Robin (RR) strategy, servers are
processing any incoming request locally, and do not
require TCP hando�, and thus performance of RR does
not depend on the forwarding overhead cost.

WARD shows signi�cant improvements compared to
RR and PART. The performance bene�ts of WARD
increase with the number of nodes. In a sixteen-node
cluster, RR su�ers from redundant replication of �les
across all the nodes in the cluster, leading to ine�-
cient RAM usage and additional disk accesses. PART,
on the other hand, utilizes overall RAM e�ciently by
partitioning the �les in the working set among the dif-
ferent nodes, but 15/16 of the tra�c coming to each
node has to be forwarded to some other node. The
higher number of nodes, the more PART su�ers from
this forwarding overhead.

Figure 8 shows speed-up achieved under the strate-
gies RR, PART, and WARD for clusters of di�erent
size, normalized to the performance of a one-node con-
�guration.

For the case when the forwarding overhead is
276 �sec, the sixteen-node con�guration with PART,
for example, shows a speed-up of 21, and the sixteen-
node con�guration with WARD shows a speed-up of
31. RR for a sixteen-node cluster achieves only a speed-
up of 12, showing less than perfect speed-up for large
cluster sizes. In summary, Figure 8 a) shows that 1)
WARD outperforms RR by up to 2.6 times, and 2)
WARD demonstrates up to 50% performance improve-
ment over PART. Figure 8 b) shows similar results for
the cluster con�guration with a forwarding overhead
of 138 �sec. As expected, the di�erence between the
performance of PART and WARD gets smaller, but
for a sixteen-node cluster, we still see up to 32% of
improvement in throughput. WARD compared with
traditional RR shows up to 2.5 times improvement in
performance.

Figure 8 shows that for eight- and sixteen-node clus-
ters, both PART and WARD achieve super-liner speed-
ups. The logic behind it is the following. A cluster with
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Figure 8: Cluster speed-up under di�erent strategies.
The RAM of each node is 5% of the access log's working
set, and the forwarding overhead is a) 276 �sec, b)
138 �sec.

sixteen nodes ideally should process the same trace
about sixteen times faster than a single node, due to
sixteen times more processors. However, a cluster with
sixteen nodes also has sixteen times more memory. The
speedup under Round-Robin strategy is mostly due to
increased processing power. PART and WARD take
advantage of both the increased memory and increased
processing power and thus demonstrate a super-linear
speed-up as the cluster size increases.

3.4 Simulation Results for dec-CARD
architecture

The next question we would like to address is whether
the centralized dispatcher can be decentralized, as
shown in Figure 2 c), and use a precomputed mapping
or routing based on the access log information gath-
ered from the previous day. 3 This idea makes sense, if
a web server has a predictable and stable enough access
pattern to its most frequent �les.

As WARD on dec-CARD is based on previous day's
access pattern it will not have information about ac-
cesses to new �les introduced on the current day, and
will serve these �les locally. The �rst natural step is
then to observe the introduction of new �les in the logs,

3The other way to think about this is not necessarily on a
\daily" basis. The routing in this replicated dispatchers can be
updated more often, e.g. every 15 minutes or so. Our intent was
to see how much ine�ciency this \outdated" routing can cause.
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Figure 9: a) The percentage of new �les introduced
each day relative to the number of �les accessed that
day, and the percentage of requests to the new �les on
the introduction day, b) the relative number of requests
that are to previous core �les each day.

and to analyze the portion of all requests for those �les.
If there are few requests to newly introduced �les the
performance impact of them will be low. Interestingly,
even if there are new �les with relatively high number
of accesses, by serving them locally it will be equivalent
to mapping them to a core, and this gives us a perfor-
mance bene�t. For the rarely accessed �les the chance
is high that they are on disk anyway.

We analyzed how HP.com's stability and access traf-
�c pattern change on a daily basis with our Web-

Metrix tool [5]. Figure 9 a) shows two curves: the
percentage of new �les introduced each day relative to
the number of �les accessed that day, and the percent-
age of requests to these �les on the introductory day
relative to the total number of request that day. A �le
is considered new if the �le name has not been encoun-
tered before during the measurement interval. There is
no statistics for the �rst week as it is used as a warm-
up period. This diagram shows that even if the relative
amount of new �les introduced on a certain day can be
high, the percentage of the requests due to these new
�les on the introduction day is low. So for HP.com, the
performance will not be degraded by much.

The next thing we ask ourselves is how much of the
core that changes between days as this a�ects the sta-
bility of the core. If the core is unstable our approach
of performing today's routing with yesterday's rout-
ing information will generally not perform well. A key
concept in this discussion is the locality of reference.
Web server workloads generally exhibit high locality
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Figure 10: Average server throughput for PART based on current day's access patterns, WARD with current day's
access pattern and previous day's access pattern. The forwarding overhead is a)276 �sec, b) 138 �sec.

of references. Figure 4 from Section 3.1 shows that
90% of the server requests come to only 4.5% of the
�les. Thus, this small set of �les has strong impact on
the web server performance. We de�ne the core-90%
as the set of most frequently accessed �les that makes
up for 90% of the requests. Going back to Figure 4,
90% of the requests to HP.com constitutes less than
2% of its working sets. From a performance point of
view it is these core-90% �les we should concentrate
on to obtain good performance as most accesses are
to them. Figure 9 depicts how the core-90% changes
over days. More speci�cally, it shows the relative num-
ber of requests that are to previous core-90% �les each
day. From the �gure we can see that less than 3% of
the requests are due to accesses to new core-90% �les.
Thus the most performance critical working set is quite
steady over time.

Our analysis of the access patterns for HP.com shows
predictable and stable tra�c patterns to the most fre-
quent and popular documents on the site. For such sta-
ble sites, the cluster design shown in Figure 2 c), with
WARD request distribution policy based on the previ-
ous day's information, works well, minimizing the over-
head due to dispatcher and distributor components.

Note, that in the following simulation results, we
did not include any performance bene�ts from having
the distributors replicated across all nodes instead of a
single centralized one. The results only re
ect how well
WARD performs when it is using the previous day's
access log information.

Figure 10 a) shows the average server throughput
achieved under WARD based on previous day's access
log information, compared to WARD and PART based
on the current day's access patterns. The forward-

ing overhead is 276 �sec. As seen from the graph,
WARD based on the previous day's access log infor-
mation shows good performance results. It is only
1%-13% worse than the WARD strategy using current
day's workload information. Figure 10 b) shows similar
results for a cluster with a forwarding overhead of 138
�sec. The performance of WARD based on the previ-
ous day's access log is only 1%-15% worse than WARD
using current day's workload information.

Taking into account the additional performance ben-
e�ts due to distributed dispatcher architecture that
were not included in the above simulation results, we
conclude that the cluster architecture shown in Fig-
ure 2 c) with WARD based on access log information
from the previous day is an interesting solution for a
scalable web server cluster.

4 Conclusion

Research in scalable web server clusters has received
much attention from both industry and academia. A
routing mechanism for distributing requests to individ-
ual servers in a cluster is at the heart of any server
clustering technique.

Web server scalability and performance greatly de-
pends on e�cient RAM usage. The throughput of a
web server is much higher when the requested doc-
uments are found in a server RAM. Previous work
on content-aware request distribution (LARD, HACC,
and FLEX strategies) [2, 7, 11, 4] has shown that
policies distributing the requests based on cache a�n-
ity lead to signi�cant performance improvements com-
pared to the strategies taking into account only the



load information. Content-aware request distribution
strategies produce super-linear speed-ups with increas-
ing cluster size. This is possible due to e�cient utiliza-
tion of both additional processing power and additional
RAM of the new nodes.

In this work, we consider a web cluster design pro-
posed in [2] for content-aware request distribution. The
experimental results from [2] show that TCP hando� is
quite an expensive operation. Besides, the cost of the
TCP hando� mechanism can vary depending on the
implementation and speci�cs of the underlying hard-
ware. It could lead to signi�cant forwarding overhead,
decreasing the potential performance bene�ts of the
proposed solution in [2].

We propose a new Workload-Aware Request Distri-
bution strategy called WARD, which assigns a small
set of most frequent �les, called core, to be served lo-
cally, by any server in a cluster, while partitioning the
rest of the �les that �t into the combined cluster RAM
to be served by di�erent cluster nodes. We propose an
algorithm, called ward-analysis, to compute the core
size by taking into account workload access patterns
and the cluster parameters such as number of nodes,
node RAM, TCP hando� overhead, and disk access
overhead.

WARD shows excellent performance improvements
compared to traditional round-robin strategy by up to
260% increased throughput for a cluster of 16 nodes,
and outperforms a partitioning strategy based on a
cache-a�nity requests distribution by up to 50% in-
creased throughput for the same cluster size. Our sen-
sitivity analysis shows that the bene�ts of WARD are
higher for larger size clusters, as well as when the over-
head due to TCP hando� implementation is higher.

Additionally, we investigate the idea of distributed,
replicated dispatchers that use previous day's access
patterns information to compute the routing informa-
tion for current day. Simulation results for HP.com
show that this cluster architecture is an interesting of-
fering that further improves the scalability properties
of web cluster solutions for sites with stable and pre-
dictable access patterns.

Our future e�orts concentrate on building a proto-
type to verify the simulation results reported in this
paper, as well as further, quantitative re�nement of the
metrics to navigate between design and policy choices.

5 Acknowledgments

We would like to thank Dick Carter for his advice
on computing probabilities in formula 7 in Section 2.
We also appreciate useful critique from our colleagues
Wenting Tang and Lance Russell with whom we are
currently working on a WARD prototype. Finally, we
would like to thank the people from the ScalaServer
project at Rice University: Mohit Aron, Vivek Pai,
Peter Drushel and Willy Zwaenepoel for sharing their

TCP hando� code, and answering our questions related
to it.

References

[1] M. Arlitt and C. Williamson. Web server workload
characterization: the search for invariants. In Pro-
ceedings of the ACM SIGMETRICS Conference,
pages 126{137, May 1996.

[2] M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel. Scalable content-aware request
distribution in cluster-based network servers. In
Proceedings of the USENIX 2000 Annual Techni-
cal Conference.

[3] H. Bryhni, E. Klovning, and O. Kure. A compar-
ison of load balancing techniques for scalable web
servers. IEEE Network, 14(4):58{64, 2000.

[4] L. Cherkasova. FLEX: Load balancing and man-
agement strategy for scalable web hosting ser-
vice. In Proceedings of the Fifth International
Symposium on Computers and Communications
(ISCC'00), pages 8{13, July 2000.

[5] L. Cherkasova and M. Karlsson. Dynamics and
evolution of web sites: Analysis, metrics and de-
sign issues. In To be published at IEEE Interna-
tional Symposium on Computer Communications
and Networks( ISCC'01), July 2001.

[6] A. Cohen, S. Rangarajan, and H. Slye. On the
performance of tcp splicing for url-aware redirec-
tion. In Proceedings of the 2nd Usenix Symposium
on Internet technologies and Systems.

[7] V. Pai, M. Aron, M. Svendsen, P. Drushel,
W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based net-
work servers. In Proceedings of the 8th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS VIII), pages 205{216, October 1998.

[8] T. Schroeder, S. Goddard, and B. Ramamurthy.
Scalable web server clustering technologies. IEEE
Network, 14(3):38{45, 2000.

[9] H. Schwetman. Object-oriented simulation model-
ing with c++/csim. In Proceedings of 1995 Winter
Simulation Conference, pages 529{533, December
1995.

[10] The Workload for the SPECweb96 Benchmark.
http://www.specbench.org/osg/web96/workload.html.

[11] X. Zhang, M. Barrientos, J. Chen, and M. Seltzer.
HACC: An architecture for cluster-based web servers.
In Proceeding of the 3rd USENIX Windows NT Sym-
posium, pages 155{164, July 1999.


