

Unparsing RDF/XML

Jeremy J. Carroll
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-294
November 26th , 2001*

E-mail: jjc@hpl.hp.com

parsing,
unparsing,
generation,
grammar,
universal
algebra,
XML, RDF

It is difficult to serialize an RDF graph as a humanly readable
RDF/XML document. This paper describes the approach taken
in Jena 1.2, in which a design pattern of guarded procedures
invoked using top-down recursive descent is used. Each
procedure corresponds to a grammar rule; the guard makes the
choice about the applicability of the production. This approach
is seen to correspond closely to the design of an LL(k) parser,
and a theoretical justification of this correspondence is found in
universal algebra.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 2

1. Introduction

This paper discusses the high-level design of the output routines for the RDF/XML abbreviated syntax [19]

within the Jena toolkit [20]. We propose a new design pattern for top-down recursive descent unparsers which

generate output according to a grammar.

Output is usually regarded in computer science as unproblematic. There is much more work on input than output.

The work on input concentrates on formally structured input: parsing.

RDF/XML output is considerably more difficult than XML output because of the range of choices that must be

made. There are very many different serializations of the same abstract RDF graph, most of these being decidedly

nonoptimal for the human reader.

RDF/XML abbreviated syntax is too difficult for a straightforward approach to output that does not make explicit

reference in its design to the RDF grammar.

We will show how the design pattern of top-down recursive descent parsers [1] can be reused for ‘unparsing’ i.e.

(top-down recursive descent) generation using the grammar. This is placed in the context of Rus’s algebraic

formulation of the languages problem [25], which reveals the natural symmetry between parsing and unparsing.

We discuss the detailed considerations on which the runtime choices in an RDF/XML unparser are made.

2. RDF/XML Syntax

2.1 The Abstract Syntax

Following the RDF Model Theory [15], we see that an RDF document is a serialization of a graph. The graph is

directed, with edges labelled with URIs [4], and some nodes also labelled with URIs. No URI labels two nodes.

The unlabelled nodes are called ‘blank nodes’. (Note: this graph is referred to as the model by the older Model &

Syntax [19] specification, we avoid this confusing terminology in this paper).

2.2 The Basic Syntax

When building output routines for RDF/XML the first task is to tackle the basic syntax (see M&S [19]). This is

reassuringly boring: RDF/XML syntax appears to be no more sophisticated than a print statement wrapped in a

couple of loops. However, the output, despite being XML, is only machine-readable. People cannot understand it.

A DAML ontology [16] read in and written out by an RDF processor becomes unintelligible to the DAML

expert. A CC/PP profile [18] is mangled to the point of ceasing to be a CC/PP profile. RDF/XML is only human

readable in its abbreviated form.

 3

2.2.1 Blank Nodes

A worry when writing a basic syntax output routine is what to do about the blank nodes1. The basic syntax

requires the use of a URI to label the node. The usual solution is to use a gensym. However, this is unsatisfactory

since the labeling of the node changes the meaning of the document with respect to the model theory or simply to

graph equality [8].

2.3 The Abbreviated Syntax

The abbreviated form (see M&S [19] and the rearticulation2 [2]) is (intended to be) logically equivalent to the

basic syntax. However it allows a number of new constructions which provide alternative ways of saying the

same thing. Typically these new ways are more compact.

3. Output technologies

In most computer programs, the design of output modules is much simpler than the design of input modules.

Input design nearly always makes explicit reference to a grammar, a moderately complicated design artifact.

Output design, in contrast, is seen as grammatically unproblematic, with effort being reserved only for some

beautification features like indentation levels. Many advanced systems often have little more than output

templates with slots for the unknowns. Typically, output uses bounded space algorithms such as iterating over a

print statement.

A few systems, such as the DOM [31], JSP [29] or Metatool ([9],[10]), provide slightly more sophisticated means

of structuring output, but none of these matches the sophistication of parsing technology.

The XML DOM is useful when writing small XML files. The application programmer constructs an appropriate

XML Infoset [12] representation of the output, as a DOM tree: the DOM implementation then can serialize this,

typically using a recursive style of object oriented programming, making unbounded use of the call stack. We

note that such a serialization style does follow a top-down application of the XML grammar rules [6], often with

one method corresponding to each rule in the grammar. However, the choices available in the grammar are made

earlier, during the construction of the DOM tree.

JSP and Metatool each provide their own language for describing the output text. In both, most of the text is

simply copied from the output description file into the output stream. The languages include escape mechanism

1 In Model & Syntax [19] these nodes are referred to as ‘anonymous’. The newer Model Theory [15] introduces

the term blank node.

2 In this paper, we use grammar rules that maintain the fiction from Model and Syntax that RDF is a grammar

over lexical items rather than Infoset [12] items.

 4

that permit programming constructs such as loops and function calls to be inserted into the description. When

these output description files are compiled (into Java and C respectively), the unescaped text becomes string

arguments to print statements, and the escaped control instructions map into the control constructs of the target

language. Thus, at a theoretical level, these technologies do not add to the usual model that output is simply print

statements wrapped in appropriate control loops. The switch in emphasis, with printing the default and flow-

control as marked, is nevertheless very helpful at a practical level. This helps the JSP or Metatool programmer

come up with better designed and more intelligible output routines.

The major exception to this generalization that output is unproblematic is in computational linguistics. Here,

since the late 80s it has been commonplace ([26], [28], [30]) that generation and parsing are essentially the same,

with many systems using the same architecture, the same grammar and the same rules for both. Both the surface

textual realization and the deeper semantic representation of the sentence are representations of the sentence and

we mediate between the two using the grammar. Both are annotations over the grammar, and have a theoretically

similar status [14].

4. Universal Algebra, Parsing and Unparsing

This section should be omitted by the reader uninterested in theory.

To explore the insight of computational linguists in more depth, we will employ the universal algebra techniques

for describing grammars and languages pioneered by Rus [25].

We will try and keep our use of universal algebra to a minimum, noting [11] as a standard reference.

An algebra has a number of operations over a set. The choice of these operations defines the similarity class of

the algebra. Each similarity class has many corresponding algebras, each with the same operations. In object-

oriented terms, this similarity class is an interface, and each algebra is an implementation of that interface.

We use four algebras of the same similarity class to define a language. The operations of the algebras correspond

loosely to the productions of the BNF grammar of the language. To be precise, each of the operations in the

similarity class has a corresponding symbol in the BNF; and at least one production for that symbol with the

same arity as the operation. Each production in the grammar has a corresponding operation.

We work with RDF/XML as our example language; and use a very small, simplified fragment of the BNF rules:

rdf : “<rdf:RDF>” objStar “</rdf:RDF>”

objStar :

| obj objStar

The similarity class thus has the three operations rdf/3, objStar/0, objStar/2 (and presumably some for obj as

well).

 5

We first define a free algebra Free and a concatenating algebra Surface.

The free algebra corresponds to trees formed using the terms of the BNF, both well formed and ill formed. Here

the algebra operates over these trees simply by forming them so that the operation objStar when applied to the

arguments X and Y (which are both parse trees) just forms the tree objStar(X,Y). Since ill-formed trees are

legal in the free algebra we note that X and Y are not constrained to be an obj and an objStar, in any sense. In

the concatenating algebra the operations operate over strings, and every operation concatenates its arguments.

Hence any tree in the free algebra when evaluated in the concatenating algebra gives the corresponding string,

forming by reading the leaves of the tree. Thus our one well-formed parse tree looks like:

rdf(“<rdf:RDF>”,objStar(),“</rdf:RDF>”)

and evaluates in Surface to the string “<rdf:RDF></rdf:RDF>”.

This process of evaluating a tree from the free algebra in some other algebra with the same operations is known

as a natural homomorphism, called Surfaceφ . Thus, we can write:

()()
()
()

"RDF:/rdfRDF:rdf"

"RDF:/rdf""""RDF:rdf"

"RDF:/rdf""RDF:rdf"

"RDF:/rdf"objStar(),,"RDF:rdf"rdf

>><<=

><><=

><><=

><><

,,

(),,

Surface

SurfaceSurface

Surface

rdf
objStarrdf

φ

Parsing involves an inverse mapping from a string to a corresponding tree. This tree is required to be well-formed

by the grammar. Such well-formedness is defined by a third algebra Rules over the symbols of the grammar in

which each operation returns the symbol on the LHS of its corresponding rule if and only if its arguments are the

symbols on the RHS of a BNF production corresponding to the operation; otherwise the operation returns ⊥⊥⊥⊥ , an

additional failure symbol.

e.g. in Rules the operation objStar/0 always returns objStar, and objStar/2 is defined as:

 ==
⊥

=
otherwise

objStarobj,objStar
),(

yx
yxobjStar

Thus a parse tree is well formed if and only if when it is evaluated in this third algebra it gives the start symbol of

the grammar.

We can write:

 6

()()
()
()

rdf

"RDF:/rdf"objStar"RDF:rdf"

"RDF:/rdf""RDF:rdf"

"RDF:/rdf"objStar(),,"RDF:rdf"rdf

=

><><=

><><=

><><

,,
(),,

Deep

DeepDeep

Deep

rdf
objStarrdf

φ

showing the tree to be well-formed.

The fourth and final algebra Deep expresses the ‘meaning’ of the operations at a deeper level of analysis. In

computational linguistics this meaning is expressed as some linguistic structure. In compiler design this meaning

is expressed as a partial computation corresponding to that syntactic construct. In RDF/XML that meaning is

expressed as a partially formed graph, perhaps with some distinguished nodes. The rdf/3 operation in this algebra

returns its second argument, the objStar/0 operation returns the empty graph, and the objStar/2 operation returns

the graph merge (see [15]) of its arguments.

Thus the four algebras Free, Surface, Rules, Deep and the three natural homorphisms DeepRulesSurface φφφ ,, from

Free into the other algebras express the grammar.

Parsing is expressed as given a string s find a meaning d such that there is a tree t and:

()
() dt

st

Deep

Surface

=

=

φ
φ

Generation is expressed as given a meaning d find a string s such that there is a tree t and:

()
() st

dt

Surface

Deep

=

=

φ
φ

Some parsers choose to build the tree t explicitly; streaming parsers choose not to.

As is well-known the key difficulty with parsing is how to choose which rule to expand at each choice point. The

similarity between the definitions for parsing and generation suggest that this too will be the key difficulty in

generation, and motivates our use of the word unparsing for grammatically driven generation.

Moreover, the experience of computational linguistics suggests that parsing techniques such as top-down left-to-

right with backtracking [27], which were developed for parsing, can be applied directly to generation, as long as a

little care is taken.

 7

5. Recursive descent unparsing architecture

The parsing techniques of computational linguistics are normally found to be excessive for artificial languages.

Similarly we may expect all-solution backtracking or chart unparsers to be inappropriate for RDF/XML. Indeed,

since the graph of an RDF/XML document puts no constraints on the order of the document, we would expect an

all-solutions approach to be unacceptably slow, needing to consider at least a factorial number of different

possible orders in its considerations of all serializations.

5.1 LL(1) Parsing

Instead, we take our inspiration from recursive descent LL(k) parsers [22],[23],[24]. These express each grammar

rule as a procedure; choice points in the grammar are explicitly represented in the procedures by lookahead code.

The lookahead code uses the leftmost section of the unmatched input string to decide which possible rule best

matches and hence on the flow of control of the parser. A possible way of structuring such code, for say an LL(1)

parser, is to use a boolean guard on each of the rule procedures. The guard inspects the lookahead token: if it is

not an acceptable left-most token for that production then false is returned, otherwise the parser commits to that

production and the guard returns true. Hence, at a choice point where either t1 or t2 are acceptable tokens we

can use code like:

if (t1Guard()) t1();

else if (t2Guard()) t2();

else error();

to exercise the choice. If the lookahead is acceptable to rule t1 then t1Guard() will return true, firing t1(),

otherwise t2Guard() will inspect the lookahead. If the lookahead is not acceptable to rule t2 , then error()

will be invoked.

The guards are often defining by computing the follow set (see [1]). Alternatively the guards may invoke each

other in the same pattern by which the rules and the procedures invoke each other. In this case, duplication of the

logic is avoided by combining each guard with its procedure, to give a single Boolean function that either returns

false, if the guard fails, or returns true and matches the rule. This combined function allows the code snippet

above to be expressed more compactly as :

 t1()||t2()||error();

5.2 Guarded Unparsing

For an unparser we hence use the following design pattern.

Each grammar production has a corresponding rule procedure and a guard.

 8

The guard determines whether to use this production or not. This evaluation is done on the basis of that part of

the graph that has not yet been serialized. If the rule is not appropriate no output is generated and false is

returned. Otherwise the unparser commits to the rule.

This design pattern puts a significant burden on the guards, since the choices made are irrevocable. For

RDF/XML this is preferable to the alternative burden of a non-deterministic framework for unparsing in which

backtracking (or equivalent non-deterministic techniques) allows explicit consideration of alternatives.

5.3 Division of Deep Structure

During parsing the input string is divided into sections each of which matches some subtree licensed by the

grammar. Similarly during unparsing we divide the deep structure matching each tree up into parts that match the

various subtrees. Some aspects of this division is done before the rule is invoked, some during rule invocation.

As an example, take the deep structure of an objStar production to be a graph, and the deep structure of an

obj production to be a pair consisting of a graph and a distinguished node. Suppose we have a graph g that we

wish to expand as an objStar then we have:

objStar : obj objStar

()
()

()
() gvs

gv

gvsv
ggg

Deep

Deep

Deep

Deep

′′=

′=

=

=′′′

φ
αφ

φ
α

,

),(

,,

objStar

objStar

 That is the graph g corresponding to the LHS of the grammar rule is formed as an appropriate combination of the

pair α,g ′ and g ′′ , where the obj subtree v corresponds to the graph and distinguished node α,g ′ , and the

remaining objStar subtree corresponds to the graph g ′′ . This appropriate combination is a graph merge, tidied

as in the Model Theory [15].

To generate this using top down recursive descent, we are given g and we choose a particular node α in g. While

we expand the (unknown) obj subtree v for this α we will find some subgraph g′ of g rooted in α which

corresponds to the subtree. We then take the graph difference of g and g′ to continue expanding the objStar

subtree vs using ggg ′−=′′ as the given graph.

While it is necessary to make some explicit choices, for example the choice of α, it is not necessary to make

explicit all the nested choices before starting on some production.

 9

6. Grammatical Choices in RDF/XML

6.1 Blank Nodes

The single most significant grammatical constraint in RDF/XML output is the desire not to label blank nodes. We

note that in the Model Theory [15] that blank nodes have a different semantics from a labelled node. There is no

standard way of distinguishing a local identifier for a blank node from a URI for a non-blank node. Hence high-

quality RDF/XML output should not label blank nodes in the XML. Unfortunately, the grammar does not permit

all blank nodes in all graphs to be unlabelled in the XML. Unlabelled nodes of the RDF/XML serialization can

only be the object of a single triple3.

Thus RDF/XML generation starts with an initial pass over the graph to identify blank nodes that can remain

blank: those that, excluding reification, are not the object of more than one triple. It is also necessary to

distinguish those that are the object of one triple from those that are not the object of any triple.

We have already seen a top-level grammar rules for RDF, (now in EBNF [17]):

rdf : “<rdf:RDF>” obj* “</rdf:RDF>”

Some other productions that are relevant to the discussion of blank nodes include:

obj : description | typedNode

description : “<rdf:Description” idAboutAttr? propAttr* “>”

propertyElt*

“</rdf:Description>”

propertyElt : “<” propName “>” obj “</” propName “>”

Excluding reification, the distinguished node of the obj’s in the top-level production, if blank, only occur as the

subject of triples in the graph. Hence if we choose a blank node α as the distinguished node for an obj in the

obj*, and α occurs as the object of some triple, then we must assign it a label (a URI) before serializing it.

Otherwise we will be unable to refer to it in any subsequent occurrence specifically when we serialize the triple

of which it is the object.

The only other occurrence of the obj symbol on the RHS of a production is in the property element production

shown4, where the distinguished node of the obj production becomes the object of a triple. The argument

concerning the blank node α is also applicable to this other instance of the obj symbol. Whenever we are

3 Excluding triples corresponding to reification.

4 Making a trivial simplification of the grammar in Model & Syntax [19]

 10

serializing a blank node β that occurs as the object of two or more triples in the graph, triggered by this

propertyElt production, then we must assign it a URI before serializing it. Otherwise we will be unable to

refer to it in any subsequent occurrence specifically when we serialize the second triple of which it is the object.

Thus it is desirable to only use the top-level production for nodes in the graph that are either labelled with a URI

or not the object of exactly one triple.

Since not all graphs can be serialized in RDF/XML without giving identifiers to some blank nodes, it has to be

acceptable (if undesirable) for the RDF/XML serializer to do this.

6.2 IDs

The rdf:ID attribute and the rdf:about attribute both assign a URI [4] label to the only node in the (trivial)

graph corresponding to the idAttr and the aboutAttr productions in the grammar. The difference is that the

URI corresponding to an rdf:ID attribute must be a fragment ID of the base URI of the output stream, which

matches the NMToken production from the XML specification [6]. This constraint a URI we will refer to below

as the ID constraint.

6.3 Reification

The RDF/XML syntax has a compact form for representing the reification of most triples. This reification is four

triples with the same subject, the reification resource. This compact form can represent one such reification

resource as long as its URI satisfies the ID constraint. Hence, in the guard for the reification rule it is necessary to

check whether these all hold for the triple of the parent propertyElt production.

In order to force the use of reification, it is necessary to avoid choosing such nodes during the top-level

expansion of the objStar rule (see section 5.3), and to avoid explicitly expanding the reification quad, if the

reification node occurs as an obj(ect) of a property element production.

6.4 BagID5

The rdf:bagID attribute is another peculiarity of RDF/XML syntax. It is very powerful, matching a complex

subgraph, but very specific. It causes all the triples in a particular subgraph to be reified, and creates an

rdf:Bag consisting of a named resource and edges linking it to each of the reifications. It generates a large

number of triples, each with its own particular constraints, e.g. the node which is the center of each reification

quad must be either unlabelled or labelled with the constraints identified above in section 6.2.

5 The writer in Jena 1.2 does not support this production.

 11

The guard to match the bagIdAttr production then has knock on effects, since once we have decided to use

the bagIdAttr production then no triples that do not have their reification in the bag may be produced.

6.5 The Container Productions

RDF/XML allows the use of a container membership pseudoproperty rdf:li. This expands to rdf:_1,

rdf:_2 etc.

Based on the liberal reading of this production suggested by the RDF Core Working Group [21], this can be

treated with a single additional variable to count where we have got to.

Each property element production starts by trying to choose a triple to match that does match rdf:_N where N is

the current value of the counter. If this guard succeeds, then other triples are not considered and an rdf:li

property element is generated.

6.6 AboutEach6

The rdf:aboutEach distributed subject construction is another peculiarity that requires as special attention

during generation as during parsing. Each statement with an rdf:aboutEach identifying its subject rather than

an rdf:about or rdf:ID corresponds to many triples, one for each member of the container identified by the

URI which is the value of the rdf:aboutEach attribute.

Given its file scope, the triples that qualify for rdf:aboutEach must be identified before any other choice

during generation. Like with the rdf:bagID construction this production corresponds to a large number of

triples and it is tedious but necessary to check that all of them are present in the graph to be serialized.

Having identified triples that are suited for treatment with rdf:aboutEach they are serialized first so that all

embedded triples are identified.

7. Pragmatic Choices in RDF/XML

The primary motivation for generating abbreviated RDF/XML is human readability. Hence pragmatic

considerations are also important when serializing.

7.1 Property Attributes

The abbreviated syntax includes abbreviations for string valued property attributes, as long as the value can be

expressed as an XML normalized attribute value. These are good for shorter string values.

When a node of the graph is an object of a triple, if all its properties can be expressed as property attributes then

it may be appropriate to use the compact property element production

6 The writer in Jena 1.2 does not support this production.

 12

propertyElt : “<” qname idRefAttr? bagIdAttr? propAttr* “/>”

for this triple. Again this is implemented by putting a complex guard on this particular production.

7.2 Depth

It is difficult to follow XML that is too deeply embedded. Having an arbitrary limit to embedding is suggested.

7.3 Top-Level Elements

In many of the applications of RDF there is a preference for not embedding some elements. E.g. in RDF Schema

[7] and DAML [16] it is preferred to list properties and classes as top-level elements rather than having an

embedded description of one within the description of some other property or class.

7.4 Order

The grammar permits the triples to be in any order. It is however conventional to group all triples with the same

subject as child property elements or attributes of the same description node.

Moreover the use of the container membership production rdf:li requires the conventional ordering of the

container membership triples.

Some subdialects of RDF have a distinct stylistic preference for certain ordering rules at both the top-level and

lower down. E.g. a typical DAML [16] file starts with <daml:Ontology rdf:about=””>.

7.5 Loop-breaking

If the graph contains a directed loop of blank nodes each of which is the object of exactly one triple then the top-

level guard suggested in section 6.1 will not permit the serialization of this loop.

The approach taken within the Jena RDF/XML writer is to be optimistic and hope that the whole graph will

serialize despite that rule, i.e. that there are no instances of such directed cycles.

The case when the graph has not been fully serialized yet no further triple is permitted past the guard is

dynamically detected. This optimism was ill founded: in response, one arbitrary triple is permitted past the

guard. This should permit the whole cycle to be written out.

8. Customizability

A full implementation of an RDF/XMl serializer should be readily customizable for the various RDF subdialects

like RDF Schema [7], DAML [16], CC/PP [18], RSS [3], PRISM [13]. Each of these either explicitly or

implicitly uses only a subset of the full RDF/XML grammar. Also the pragmatic rules may have a different force

with each.

 13

Hence customizability includes7:

• The ability to switch off certain productions.

• The ability to specify ordering rules.

• The ability to specify dialect specific top-level elements.

• The ability to specify obligatory use of property attribute rules.

9. Complexity

9.1 Formal Complexity

Many of the choices expressed in the guard expressions require a search through the whole graph for matching

edges. We take this search to be O(n). The number of times such choices need to be made is also proportionate to

the size of the graph (n being the number of edges in the graph). Hence this too is O(n) suggesting an overall

complexity of O(n2).

The decision as to whether to use rdf:aboutEach involves taking the intersection of the members of every

container in the graph. This has similar overall complexity.

9.2 Intuitive Complexity

The reification productions (including rdf:bagID) have particularly complicated rules associated with them.

From the viewpoint of generation the conditions on these rules are even more baroque than they appear when

parsing. This presents significant difficulty both for automatic generation and human generation of RDF/XML

that uses these productions.

The rdf:aboutEach production also presents unique processing difficulties.

Given these difficulties it is arguable that an RDF/XML generator should avoid all these productions regarding

them as misguided.

10. Summary

RDF/XML is a surprisingly complicated syntax. It is replete with choices: a serializer that is aware of the choice

points and makes good choices at each produces substantially clearer output than one that doesn’t. Many of these

choices are governed by arbitrary and capricious constraints that must be understood by the generator. A design

pattern in which each grammar rule has a corresponding procedure guarded by a Boolean function that assesses

its appropriateness has been shown to be applicable to this problem.

7 Of these, the writer in Jena 1.2 only implements the ability to specify top-level elements.

 14

11. References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman Compilers: Principles, Techniques and Tools (also known

as The Red Dragon Book) Addison-Wesley 1986.

[2] Dave Beckett (ed), Refactoring RDF/XML Syntax W3C Working Draft 2001

http://www.w3.org/TR/2001/WD-rdf-syntax-grammar-20010906/

[3] Gabe Beged-Dov, Dan Brickley, Rael Dornfest, Ian Davis, Leigh Dodds, Jonathan Eisenzopf, David

Galbraith, R.V. Guha, Ken MacLeod, Eric Miller, Aaron Swartz, Eric van der Vlist, RDF Site Summary

(RSS) 1.0, 2000, http://purl.org/rss/1.0/spec

[4] T. Berners-Lee, R. Fielding, L. Masinter (eds) RFC 2396: Uniform Resource Identifiers (URI): Generic

Syntax Internet Engineering Task Force, 1998.

[5] Tim Bray, Dave Hollander and Andrew Layman (eds) Namespaces in XML, World Wide Web Consortium

Recommendation, 1999, http://www.w3.org/TR/REC-xml-names.

[6] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen (eds) Extensible Markup Language (XML) 1.0, World

Wide Web Consortium Recommendation, 1998 http://www.w3.org/TR/1998/REC-xml-19980210

[7] Dan Brickley, R.V. Guha (eds) Resource Description Framework (RDF) Schema Specification 1.0 W3C

Candidate Recommendation 2000 http://www.w3.org/TR/rdf-schema

[8] Jeremy J. Carroll, Matching RDF Graphs, (also submitted to WWW2002), 2001.

[9] Craig Cleveland, MetaTool® Specification-Driven Tool Builder, (renamed as ivy*meta® Specification-

Driven Tool Builder), 1990, Lucent Technologies, Ltd., http://www.ivystar.com/

[10] Craig Cleveland, T.T.Wetmore IV, “The Next Generation of Specification-Driven Tools”, Proceedings of the

AT&T conference on Specification Driven Tools, 1989.

[11] P M Cohn, Universal Algebra, Reidel, 1981.

[12] John Cowan and Richard Tobin (eds) XML Information Set W3C Recommendation 2001

http://www.w3.org/TR/xml-infoset/

[13] Ron Daniel Jr., Deren Hansen, Cameron Pope (eds) PRISM: Publishing Requirements for Industry Standard

Metadata, 2001, http://www.prismstandard.org/techdev/prismspec1.asp

[14] Marc Dymetman, Pierre Isabelle and François Perrault, “A Symmetrical Approach to Parsing and

Generation”, Proceedings of the 13th International Conference on Computational Linguistics, Helsinki,

Finland, pp 90-96, 1990.

[15] Patrick Hayes (ed), RDF Model Theory W3C Working Draft 2001http://www.w3.org/TR/rdf-mt/

 15

[16] Ian Horrocks, Frank van Harmelen, Peter Patel-Schneider, DAML+OIL (March 2001),

http://www.daml.org/2001/03/

[17] ISO/IEC 14977:1996(E) Information technology — Syntactic metalanguage — Extended BNF

[18] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto (eds) Composite Capability/Preference

Profiles (CC/PP): Structure and Vocabularies W3C Working Draft 2001

http://www.w3.org/TR/CCPP-struct-vocab/

[19] Ora Lassila & Ralph R. Swick (eds) Resource Description Framework (RDF) Model and Syntax

Specification, World Wide Web Consortium, 1999, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[20] Brian McBride, Jeremy Carroll, Ian J. Dickenson, Andy F. Seaborne, JenaRDF Toolkit 1.2, 2001,

http://www.hpl.hp.com/semweb/jena-top.html

[21] Brian McBride (ed), #rdf-containers-syntax-ambiguity, in RDF Issue Tracking, 2001,

http://www.w3.org/2000/03/rdf-tracking/#rdf-containers-syntax-ambiguity

[22] MetaMata, Inc & Sun Microsystems JavaCC http://www.webgain.com/products/java_cc/

[23] T. J. Parr, Obtaining Practical Variants Of LL(k) And LR(k) For k>1 By Splitting The Atomic k-Tuple, Ph.D.

Dissertation, School of Electrical Engineering, Purdue University, 1993.

[24] Terrence Parr and Russell Quong “ANTLR: A Predicated-LL(k) Parser Generator” Journal of Software

Practice and Experience, Vol. 25(7), 789-810 (1995).

[25] T.Rus, “Algebraic processing of programming languages”, Theoretical Computer Science, 199:105-143,

1998.

[26] Stuart M. Shieber, 1988, “A uniform architecture for parsing and generation” Proceedings of the 12th

International Conference on Computational Linguistics, Budapest, Hungary, pp 614-619, 1988.

[27] Tomek Strzalkowski, A General Computational Method for Grammar Inversion in [28], 1994.

[28] Tomek Strzalkowski (ed), Reversible Grammar in Natural Language Processing, Kluwer, 1994.

[29] Sun Microsystems, Inc., JavaServer Pages(TM) Specification 1.2, 2001.

[30] Jürgen Wedekind, “Generation as structure driven derivation”, Proceedings of the 12th International

Conference on Computational Linguistics, Budapest, Hungary, pp 732-737, 1988.

[31] Lauren Wood, Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs, Arnaud Le Hors,

Gavin Nicol, Jonathan Robie, Robert Sutor and Chris Wilson (eds) Document Object Model (DOM) Level 1

Specification Version 1.0 W3C Recommendation 1998 http://www.w3.org/TR/1998/REC-DOM-Level-1-

19981001/

