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1. Introduction 

The resource description framework (RDF) specification [7] defines a data 

model and a syntax. The syntax is defined on top of the XML syntax [3]. The 

data model is defined in terms of resources, often identified with URIs [2], 

and literals. Some of the resources are “anonymous”. The data model is a 

set of triples, often thought of as a graph. The anonymous resources 

correspond to blank nodes in the graph [6]. 

This paper concerns the comparison of two data models — read (or 

otherwise created) from different files.  

If the two data models consist of identical sets of triples then the two data 

models are equal. As we shall see in the next section, to limit equality to 

only such cases would be counter-intuitive in its treatment of anonymous 

resources. 

We explore that issue in some depth, and show that this makes RDF model 

equality to be equivalent to graph isomorphism. We show that standard 

algorithms for graph isomorphism, particularly iterative vertex classification 

from Read and Corneil [11] (section 6, pp 346-347), are applicable. 

We describe the algorithm as used in Jena 1-1-0 [8]. 

We finally consider whether there are other aspects of data model equality 

and equivalence. 

2. Some examples 

Consider a simple RDF/XML file: 
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<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:t="http://example.org/brothers#" 

    xml:base="http://example.org/brothers"> 

    <rdf:Description  rdf:about="#John" t:name="John">  

      <t:child  rdf:resource="#Robert" t:name="Robert"/>  

      <t:child  rdf:resource="#Jeremy" t:name="Jeremy"/> 

      <t:child  rdf:resource="#Terry" t:name="Terry"/>    

    </rdf:Description> 

</rdf:RDF> 

This creates a model with four triples: 

<#John> <http://example.org/brothers#child> <#Robert> . 

<#Robert> <http://example.org/brothers#name> "Robert" . 

<#John> <http://example.org/brothers#child> <#Terry> . 

<#John> <http://example.org/brothers#name> "John" . 

<#Terry> <http://example.org/brothers#name> "Terry" . 

<#Jeremy> <http://example.org/brothers#name> "Jeremy" . 

<#John> <http://example.org/brothers#child> <#Jeremy> . 

The syntax1 we use for such triples is the “N-triple” syntax being used by 

the RDF working group [1]. 

Suppose we produce two RDF models by reading this in twice. They are 

clearly the same. Indeed, even if we reorder the XML we get the same 

model.  

                                        

1 We use relative fragment URIs for compactness; these are not legal N-triple. 
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<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:t="http://example.org/brothers#" 

    xml:base="http://example.org/brothers"> 

    <rdf:Description  rdf:about="#John" t:name="John">   

      <t:child  rdf:resource="#Jeremy" t:name="Jeremy"/> 

      <t:child  rdf:resource="#Terry" t:name="Terry"/>  

      <t:child  rdf:resource="#Robert" t:name="Robert"/>   

    </rdf:Description> 

</rdf:RDF> 

If we consider the same examples with anonymous resources, it is much 

less clear. Typically our RDF processing environment assigns gensyms to 

each anonymous resource. These gensyms such as “_:a9” below, are 

identifiers for the blank nodes in the corresponding graph. And so we may 

get sets of triples like: 

_:a3 <http://example.org/brothers#name> "Robert" . 

_:a1 <http://example.org/brothers#name> "John" . 

_:a1 <http://example.org/brothers#child> _:a9 . 

_:a1 <http://example.org/brothers#child> _:a3 . 

_:a9 <http://example.org/brothers#name> "Terry" . 

_:a6 <http://example.org/brothers#name> "Jeremy" . 

_:a1 <http://example.org/brothers#child> _:a6 . 

corresponding to: 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:t="http://example.org/brothers#" 

    xml:base="http://example.org/brothers"> 

    <rdf:Description  t:name="John">   

      <t:child  t:name="Robert"/> 

      <t:child  t:name="Jeremy"/> 

      <t:child  t:name="Terry"/>    
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    </rdf:Description> 

</rdf:RDF> 

and: 

_:a3 <http://example.org/brothers#name> "Jeremy" . 

_:a6 <http://example.org/brothers#name> "Terry" . 

_:a1 <http://example.org/brothers#name> "John" . 

_:a1 <http://example.org/brothers#child> _:a9 . 

_:a1 <http://example.org/brothers#child> _:a3 . 

_:a9 <http://example.org/brothers#name> "Robert" . 

_:a1 <http://example.org/brothers#child> _:a6 . 

corresponding to: 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:t="http://example.org/brothers#" 

    xml:base="http://example.org/brothers"> 

    <rdf:Description  t:name="John">  

      <t:child  t:name="Jeremy"/> 

      <t:child  t:name="Terry"/>   

      <t:child  t:name="Robert"/> 

    </rdf:Description> 

</rdf:RDF> 

A naive notion of equality suggests these are unequal, because the 

anonymous nodes have been given different gensyms (for example that with 

name “Jeremy” is _:a6 in the first and _:a3 in the second. 

This does not seem consistent with the intended reading of anonymous 

resources being like resources but without a name. Both the N-triple 

definition [1], and the newer RDF Model Theory [6], describing RDF graphs 

and their meaing, are clear that the blank node identifiers have file scope, 

and such cross-file comparisons are inappropriate. Indeed, the model 

theory [6] specifies the semantics of a blank node as an existential 
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qualification over the set of resources in which no identifier of the blank 

node is significant. 

3. Anonymous resources are identified with local scope 

Despite being called “anonymous” it is necessary to identify anonymous 

resources in some way if we wish to process them in any way. An example 

identifier might be an object reference within a program execution. 

Frequently a gensym function is called to give an identifier to a resource. 

Other resources are identified with names which have explicitly global 

scope: i.e. their names are URIs [2]. The identifiers of anonymous 

resources, in contrast, should not be meaningful outside the immediate 

environment. 

This suggests that an appropriate naming for anonymous resources is one 

that gives them names with local scope: specifically the scope of the single 

RDF data model, such as that built from a single RDF/XML file. The N-

triple syntax [1] is clear, the identifiers for the blank nodes have file scope, 

linking the appearance of the node in one triple with that in another triple 

in the same file. 

Since such identifiers are not externally visible, it is an implementation 

detail quite how they are generated. 

Then in order to show that the two models are equal we have to show which 

anonymous resources correspond with which: 
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 _:a1 <#name> "John" . 
 
_:a1 <#child> _:a9 . 
              _:a9 <#name> "Terry" . 
 
_:a1 <#child> _:a3 . 
              _:a3 <#name> "Robert" . 
 
_:a1 <#child> _:a6 . 
              _:a6 <#name> "Jeremy" . 
  

_:a1 <#name> "John" . 
 
_:a1 <#child> _:a9 . 
              _:a9 <#name> "Robert" . 
 
_:a1 <#child> _:a3 . 
              _:a3 <#name> "Jeremy" . 
 
_:a1 <#child> _:a6 . 
              _:a6 <#name> "Terry" . 
  

 

Figure 1 An equivalence mapping between blank nodes 

 

Such a correspondence needs to link each anonymous resource in the first 

data model with an anonymous resource in the second, in such a way that 

all the triples in both graphs correspond. Technically, this is a bijection 

between the two sets of blank nodes which induces a labelled digraph 

isomorphism. 

4. Graph isomorphism theory 

In the graph isomorphism literature (e.g. [5], [11]) a graph typically consists 

of a set of unlabelled nodes or vertices, with a set of undirected unlabelled 

pairs of vertices called edges. The graph isomorphism problem is:  “Given 

two graphs, are they the same?” and “If they are, which vertices from one 

correspond to which vertices in the other?” 
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Figure 2 isomorphic graphs from [11] 

 

Figure 2 shows three isomorphic graphs; note each has ten vertices shown 

by the small circles. 

Most of the many variants of graphs have equivalent isomorphism problems. 

These included labelled digraphs: in which the edges have a label and a 

direction. 

Within RDF models it is possible to encode an unlabelled digraph by using 

a single property label (e.g. rdf:value) for the edges and anonymous 

resources for each vertex. Undirected graphs can be encoded by encoding 

each edge of the graph as two RDF triples, one in each direction. 

In this way it can be seen that RDF model equality and the graph 

isomorphism problem are equivalent from a theoretical point of view. 

However, in practice RDF model equality is significantly easier because: 

• most of the vertices are labelled with the URI of a resource. 

• most of the edges have distinctive labels from the URI of the property 

of the triple. 
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• the XML syntax imposes significant (and unmotivated) restrictions on 

where anonymous resources can occur. 

We view the third point as an error that should be corrected; and regard the 

other two points as important factors in the design of an effective algorithm. 

5. Iterative vertex classification algorithms 

Standard graph isomorphism algorithms are non-deterministic, i.e. they 

involve guessing, e.g. (from [11], section 2). 

 

1. Label the vertices V1 of G 1. 

2. Label the vertices V2 of G 2. 

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 

4. Guess a mapping from V1 to V 2 (note: n! choices) 

5. Check all the edges are the same. (at most, n2 checks). 

 

This is a slow method. There are n! different guesses to make, and maybe 

only one of them is correct. An implementation of this algorithm needs to 

use backtracking or some similar technique to consider the other guesses 

in the usual case that step 5 finds that the edges are not the same. 

It is possible to greatly reduce the amount of guessing by classifying the 

vertices. The underlying idea of this method is to look for distinctive 

characteristics of the vertices, and then to only guess a mapping (in step 4) 

which maps any vertex in a class with some given characteristics to a vertex 

in the other graph of the equivalent class with the same characteristics. For 

example if a vertex is adjacent to three other vertices (i.e. it is at the end of 

three edges), then it can only map to a vertex that is also adjacent to three 

further vertices (this is a classification by ‘degree’). 
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If the two graphs do not have equal numbers of vertices with each class of 

characteristics then the two graphs are not isomorphic. 

This process of classifying vertices is also known in the graph theory 

literature as colouring the vertices, in deference to the four colour problem.2 

Now we can make better guesses, we modify the algorithm above to be:  

1. Label the vertices V1 of G 1. 

2. Label the vertices V2 of G 2. 

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 

4. Classify the vertices of both graphs. 

5. For each class c in the classification 

a. Find the sets V1,c and V2,c of nodes which are in c 

b. If |V1,c|=|V2,c| set nc = |V1,c| else the graphs are not isomorphic. 

c. Guess a mapping from V1,c to V2,c (note: n c! choices) 

6. Check all the edges are the same. (at most, n2 checks). 

 

This is an improvement because the total number of different guesses has 

been (substantially) reduced. (We make a number of small guesses instead 

of one large one). We can improve performance again by evaluating each of 

the checks of step 6 as early as possible, during step 5, as soon as both 

vertices involved in an edge have had their mapping assigned. 

Iterative vertex classification (also known as partition refinement, in e.g. [9]) is 

when we use the information from our current classifications to reclassify 

the vertices producing smaller sets of each classification. In this we don’t 

see a vertex classification as only a function of the vertex and the graph, but 

also of the current classification of the vertices of the graph. So for example, 

                                        

2 How many colours are needed to colour a map so that no two adjacent 

countries have the same colour. 
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iterating on the degree classification above, we can classify a vertex by e.g. 

“This is adjacent to four vertices which have degree three,” (or in more 

words, “This is adjacent to four vertices which are, in turn, adjacent to three 

vertices”). The typical classification is formed by AND-ing lots of 

classifications like that together. 

Once we have made one guess aligning two vertices, we can re -classify the 

other vertices as to whether they are adjacent to the aligned vertices or not. 

This can also apply after we have guessed. The full algorithm looks like:  
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1. Label the vertices V1 of G 1. 

2. Label the vertices V2 of G 2. 

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 

4. Classify all the vertices of both graphs into a single class.  

5. Repeat: 

a. Repeat – generate a new classification from the current classification 

i. Reclassify each vertex by the number of vertices of each class in 

the current classifcation it is adjacent to. 

ii. If the new classification is the same as the current classification go 

to 5(b) 

iii. If any of the new classes has different numbers of members from 

the two graphs then fail and backtrack to the last guess [step 5(c)]. 

iv. If any of the new classes is small enough (e.g. size 2) go to 5(b) 

v. Set the current classification as the new classifcation and go to 

5(a)i 

b. If every class has one element from each graph then this defines an 

isomorphism and we are finished. 

c. Choose a smallest class with more than two vertices. Select an arbitrary 

vertex from  V 1 in this class.  (Non-determinisitically) guess a vertex from V 2 

in this class, hence picking a pair of vertices; when we run out of guesses, 

we backtrack to the last guess. 

d. Generate a new classification from the current classification by putting the 

pair of vertices, selected and guessed in 5(c), into its own class and 

otherwise leaving everything unchanged. 

6. If we backtrack through all the guesses in 5 then we have failed and the graphs 

are not isomorphic. 

This is substantially more complicated than the original algorithm but gives 

much, much better performance. Yet better solutions to the graph 

isomorphism problem can be found [9], [10]; typically they use more 

sophisticated invariants than the adjaceny one described here, and they 

use the ‘automorphism group’ of one of the graphs to eliminant many 
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redundant guesses. However, for RDF graphs the above algorithm will 

generally be sufficient. 

6. Vertex classification for RDF 

The code found in Jena [4] is based on the iterative vertex classification 

algorithm above. It classifies each non-anonymous resource by its URI and 

each literal by its string. It classifies each anonymous resource on the basis 

of the statements in which it appears. The classification considers the role 

in which an anonymous resource appears in a statement, and the other 

items in the statement.  

This allows substantial use to be made of the labelled vertices and edges. 

The non-deterministic parts will not be used except when the labels do not 

allow us to directly distinguish one anonymous node from another. 

The graph isomorphism algorithm above is then used, with minor variation3. 

The principle variation is the use of hash codes in the reclassification 

process. 

An anonymous resource can play three different roles in an RDF statement: 

it can be subject, object or both. The ModelMatcher code [4] goes further 

and will allow anonymous resources in  the predicate position. This gives a 

further four possibilities of where the anonymous resource occurs in the 

triple. 

The iterative vertex classification then amounts to the following: 

                                        

3 A minor variation, that is probably an error, is that an emphasis is placed on 

finding singleton classes and we use a small maximum number of iterations not 

finding one. 
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• the reclassification of a statement depends on the current 

classification of the resources in the statement. 

• the reclassification of an anonymous resource depends on the 

reclassifications of all the statements it appears in, and the role it 

plays in each appearance. 

• the reclassification of a non-anonymous resource or a literal is its 

original classification. 

7. Partition refinement by hashcode 

The invariants discussed above seem to have quite complicated 

representations; which suggests that comparing them may be slow. A 

simple way to proceed is always use hash-codes for each invariant value, 

combining them in commutative and associative or non-commutative 

fashion depending on whether we are discussing a set or a sequence at that 

point. 

Thus the code in Jena ModelMatcher proceeds in this fashion: 

• The code of an anonymous resource is the sum of its relative codes 

with respect to each triple it participates in. Note this means that an 

anonymous resource that participates in two triples of a certain class 

is distinguished from one that participates in three triples of that 

class. 

• The relative code of an anonymous resource with respect to a triple is 

the sum of a multiplier times the secondary code of the triple’s 

subject, predicate and object excluding those positions filled by the 

anonymous resource. The multiplier is chosen to distinguish the 

subject, predicate and object. 
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• The secondary code of a non-anonymous resource or literal is its Java 

hashCode. 

• The secondary code of an anonymous resource is its code from the 

previous iteration (which identifies the current classification). 

The anonymous resources are classified on the basis of their codes. We 

may, of course, get a hash collision. This will have the consequence of 

combining two partitions. While this will decrease the efficiency of the 

algorithm it does not impact its correctness. 

8. Other equivalences 

We may wish to ask if two RDF graphs are equivalent with a notion of vertex 

equivalence that allows non-anonymous resources with different URIs to be 

identified, or that allows non-anonymous resources to be identified with 

anonymous ones.  

In these cases we need to use a similar approach, the underlying problem 

is still graph isomorphism, but we use a different classification procedure. 

For example if we wish to allow the identification of different reifications of a 

statement, we would initially classify all reifications in a single class, and 

otherwise use the above algorithm. 

Another natural example comes from the use of rdf:Bag which is defined as 

an unordered container, yet the container membership statements are 

distinguished rdf:_1, rdf:_2 etc. This suggests that a statement 

equivalence that maps all of these to the same class would be natural for 

many applications. 

9. Conclusions 

It is possible to use techniques from the graph isomorphism literature to 

compare RDF graphs while equating anonymous resources. 
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It is not necessary to use some of the more sophisticated techniques 

suggested, due to the large amount of labelling found in RDF graphs. 

Performance problems may be experienced if graph theorists use RDF tools 

to store and communicate pathological examples; but standard usages of 

RDF are not pathological. 

These techniques could be extended to cope with a richer notion of 

equivalence between resources. 

Even if we restrict ourselves to RDF graphs in which all resources are 

labelled with URIs we will need to use these graph matching techniques to 

address natural issues of equivalence. 
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