

Matching RDF Graphs

Jeremy J. Carroll
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-293
November 26th , 2001*

E-mail: jjc@hpl.hp.com

RDF, graph
isomorphism,
equality

The Resource Description Framework (RDF) describes graphs
of statements about resources. This paper explores the equality
of two RDF graphs in light of the graph isomorphism literature.
We consider anonymous resources as unlabelled vertices in a
graph, and show that the standard graph isomorphism
algorithms, developed in the 1970's, can be used effectively for
comparing RDF graphs.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 2

1. Introduction

The resource description framework (RDF) specification [7] defines a data

model and a syntax. The syntax is defined on top of the XML syntax [3]. The

data model is defined in terms of resources, often identified with URIs [2],

and literals. Some of the resources are “anonymous”. The data model is a

set of triples, often thought of as a graph. The anonymous resources

correspond to blank nodes in the graph [6].

This paper concerns the comparison of two data models — read (or

otherwise created) from different files.

If the two data models consist of identical sets of triples then the two data

models are equal. As we shall see in the next section, to limit equality to

only such cases would be counter-intuitive in its treatment of anonymous

resources.

We explore that issue in some depth, and show that this makes RDF model

equality to be equivalent to graph isomorphism. We show that standard

algorithms for graph isomorphism, particularly iterative vertex classification

from Read and Corneil [11] (section 6, pp 346-347), are applicable.

We describe the algorithm as used in Jena 1-1-0 [8].

We finally consider whether there are other aspects of data model equality

and equivalence.

2. Some examples

Consider a simple RDF/XML file:

 3

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:t="http://example.org/brothers#"

 xml:base="http://example.org/brothers">

 <rdf:Description rdf:about="#John" t:name="John">

 <t:child rdf:resource="#Robert" t:name="Robert"/>

 <t:child rdf:resource="#Jeremy" t:name="Jeremy"/>

 <t:child rdf:resource="#Terry" t:name="Terry"/>

 </rdf:Description>

</rdf:RDF>

This creates a model with four triples:

<#John> <http://example.org/brothers#child> <#Robert> .

<#Robert> <http://example.org/brothers#name> "Robert" .

<#John> <http://example.org/brothers#child> <#Terry> .

<#John> <http://example.org/brothers#name> "John" .

<#Terry> <http://example.org/brothers#name> "Terry" .

<#Jeremy> <http://example.org/brothers#name> "Jeremy" .

<#John> <http://example.org/brothers#child> <#Jeremy> .

The syntax1 we use for such triples is the “N-triple” syntax being used by

the RDF working group [1].

Suppose we produce two RDF models by reading this in twice. They are

clearly the same. Indeed, even if we reorder the XML we get the same

model.

1 We use relative fragment URIs for compactness; these are not legal N-triple.

 4

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:t="http://example.org/brothers#"

 xml:base="http://example.org/brothers">

 <rdf:Description rdf:about="#John" t:name="John">

 <t:child rdf:resource="#Jeremy" t:name="Jeremy"/>

 <t:child rdf:resource="#Terry" t:name="Terry"/>

 <t:child rdf:resource="#Robert" t:name="Robert"/>

 </rdf:Description>

</rdf:RDF>

If we consider the same examples with anonymous resources, it is much

less clear. Typically our RDF processing environment assigns gensyms to

each anonymous resource. These gensyms such as “_:a9” below, are

identifiers for the blank nodes in the corresponding graph. And so we may

get sets of triples like:

_:a3 <http://example.org/brothers#name> "Robert" .

_:a1 <http://example.org/brothers#name> "John" .

_:a1 <http://example.org/brothers#child> _:a9 .

_:a1 <http://example.org/brothers#child> _:a3 .

_:a9 <http://example.org/brothers#name> "Terry" .

_:a6 <http://example.org/brothers#name> "Jeremy" .

_:a1 <http://example.org/brothers#child> _:a6 .

corresponding to:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:t="http://example.org/brothers#"

 xml:base="http://example.org/brothers">

 <rdf:Description t:name="John">

 <t:child t:name="Robert"/>

 <t:child t:name="Jeremy"/>

 <t:child t:name="Terry"/>

 5

 </rdf:Description>

</rdf:RDF>

and:

_:a3 <http://example.org/brothers#name> "Jeremy" .

_:a6 <http://example.org/brothers#name> "Terry" .

_:a1 <http://example.org/brothers#name> "John" .

_:a1 <http://example.org/brothers#child> _:a9 .

_:a1 <http://example.org/brothers#child> _:a3 .

_:a9 <http://example.org/brothers#name> "Robert" .

_:a1 <http://example.org/brothers#child> _:a6 .

corresponding to:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:t="http://example.org/brothers#"

 xml:base="http://example.org/brothers">

 <rdf:Description t:name="John">

 <t:child t:name="Jeremy"/>

 <t:child t:name="Terry"/>

 <t:child t:name="Robert"/>

 </rdf:Description>

</rdf:RDF>

A naive notion of equality suggests these are unequal, because the

anonymous nodes have been given different gensyms (for example that with

name “Jeremy” is _:a6 in the first and _:a3 in the second.

This does not seem consistent with the intended reading of anonymous

resources being like resources but without a name. Both the N-triple

definition [1], and the newer RDF Model Theory [6], describing RDF graphs

and their meaing, are clear that the blank node identifiers have file scope,

and such cross-file comparisons are inappropriate. Indeed, the model

theory [6] specifies the semantics of a blank node as an existential

 6

qualification over the set of resources in which no identifier of the blank

node is significant.

3. Anonymous resources are identified with local scope

Despite being called “anonymous” it is necessary to identify anonymous

resources in some way if we wish to process them in any way. An example

identifier might be an object reference within a program execution.

Frequently a gensym function is called to give an identifier to a resource.

Other resources are identified with names which have explicitly global

scope: i.e. their names are URIs [2]. The identifiers of anonymous

resources, in contrast, should not be meaningful outside the immediate

environment.

This suggests that an appropriate naming for anonymous resources is one

that gives them names with local scope: specifically the scope of the single

RDF data model, such as that built from a single RDF/XML file. The N-

triple syntax [1] is clear, the identifiers for the blank nodes have file scope,

linking the appearance of the node in one triple with that in another triple

in the same file.

Since such identifiers are not externally visible, it is an implementation

detail quite how they are generated.

Then in order to show that the two models are equal we have to show which

anonymous resources correspond with which:

 7

 _:a1 <#name> "John" .

_:a1 <#child> _:a9 .
 _:a9 <#name> "Terry" .

_:a1 <#child> _:a3 .
 _:a3 <#name> "Robert" .

_:a1 <#child> _:a6 .
 _:a6 <#name> "Jeremy" .

_:a1 <#name> "John" .

_:a1 <#child> _:a9 .
 _:a9 <#name> "Robert" .

_:a1 <#child> _:a3 .
 _:a3 <#name> "Jeremy" .

_:a1 <#child> _:a6 .
 _:a6 <#name> "Terry" .

Figure 1 An equivalence mapping between blank nodes

Such a correspondence needs to link each anonymous resource in the first

data model with an anonymous resource in the second, in such a way that

all the triples in both graphs correspond. Technically, this is a bijection

between the two sets of blank nodes which induces a labelled digraph

isomorphism.

4. Graph isomorphism theory

In the graph isomorphism literature (e.g. [5], [11]) a graph typically consists

of a set of unlabelled nodes or vertices, with a set of undirected unlabelled

pairs of vertices called edges. The graph isomorphism problem is: “Given

two graphs, are they the same?” and “If they are, which vertices from one

correspond to which vertices in the other?”

 8

Figure 2 isomorphic graphs from [11]

Figure 2 shows three isomorphic graphs; note each has ten vertices shown

by the small circles.

Most of the many variants of graphs have equivalent isomorphism problems.

These included labelled digraphs: in which the edges have a label and a

direction.

Within RDF models it is possible to encode an unlabelled digraph by using

a single property label (e.g. rdf:value) for the edges and anonymous

resources for each vertex. Undirected graphs can be encoded by encoding

each edge of the graph as two RDF triples, one in each direction.

In this way it can be seen that RDF model equality and the graph

isomorphism problem are equivalent from a theoretical point of view.

However, in practice RDF model equality is significantly easier because:

• most of the vertices are labelled with the URI of a resource.

• most of the edges have distinctive labels from the URI of the property

of the triple.

 9

• the XML syntax imposes significant (and unmotivated) restrictions on

where anonymous resources can occur.

We view the third point as an error that should be corrected; and regard the

other two points as important factors in the design of an effective algorithm.

5. Iterative vertex classification algorithms

Standard graph isomorphism algorithms are non-deterministic, i.e. they

involve guessing, e.g. (from [11], section 2).

1. Label the vertices V1 of G 1.

2. Label the vertices V2 of G 2.

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic.

4. Guess a mapping from V1 to V 2 (note: n! choices)

5. Check all the edges are the same. (at most, n2 checks).

This is a slow method. There are n! different guesses to make, and maybe

only one of them is correct. An implementation of this algorithm needs to

use backtracking or some similar technique to consider the other guesses

in the usual case that step 5 finds that the edges are not the same.

It is possible to greatly reduce the amount of guessing by classifying the

vertices. The underlying idea of this method is to look for distinctive

characteristics of the vertices, and then to only guess a mapping (in step 4)

which maps any vertex in a class with some given characteristics to a vertex

in the other graph of the equivalent class with the same characteristics. For

example if a vertex is adjacent to three other vertices (i.e. it is at the end of

three edges), then it can only map to a vertex that is also adjacent to three

further vertices (this is a classification by ‘degree’).

 10

If the two graphs do not have equal numbers of vertices with each class of

characteristics then the two graphs are not isomorphic.

This process of classifying vertices is also known in the graph theory

literature as colouring the vertices, in deference to the four colour problem.2

Now we can make better guesses, we modify the algorithm above to be:

1. Label the vertices V1 of G 1.

2. Label the vertices V2 of G 2.

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic.

4. Classify the vertices of both graphs.

5. For each class c in the classification

a. Find the sets V1,c and V2,c of nodes which are in c

b. If |V1,c|=|V2,c| set nc = |V1,c| else the graphs are not isomorphic.

c. Guess a mapping from V1,c to V2,c (note: n c! choices)

6. Check all the edges are the same. (at most, n2 checks).

This is an improvement because the total number of different guesses has

been (substantially) reduced. (We make a number of small guesses instead

of one large one). We can improve performance again by evaluating each of

the checks of step 6 as early as possible, during step 5, as soon as both

vertices involved in an edge have had their mapping assigned.

Iterative vertex classification (also known as partition refinement, in e.g. [9]) is

when we use the information from our current classifications to reclassify

the vertices producing smaller sets of each classification. In this we don’t

see a vertex classification as only a function of the vertex and the graph, but

also of the current classification of the vertices of the graph. So for example,

2 How many colours are needed to colour a map so that no two adjacent

countries have the same colour.

 11

iterating on the degree classification above, we can classify a vertex by e.g.

“This is adjacent to four vertices which have degree three,” (or in more

words, “This is adjacent to four vertices which are, in turn, adjacent to three

vertices”). The typical classification is formed by AND-ing lots of

classifications like that together.

Once we have made one guess aligning two vertices, we can re -classify the

other vertices as to whether they are adjacent to the aligned vertices or not.

This can also apply after we have guessed. The full algorithm looks like:

 12

1. Label the vertices V1 of G 1.

2. Label the vertices V2 of G 2.

3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic.

4. Classify all the vertices of both graphs into a single class.

5. Repeat:

a. Repeat – generate a new classification from the current classification

i. Reclassify each vertex by the number of vertices of each class in

the current classifcation it is adjacent to.

ii. If the new classification is the same as the current classification go

to 5(b)

iii. If any of the new classes has different numbers of members from

the two graphs then fail and backtrack to the last guess [step 5(c)].

iv. If any of the new classes is small enough (e.g. size 2) go to 5(b)

v. Set the current classification as the new classifcation and go to

5(a)i

b. If every class has one element from each graph then this defines an

isomorphism and we are finished.

c. Choose a smallest class with more than two vertices. Select an arbitrary

vertex from V 1 in this class. (Non-determinisitically) guess a vertex from V 2

in this class, hence picking a pair of vertices; when we run out of guesses,

we backtrack to the last guess.

d. Generate a new classification from the current classification by putting the

pair of vertices, selected and guessed in 5(c), into its own class and

otherwise leaving everything unchanged.

6. If we backtrack through all the guesses in 5 then we have failed and the graphs

are not isomorphic.

This is substantially more complicated than the original algorithm but gives

much, much better performance. Yet better solutions to the graph

isomorphism problem can be found [9], [10]; typically they use more

sophisticated invariants than the adjaceny one described here, and they

use the ‘automorphism group’ of one of the graphs to eliminant many

 13

redundant guesses. However, for RDF graphs the above algorithm will

generally be sufficient.

6. Vertex classification for RDF

The code found in Jena [4] is based on the iterative vertex classification

algorithm above. It classifies each non-anonymous resource by its URI and

each literal by its string. It classifies each anonymous resource on the basis

of the statements in which it appears. The classification considers the role

in which an anonymous resource appears in a statement, and the other

items in the statement.

This allows substantial use to be made of the labelled vertices and edges.

The non-deterministic parts will not be used except when the labels do not

allow us to directly distinguish one anonymous node from another.

The graph isomorphism algorithm above is then used, with minor variation3.

The principle variation is the use of hash codes in the reclassification

process.

An anonymous resource can play three different roles in an RDF statement:

it can be subject, object or both. The ModelMatcher code [4] goes further

and will allow anonymous resources in the predicate position. This gives a

further four possibilities of where the anonymous resource occurs in the

triple.

The iterative vertex classification then amounts to the following:

3 A minor variation, that is probably an error, is that an emphasis is placed on

finding singleton classes and we use a small maximum number of iterations not

finding one.

 14

• the reclassification of a statement depends on the current

classification of the resources in the statement.

• the reclassification of an anonymous resource depends on the

reclassifications of all the statements it appears in, and the role it

plays in each appearance.

• the reclassification of a non-anonymous resource or a literal is its

original classification.

7. Partition refinement by hashcode

The invariants discussed above seem to have quite complicated

representations; which suggests that comparing them may be slow. A

simple way to proceed is always use hash-codes for each invariant value,

combining them in commutative and associative or non-commutative

fashion depending on whether we are discussing a set or a sequence at that

point.

Thus the code in Jena ModelMatcher proceeds in this fashion:

• The code of an anonymous resource is the sum of its relative codes

with respect to each triple it participates in. Note this means that an

anonymous resource that participates in two triples of a certain class

is distinguished from one that participates in three triples of that

class.

• The relative code of an anonymous resource with respect to a triple is

the sum of a multiplier times the secondary code of the triple’s

subject, predicate and object excluding those positions filled by the

anonymous resource. The multiplier is chosen to distinguish the

subject, predicate and object.

 15

• The secondary code of a non-anonymous resource or literal is its Java

hashCode.

• The secondary code of an anonymous resource is its code from the

previous iteration (which identifies the current classification).

The anonymous resources are classified on the basis of their codes. We

may, of course, get a hash collision. This will have the consequence of

combining two partitions. While this will decrease the efficiency of the

algorithm it does not impact its correctness.

8. Other equivalences

We may wish to ask if two RDF graphs are equivalent with a notion of vertex

equivalence that allows non-anonymous resources with different URIs to be

identified, or that allows non-anonymous resources to be identified with

anonymous ones.

In these cases we need to use a similar approach, the underlying problem

is still graph isomorphism, but we use a different classification procedure.

For example if we wish to allow the identification of different reifications of a

statement, we would initially classify all reifications in a single class, and

otherwise use the above algorithm.

Another natural example comes from the use of rdf:Bag which is defined as

an unordered container, yet the container membership statements are

distinguished rdf:_1, rdf:_2 etc. This suggests that a statement

equivalence that maps all of these to the same class would be natural for

many applications.

9. Conclusions

It is possible to use techniques from the graph isomorphism literature to

compare RDF graphs while equating anonymous resources.

 16

It is not necessary to use some of the more sophisticated techniques

suggested, due to the large amount of labelling found in RDF graphs.

Performance problems may be experienced if graph theorists use RDF tools

to store and communicate pathological examples; but standard usages of

RDF are not pathological.

These techniques could be extended to cope with a richer notion of

equivalence between resources.

Even if we restrict ourselves to RDF graphs in which all resources are

labelled with URIs we will need to use these graph matching techniques to

address natural issues of equivalence.

10. References

[1] Art Barstow, Dave Beckett (eds), RDF Test Cases, W3C Working Draft

2001 http://www.w3.org/TR/rdf-testcases/

[2] Berners-Lee, Fielding, Masinter, Uniform Resource Identifiers (URI):

Generic Syntax Internet Draft Standard August, IETF, RFC 2396,

1998.

[3] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, Extensible

Markup Language (XML) 1.0 (Second Edition), World Wide Web

Consortium, 2000,

http://www.w3.org/TR/2000/REC-xml-20001006.

[4] Jeremy Carroll ModelMatcher.java found in [8] 2001

[5] Scott Fortin, The Graph Isomorphism Problem, Technical Report TR 96-

20, Department of Computer Science, University of Alberta, 1996.

ftp://ftp.cs.ualberta.ca/pub/TechReports/1996/TR96-20/TR96-20.ps.gz

[6] Patrick Hayes (ed), RDF Model Theory W3C Working Draft 2001

http://www.w3.org/TR/rdf-mt/

 17

[7] Ora Lassila, Ralph R. Swick, Resource Description Framework

(RDF) Model and Syntax Specification, World Wide Web Consortium,

1999, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[8] Brian McBride, Jena 1-1-0, 2001

http://www-uk.hpl.hp.com/people/bwm/rdf/jena/jena-1-1-0.zip

[9] Brendan D. McKay Practical Graph Isomorphism, Congressus

Numerantium 30, pp45-87 1981.

http://cs.anu.edu.au/~bdm/papers/pgi.pdf

[10] Brendan D. McKay Nauty 1994 http://cs.anu.edu.au/~bdm/nauty/

[11] Ronald C. Read, Derek G.Corneil, Graph Isomorphism Disease, 1977

