

Client – Side Profile Storage: a means to put
the user in control

Stephanie Riche, Gavin Brebner, Mickey Gittler1

HP Laboratories Grenoble
HPL-2001-291
November 14th , 2001*

personalization,
profile,
profiling,
personal
storage,
privacy

As internet users, we provide personal information to a growing
number of service providers with little or no control over its
usage, and no means to properly track subsequent access of this
information. Some companies have recently made
announcements proposing to handle our personal information
centrally, offering the possibility of a unified repository, but
raising additional trust and privacy concerns. We propose an
alternative to this trend by storing personal information on
client devices, increasing the possibility of putting the user in
control of his or her personal information.

A user can have multiple heterogeneous devices, so this
generates a need for the distribution of profile data. Profile
management capabilities are required that ensure consistency
of replicated data, data accessibility with low latency, security
and privacy. In our scheme we have chosen an approach based
on a coherency protocol well adapted to handle data migration,
and are extending this protocol to incorporate trust-related
features.

* Internal Accession Date Only Approved for External Publication
1 Trusted E-Services Lab, HP Laboratories, Bristol
 Copyright Hewlett-Packard Company 2001

Client –Side Profile Storage:
a means to put the user in control.

Stephanie Riché, Gavin Brebner HP Laboratories Grenoble.

Mickey Gittler Trusted E-Services Lab, HP Laboratories, Bristol.

09 November 2001

Abstract
On user-devices
profile storage

As internet users, we provide personal information to a growing
number of service providers with little or no control over its
usage, and no means to properly track subsequent access of this
information. Some companies have recently made
announcements proposing to handle our personal information
centrally, offering the possibility of a unified repository, but
raising additional trust and privacy concerns. We propose an
alternative to this trend by storing personal information on client
devices, increasing the possibility of putting the user in control
of his or her personal information.

A user can have multiple heterogeneous devices, so this
generates a need for the distribution of profile data. Profile
management capabilities are required that ensure consistency of
replicated data, data accessibility with low latency, security and
privacy. In our scheme we have chosen an approach based on a
coherency protocol well adapted to handle data migration, and
are extending this protocol to incorporate trust-related features.

mailto:stephanie_riche@hp.com
mailto:gavin_brebner@hp.com
mailto:mickey_gittler@hp.com

External

TECHNICAL REPORT

2

External

TECHNICAL REPORT

3

1 Introduction
In today’s approach to personalization, the technology is created and applied by those
with a strong vested interest in tailoring commercial offerings to end users. Typically,
personalization solutions are sold to e-commerce sites wishing to present the user with
the combination of goods that will generate the most profit for the e-commerce provider.
Although this may, in some cases, be aligned with the user’s best interests, this is not the
priority of the e-commerce provider. In particular, personal details of end users are a
valuable commercial resource, and are often bought and sold without the users
knowledge or consent. [1]

Another consequence of the service provider having control of the process is that a user
typically will have multiple “profiles” across the Internet, with every site maintaining its
own database of information. Personalization thus changes at every site, reflecting the
information available, and can confuse a user who is unaware of what data (if any) the
vendor possesses.

Recently, a number of profile-federation initiatives have been proposed. Microsoft has
proposed Hailstorm (now known as My Services) incorporating some of its previous
Passport system [2]. They propose to centralise (some) customer data in a paying service
at Microsoft, and hence control a key part of the personalization experience, in the
process siphoning off some revenue. Not surprisingly, many users and service providers
have concerns with this approach. An alternative solution, recently announced, is the
“Liberty Alliance” that aims to avoid a Microsoft monopoly through an open standard
[3]. It remains to be seen what concrete proposals this project will make, but the scheme
still appears to target server-side data ownership.

In all these cases, we see personalization technology moving away from real user
ownership of profile data, and still being focussed primarily on targeting users for sales
activity, rather than using the information for user benefit. We believe that an alternative
exists, whereby personalization technologies are used to help the user, the primary
objective of this alternative approach being to supply a better customer experience at the
interface to the virtual world that includes the Internet and web services. We want to
deliver technologies that allow devices to be better interfaces to the Internet. This
objective implies a closer binding between user and device, with a greater need for trust
between the two. The personalized device becomes a means to protect users, rather than
help target them for business purposes. Given this, we work to the following:

1. A global vision where all devices in contact with an end user are aware of themselves,
the user, and the local environment. This information is used to personalize
interaction with the user, making interaction with the Internet simpler, easier, and
more “human”.

2. A view of privacy as a key enabler for this vision. The user has to trust the device /
system to store personal data with privacy, and if the level of trust is insufficient, the
clear, unencrypted data must not be left in the data store, or exchanged with a non-
trusted 3rd party.

External

TECHNICAL REPORT

4

2 A user-centred architecture
A profile is used for the personalization of local and remote services. In addition,
personal data can be used to customize man-machine interface [4]. We consider that data
should be stored locally, permitting personalized actions even if the device is not
connected to a network. In addition, local storage of data is fundamentally more private,
as exposure of data can be limited to cases where a real user need is addressed. Examples
of client side personalization are our previous work on VAL [5], and commercial
products such as Belarc [6]. Client-side service execution is then made possible, thus
reducing data exposure still further [7][8]. Also, it must not be forgotten that the
processing power of client devices is still increasing, and that from processing power and
scalability needs alone, a distributed client-side approach to personalization may make
sense.

Figure 1: User centred architecture.

User devices form a trustworthy cluster. The profile is distributed and replicated on user devices. Each
device can store part of the profile represented by jigsaw pieces. For instance, the mobile phone and the
game console both have a copy of the same jigsaw piece. External system can access profile information
but each exchange of data is under user control.

www

External

TECHNICAL REPORT

5

In consequence we propose a user-centric architecture. The user is central to the system
and each user device becomes an interface to access services. Devices store profile
information needed to personalize local and remote services, and collaborate to present a
uniform and consistent view of a physically distributed and replicated system.

As illustrated in Figure 1, the user’s heterogeneous devices form a trustworthy cluster.
Each device can store part of the profile. Devices should be smart enough to handle the
complexity of information management so that the user access and manage seamlessly
his personal information. In our system, the profile is distributed, replicated and kept
consistent on user devices. Thus the user can access any profile data from any device in a
trusted way.

Device external to this cluster such as service provider servers can access part of the
profile but this process is under the user control. We believe that client side architecture
is intrinsically better adapted to user privacy through limiting the quantity of information
that requires to be transmitted to third parties. In fact, exchange of information should
begin with a phase of negotiation of what kind of information may be exchanged with a
service provider. Our opinion is that exchange of personal information should be under
user control, and that solutions should be provided to avoid intensely private information
being sent to a service provider without the user’s consent.

External

TECHNICAL REPORT

6

3 Profile characteristics and usage model

3.1 Profile definition
Whilst personalization is clearly defined as being the process of adapting services to an
individual user, the word profile has multiple interpretations.

“Profile” is often used to refer to a set
of user preferences / settings (e.g. the
Unix Bourne shell .profile file). In the
e-commerce world, it often refers to a
set of user information (name, address,
purchase preferences). In the telecom
world, a similar set of characteristics
makes up a profile. All these have the
common theme of being the result of
capturing certain user information and
transforming them into a usable form.
As rich user interaction requires
implicit situational information [9] to
increase ease of use and
comprehensibility of user requests, we
propose to extend this theme and to
generalise the concept of a profile to
refer to the digitised data on the user,
taken from the surrounding
context[10]. This profile may include
any and all data that may prove useful
in adapting a system to the user, thus
personal details and preferences,
devices used and their configuration,
location data, transaction data, presence of other people and objects, and so on.

3.2 Profile usage model
As noted above, we consider that each user will have multiple client devices, and that it is
important for the same data to be available from any device; this means we need to
consider how to distribute a profile store across multiple, intermittently connected,
platforms. An important aspect of any such system is the provision for privacy. Privacy
involves understanding of user privacy preferences expressed e.g. via policies such as
P3P [11], and the execution of tasks in such a manner as to respect these policies.

We have decided to implement a shared profile store structure to obtain experience in
how to build and access such distributed structures. We are equally interested in how
different approaches behave in what we consider typical usage cases.

Figure 2: Profile or digitised context.

The disk labelled “user characteristics” and the
disk labelled “user environment” represent
abstractions of these notions in the physical world.
A part of those characteristics are captured
through devices and digitalized, forming the
digitised context-aware profile.

User

characteristics

User environment

User characteristics
function of the
environment

Digitised context or profile

External

TECHNICAL REPORT

7

3.3 Identified Usage models
We consider several models of profile store usage. Not all are equally likely to be seen in
real cases, and each present different demands to the profile store. We have attempted to
characterize the different cases using two dimensions:

• Grouped/Scattered Data: Grouped data implies that the data used by an
application forms part of a “clump” of similar data elements – e.g. all data can be
found within some small sub-set of a profile. The alternative is for data to be
scattered across the profile.

• Migratory/Parallel: Migratory data is data that “follows” the user from machine
to machine. At any one time, the user is active on only one machine, and a change
of machine is the event that may trigger the communication of any (outstanding)
update of the data to another device. The alternative is for multiple simultaneous
accesses to be made to data, causing frequent updates to be communicated between
devices. We consider the simple case of a data item that is only ever used on one
machine to be a trivial case of migratory data.

Some examples of the different cases are given below.

Case 1: Grouped, migratory –
e.g. Radio Station Data.
This use case is illustrated by a demo we have constructed where the current radio
“channel” is stored in the profile store. As the user goes from machine to machine, the
radio channel setting follows and is consistent across many different machines. We thus
have moderately static data (e.g. I don’t change radio station all that often), used largely
by a single application (radio player), well grouped with other radio data (if any), and
used by large number of machines.

This use case is also interesting in that the data is used sequentially from a number of
different machines. We see this as characteristic of a wide range of applications that are
directly linked to user activity; while the user stays using a single machine, the data will
not be accessed by any other machine, but when the user moves to another device, the
(updated) data will need to follow.

Case 2: multiple-use, grouped data -
e.g. Address data.
An example of this use case is that of the user’s physical or email address. This data will
be widely used, both across multiple machine and applications. The updates will
generally be migratory (change once, not everywhere at once).

External

TECHNICAL REPORT

8

Case 3: Distributed, multi-application/machine data -
e.g. CPU resources.
We can imagine a set of data relating to the CPU power available to the user. This is
likely to be highly distributed in that device CPU power is probably grouped with other
device-specific data, rather than grouped in a single sub-tree of the profile. The data will
be used by many different applications and machines.

Updates to this data will come from changes in the environment (new machine being
added, upgrade), and will typically be changed from only one machine. The data can
therefore be grouped in with migratory data, in that simultaneous updates from more than
one machine are unlikely.

3.4 Target Area
From our ruminations on usage models, we notice that most of the data we are
considering currently follow a migratory pattern: data are accessed by applications
residing on different machines in a predominantly sequential manner. Therefore, we have
decided to focus primarily on migratory data for our initial research. Cases where parallel
data access occur in large numbers are more likely to be experienced where the user
possesses agents or other “do-it-for-me” systems that act on the user’s behalf; such
systems are currently much rarer than user-triggered examples. We will avoid making
any decision that precludes the use of parallel data, but will not optimise the system for
this case.

Hence, we are working on the management of migratory data by developing a research
vehicle to experiment and get knowledge on how to store migratory profile data on user
devices.

4 System overview
The system design presented below reflects the two main requirements on which we have
focused:

1. A unique profile per user, that keeps up to date with user changes on any machine
identified as belonging to that user.

2. Protection for user privacy.

As outlined in the introduction, we propose a client rather than server side solution to
profiling, as we believe this allows personalization of local services in non-connected
environment, and, just as importantly, enables solutions that improve user privacy, and
increases user visibility of personal data usage.

External

TECHNICAL REPORT

9

4.1 Aims and principles
Our aim is to provide reliable profile data availability in a distributed environment
composed of heterogeneous devices belonging to a single identifiable user. Initial work
makes the simplifying assumption of one user, multiple machines, with each machine
being owned by only one person. The set of devices form a trustworthy environment,
raising additional issues such as how to control access to data annotated with various
levels of trust.

The first model that comes to mind when you wish to share data between several devices
is the client/server paradigm1. The server orders and processes access requests coming
from various clients. However, for efficiency and availability a local presence of data is
required, so it is usual to add a cache on the client. Caching is a form of replication,
which is key to providing performance, high availability and fault tolerance in distributed
system[12]. Performance is closely linked to the availability of data on the processing
host, availability is relative to the number of copies of given data, and fault resilience is
function of the level of distribution. In our approach, the role of server is distributed
among devices, that is to say each device has a role of client and server enhancing fault
tolerance potential.

Managing distributed data implies the definition of a naming scheme, that will allow
invocation of the data from any device, the mapping of data names to communication
addresses, and a coherence model that defines the behaviour of the whole system for
managing concurrent access to shared data. Indeed, one of the most complex and
important aspects when designing a distributed storage system is to resolve conflicting
accesses to data.

4.2 Synchronization or shared memory?
Personal information management system approaches make use of a synchronization
paradigm, like TrueSync[13]. This approach has the advantage of simplifying the
management of communication; communication takes place relatively rarely and is
explicitly triggered by a user event (e.g. putting a PDA in its cradle), and a failure of
communication is not a major problem for the system (data is left unsynchronised).

However, the synchronized approach has a number of significant drawbacks:
• Conflict resolution. In a generic profile (as opposed to a limited data type system

such as a contact database or calendar) generic conflict resolution has to be
addressed. Reconciliation functions require an understanding of the data being
synchronized; thus the profile store, and not just the applications, must be capable of
understanding data types. We would greatly prefer a solution where the profile store

1 Here, server and client are logical entities: A client requests a service or information to a server.
Client/Server is primarily a relationship between processes running on different machines. The
server is a provider of service or information, the client is a consumer of services. A server can be
any type of device.

External

TECHNICAL REPORT

10

acts as a dumb storage mechanism, and does not have to consider the semantics of
the data.

• Weak coupling of devices. Synchronization is a fairly weak coupling between
copies of data. Data modification will be discovered after the changes, and not
before. We want a solution that offers better visibility of the state of data copies.
Any system using synchronization cannot rely on data being always valid, and this
reduces the effectiveness of the end user application.

For these reasons, we have chosen to investigate an approach based on a shared memory
paradigm. We thus are faced with an alternate set of problems, but consider we may
obtain significant benefits from this less orthodox model.

4.3 The choice of a consistency model
One of our main challenges is to build technology to provide a consistent profile; i.e. that
profile distribution is not visible to applications, and that the system behaves as if all data
were stored on a unique locally held storage resource.

This challenge has been addressed in multi-processor systems to provide to the developer
a programming model as close as possible to the one of single processor systems, yet
with greater performance. Similar issues rose in other distributed systems supporting
replication, namely distributed databases[14], distributed file systems -like CODA[15],
NFS[16]- or groupware.

Three memory models encompass the set of well-known memory systems for the
coherence problem.

• A memory is strictly coherent if the value returned by a read operation is the value
written by the most recent write operation to the same object. Systems that realize
this model offer the straightforward memory representation found in uni-processor
systems at the cost of performance, as each participant of such a system needs to be
aware of , and wait for, preceding write accesses, before it may access the same
data.

• Munin [17]proposed a relaxed memory model based on the usage model of shared
memory systems2. The second coherence model proposed by Munin[20] is defined
as follows: Memory is loosely coherent if the value returned by a read operation is
the value written by an update operation to the same object that could have
immediately preceded the read operation in some legal schedule of the threads in
execution. This approach offers better performance than strictly coherent systems,

2 Indeed, in multiprocessor systems it has been proven that strict coherence is not necessary for correct
execution of concurrent programs. Correctness of execution depends on the expected behaviour of the
system[18], which is why the research effort has been mainly on the ordering of events by elaborating
consistency models. A coherence protocol defines what value can be returned by a read operation and a
consistency model adds a notion of event ordering by determining when a written value will be returned by
a read operation. Dubois illustrates the close relation between those two models[19].

External

TECHNICAL REPORT

11

Memory model simplicity

Access API simplicity

Performance

Strict
coherence

Loose
coherence

Eventual
coherence

but provides a fairly complex memory model and raises the issue of chaotic access3
as underlined by David Mosberger in his paper discussing memory consistency
model [18].

• The third class of memory model mostly used in distributed systems, such as file
systems or databases, is eventual coherence based on optimistic coherence
protocols, such as epidemic algorithms used in Bayou[21] and reconciliation
mechanisms. Memory is eventually coherent if updates are propagated such that
eventually every copy has the latest version. Eventual coherence involves the design
of reconciliation mechanisms as several copies of an object evolve independently
from one another, resulting in possible conflict. Reconciliation mechanisms are a
function of the semantics of the data to reconcile, and this approach is little better
than the synchronization approach.

Despite the fact that
relaxed models are
generally considered to be
beneficial for performance
(see Figure 3) our first
approach has been to build
a strictly coherent memory
system. Two rationales
argue for this alternative.
Firstly, strictly coherent
systems provide a simpler
memory representation than a weaker model. Secondly, taking as hypothesis the profile
usage model presented in section 3.2, the main type of object is migratory object as
defined in Munin[20]. Migratory objects are usually accessed by one process for several
consecutive accesses, before another process accesses the object. Munin argues that for
this type of object it is efficient to migrate the object on the processing location with full
access rights by invalidating other copies. Explicitly, for this sort of data, strict coherence
can be handed efficiently by a protocol offering migration capabilities. The protocol we
have designed has the advantage of providing for the migration of objects, and we see
pro-active migration as a possible means of offering availability of data and coherence
despite intermittent connection. At least, we want to test the limit of such a proposition.

3 Chaotic accesses are non-synchronizing competing accesses occurring when a shared data is accessed in a
pattern outside the scope of its associated pattern access model. Limiting the impact of chaotic access imply
means for providing a “fairly recent” value. That is, if accesses to variable x are unsynchronised, then
reading x must not return any value but a “recent” one. David Mosberger indicates that most of DSM
systems have not sorted out this issue.

Figure 3: Selecting a consistency model is a tradeoff between
performance and memory model simplicity.

External

TECHNICAL REPORT

12

4.4 Trust and security

Device heterogeneity
In recent years, a wide range of new “appliances” has appeared, and they need to be
integrated into larger computing systems. These devices vary in their capacity to protect
the data they contain and the interactions the owners of these devices may have with
various services offered elsewhere. Some devices are trusted platforms4, others fall into a
large range down to simple devices that offer no security mechanisms beyond keeping
data in some local unprotected storage. Authentication, authorization, encryption,
monitoring, and many other aspects of the traditional security may not always be possible
for these devices.

Level of Trust
In our system, profiles are managed by policies used to control the flow of data to and
from the device owned by a person. We have expanded the policies to include trust
considerations.

Private information is stored on the devices owned by the user, part of the user trusted
domain5. This private information is distributed amongst the devices according to the
trust level of the device, the user's subjective approval, and on demand. The trust level of
the device will depend on factors including the device technical characteristics, its
location, and other factors that could be business related. The assembly of conditions are

4 Trusted Platforms: Capable to secure the overall system, its interactions, interface, and
management and maintain protection of its subsystem capabilities and data. Hence, trusted
platforms have built-in security capabilities.

From the Trusted Computing Platform Alliance (TCPA) [23]:

Protection: "describes the properties of selected capabilities and selected data locations within a
platform that has a Protection Profile and has not been modified by physical means. A protected
capability is one whose correct operation is necessary in order for the operation of the subsystem
to be trusted. Protection includes also the concept of shielded (data) locations. The trust in the
subsystem depends critically on the access of certain data. Sensitive data should be accessible
only to protected capabilities.”

A " Trusted Platform enables an entity [a user in particular] to determine the state of the software
environment in that platform and to SEAL data to a particular software environment in that
platform. The entity deduces whether the state of the computing environment in that platform is
acceptable and performs some transaction with that platform. If that transaction involves
sensitive data that must be stored on the platform, the entity can ensure that that data is held in a
confidential format unless the state of the computing environment in that platform is acceptable to
the entity."

Most trusted platforms provide platform integrity, identity, and protected storage.
5 Trusted User Domain: A space that ensures privacy, integrity, and authenticity (all which foster
trust) for the user. Such a domain supports strong separation to and from the outside world and
controls the respective access.

External

TECHNICAL REPORT

13

part of the user context that seems to change dynamically. For our first implementation,
we use simple user input to indicate the trust level.

The profile data are partitioned such that sensitive information is available only to the
devices that meet the necessary criteria. This information could be encrypted. Some
devices could be just temporary holders of the encrypted information, having no means to
decrypt it or store it locally for long periods of time. Data may need to migrate
immediately, perhaps under some extreme conditions (for instance, if the environment is
compromised in unexpected ways).

We need to protect sensitive data under specific threats, all varying with the device
characteristics. Solutions include:

• Encrypt and move data on demand. If a threat is perceived (attack detected, user
indicates entry into non-trusted network etc.) sensitive data may be encrypted and/or
moved to a less vulnerable device.

• Delete data on demand. For some devices, the most appropriate response to a
threat is to remove all copies of the data. This is particularly interesting for all data
that exists as shared copies.

• Filter storage requests to meet storage policies. When it comes to storage, the
user may have definite preferences and polices. Some information may be required
to be stored in a certain way, for instance, following some classifications, or for a
certain given time, in a certain context, etc.

The focus is not only on the user profile stored on the user's devices, but also on the
interaction between the profile and services (directly or via agents). We envision profile
platforms and services that filter and control the ultimate use of the profile. This may
involve trusted third parties.

Traditional security and trust mechanisms
Traditional security for distributed systems involves authentication and authorization
mechanisms that are often dependent on specialized servers. Ideally, the devices and the
users behind should have the ability to uniquely identify and finally authenticate before
any communication. These devices are expected to operate under peer-to-peer
architecture models. Various authorization schemes and data integrity mechanisms may
be considered, but these will be restricted to the devices that lack the necessary local
resources. In the case of mobile devices, the authorization solution has to scale to a large
number of services and has to preserve the user’s privacy. Users may also want to limit
the access (in time and space) to private information. There are attempts to classify the
information and use it in well-understood contexts[24].

Initially, the architecture opts for traditional security measures in terms of authentication,
authorization, private communication links, etc., although we have a distinct preference
for lightweight mechanisms, where possible. There are a number of technologies that we
consider adapting, like SSL/TLS-based[25][26], as a means of securing connections,
TCPA as a means of getting a trusted platform, and Public Key Infrastructure (PKI) or

External

TECHNICAL REPORT

14

Pretty Good Privacy (PGP)[27], for authentication and authorization. More details on this
line, along with a new proposal, are presented in a paper by Jeff Morgan et al.[28].
Unfortunately from a security point of view, relatively few devices will be TCPA
enabled, and this results in a significant security risk for each device, even if the
connections themselves can be secured. We also are looking at known specific user and
device authentication mechanisms that allow us to validate user identity before permitting
access to the device profile system; biometrics, smart cards etc. all apply here. Identity
based message encryption also appears to be an interesting approach that could be
applied.

Mechanisms to enhance privacy and user control
User-controlled devices contain profiles personalized for a large range of functionality
and service access. It seems desirable to allow the owner of a device to dynamically and
temporarily disable a class of functionality. This intervention should be simple.

Several approaches are possible. At the simplest, the user may be able to indicate to the
device a change in the level of trust; e.g. by pressing a single “don’t trust” key. A more
sophisticated approach is possible where a dynamic trust attribute can be calculated as a
function of device characteristics and the environment. In either case, the data can be
combined with a policy that results in protective measures being taken when the level of
trust drops below a specified threshold.

4.5 System design
In this section, we present the coherence protocol that takes in consideration trust and
security aspects. The distributed profile forms an object space, where a profile element is
an object. The object space is distributed among hosts, i.e. user devices. Several copies of
the same object can exist but only one copy is writable: the master copy. Object copies
are scattered on different memory hosts. Before writing to an object, a host has to gain
control of the master copy. On each host a middleware component handles requests
coming from other hosts via the network to support the coherence protocol, manages the
local cache and handles request coming from local applications.

The coherence protocol we have initially chosen is a write-invalidate protocol adapted
from the COMA-F [29] coherence protocol. The protocol has been changed to reduce
communication overhead by storing the sharing list on the master host instead of the
home directory, as proposed in SC-COMA[30]. Another modification is conditional
object-copy caching: before being authorized to cache a readable or a write-able object-
copy a decision algorithm that takes into account the requester host capabilities and data
sensitivity is performed. Figure 4 represents the states and possible state transitions of an
object-copy located in a cache of one host. For instance, transition (1) corresponds to a
read request on an object. An object-copy is cached but has been invalidated as it is in the
invalid state, so the host space manager requests a valid object copy, and as it obtains
one, the new state associated with the object-copy in the host cache becomes shared. The
current master of an object runs a policy engine to check if the requester host is allowed

External

TECHNICAL REPORT

15

to cache the object, transition (1) occurs if the requester is authorized to cache the object;
if caching is not authorised, the current master will return a readable value but with no
cache rights, transition (9).

Figure 4: State diagram of the coherence protocol

There are several reasons to limit the access of some hosts to some objects. First, hosts
are heterogeneous devices, so some of them have limited power or storage resources. In
such a case, it may be inappropriate or even infeasible to cache an object-copy and so
object access would have to be achieved remotely, see Figure 5. Secondly, devices are
not equally trusted, for example, a mobile device is more prone to be stolen than a PC at
workplace, or a PDA may not support the same security capabilities as a laptop equipped

INVALID

SHARED

MASTER-
SHARED

EXCLUSIVE

Obtain Readable object
copy (1)

Invalidate readable copy
due to a write request (2)

Obtain Writeable
object-copy (3)

Release access rights of object-
copy from Writeable to
Readeable due to a Readable
object-copy request from another
host (4)

Obtain Writeable
object-copy (5)

Obtain Writeable
object-copy(6)

Release read right
due to a write request
from another host (7)

Invalidate object
copy due to Writable
object-copy request
from another host (8)

Obtain write or read of a
remote object-copy (9)

External

TECHNICAL REPORT

16

with a smart card reader peripheral. Hence, as a function of the level of data
confidentiality, objects may or may not be stored on certain devices. Finally, impeding
the migration of an exclusive object-copy on a sporadically connected device is a way to
provide higher data availability. In our current implementation, when the master of an
exclusive object copy is disconnected from the system, there is no way of getting a
guaranteed up-to-date object-copy.

Figure 5: message sequence chart of write request resulting on a write on the current master. The
requester sends a write request to the master host. The master host, checks the requester caching
rights, the authorization check results in the forbidding of being exclusive master for that object. The
writing on the object occurs on the current master host and the requester stays in invalid state.

Requester

host

Master

host

Host i Host j

Write request

Write reply containing
invalid cache rights

EXCLUSIVE

INVALID MASTER-SHARED SHARED SHARED

Invalidation message

Invalidation message

Invalidation ACK

Invalidation ACK

INVALID INVALIDINVALID

Check
Authorization

Update master
object-copy

External

TECHNICAL REPORT

17

Different decisions can be taken following the defined policy, the object sensitivity
attributes and device capabilities:

• Allow caching of object-copy and
migration of the master authority
(exclusive or shared master).

• Allow caching and migration of the
shared-master authority only. The
migration of the exclusive master
authority is forbidden.

• Allow only caching of a shared
object-copy, i.e. no migration of the
master authority,

• No caching allowed for this object
on this device. Access to a copy of
this object will have to occur
remotely each time the given host
wishes to read or write the given
object.

5 First version of the research vehicle
We have implemented the system described here by extending Java RMI [31]client server
model to a peer-to-peer6 model. In effect, RMI supports a client/server model of object
distribution, one device is a server of objects, and others are clients, when a client wants
to get some information it invokes a method on the server object. We propose that several
devices share an object and collaborate to handle the coherence protocol and to keep it
consistent. When a device needs to get some object value it invokes a method on the local
representative for that object which may answer immediately, or collaborate with other
representatives for the given object to get an accurate value.

5.1 Flexibility
Our first implementation of a profile storage system reflects our main objectives as
explained in previous sections, but we have designed a flexible (object oriented)
architecture to get a modular structure. This permits us to replace components of the
system (e.g. the coherence protocol) without major architectural changes.

Indeed, a possible direction in the future is to associate specific coherence protocols to
specific types of profile data and usage model. However, we currently work on migratory
objects, and this implementation only supports the protocol described in paragraph 4.5.

6 “Put simply, peer-to-peer computing is the sharing of computer resources and services by direct
exchange between systems”[32]

Figure 6: Access policy

Data
sensitivity
attributes

Cache rights
response

Policy Engine

Requester
device

capabilities

Cache
management

policy

External

TECHNICAL REPORT

18

AbstractCachedNodeProxy

DataItem

SCCachedNodeProxy

ISCRemoteNodeProxy

ProfileNode

1
1

1

1

1

1

real subject

Attribute
0..*

1

0..*

1

aClientApplication

IProfileNode

Figure 7: proxy pattern applied to profile node. Each profile node can be handled by a specific
protocol depending on the type of proxy that manages it. Participants of the proxy pattern are:
INodeProfile: A client application accesses a profile node by invoking an operation proposed by this
interface without knowing if an up-to-date copy exists locally or if operations will be executed
remotely or if a copy will be recuperate. AbstractCachedNodeProxy: A node proxy implements the
node interface so that proxy can substitute ProfileNode. The proxy is also responsible for creating
and deleting profile nodes. ProfileNode is the real object that the proxy represents.

Our first implementation stores a hierarchical profile, which is a tree of profile nodes, a
node being composed of an item object and a set of attribute objects. Attributes are meta-
data that can be interpreted by the profile store, whereas a data item only has meaning at
the application level. (A meaningful example of metadata is a sensitivity attribute used by
the policy engine to determine caching rights as illustrated Figure 6.) A proxy object, an
object inheriting from AbstractCachedNodeProxy (Figure 7), manages a profile node.
The proxy object is a surrogate for a profile node object. A proxy controls a client access
to the real object. This proxy can serve several roles:

• Cache proxy: it handles coherence requests and keeps a copy of the node;
• Protection proxy: it checks caching rights of a host before sending a copy of the

given profile node;
• Remote proxy: it provides a local representative of a remote object that may not be

copied locally for different reasons evoked previously.

External

TECHNICAL REPORT

19

The first concrete proxy class handles strong coherence between copies of a profile node,
SCCachedNodeProxy Figure 7. Adding another coherence mechanism would result in the
design of another concrete class inheriting from AbstractCachedNodeProxy.

5.2 Transparency
 Access to a profile node by a client application is location transparent. The client
application accesses profile node values by invoking method of the IProfileNode
interface as if the profile node was local. The proxy provides the identical interface and
adds the mechanisms to maintain consistency inside the method implementation of this
interface. The proxy collaborates with other proxy of the same object located on other
hosts through the ISCRemoteNodeProxy interface.

Each proxy, hence profile node copy, is persistent (i.e. it survives when the local manager
of the profile store is stopped) and has a persistent identifier (i.e. when the local manager
restarts, the communication between proxies can resume automatically). The latter
functionality, provided by RMI activation mechanisms, allows easy reestablishment of
communication aong objects after a system shutdown or crash.

This first design and implementation provides no support for disconnection. We intend to
make experiments and get knowledge on profile data locality and access patterns. We
expect to use this information to get hypothesis on how to take in hand the problem of
disconnection.

6 Experiments
The goal of the current research
vehicle is to obtain knowledge on
distributed profiles, and to determine
the suitability of our approach. To this
end, we have implemented some
simple demo applications designed to
allow us to use a distributed profile in
what we hope are realistic scenarios.

6.1 Profile manager
The central application is a profile
manager that allows a user to observe
and manage his profile. The user can
browse the profile structure, add and
remove profile nodes, and control the
sensitivity of profile information by
modifying a sensitivity level attribute
combined with each profile node.

Figure 8: distributed profile architecture. Profile store
components are installed in each user device along
with the demo tools. These use the profile information
stored in the profile end point and accessed through a
common profile API.

Profile
Using
Tool

Distributed
Profile
end-point

User trustworthy cluster

Profile API

Device i Device j Device k

External

TECHNICAL REPORT

20

This application is also a research vehicle to experiment with functionalities that help a
user manage his profile.

Figure 9: Profile manager. The central application enabling the user to browse and
manage his profile.

6.2 Internet Radio
By having a profile store able to store and spread information relative to user habits, user
devices can offer personalized interfaces, ideally simplifying the access to information or
services. The favourite scenario of our personalized Internet radio demonstration starts
with a person at home listening to an Internet radio on a PC/internet radio appliance
before going to work. On the way to work, the car radio tunes in to the same radio as was
being listened to over breakfast. The program ending during the trip, the user changes
station. Once he arrives at his desk, he launches his Internet radio player, which
automatically starts on the recently selected radio so that he can listen to the end of the
radio program. This scenario is a typical illustration of our use Case 1.

The concept illustrated by this personalized version of an Internet radio is that of a user
centred session i.e. user devices that discern user habits, are aware of each other, and
collaborate to offer a better user experience. This kind of personalization, the easing of

Personalized Internet
radio

Control of the level of
sensitivity

Profile tree structure

External

TECHNICAL REPORT

21

access to services and information, is a major requirement for helping computer novices
enter the digital world.

6.3 Unified bookmark
The idea developed in this demo is to store Internet bookmarks inside the profile store, so
that bookmarks collected on one device, are available to all other devices. In addition,
these bookmarks can be presented in different manner depending on user context, still
with the concern of simplifying access to information. Current solutions[34][35] for
having unified bookmarks are server-side, implying that the management of bookmarks is
done remotely, not always convenient, lacking in privacy, and with little guarantee of
persistence (what happens to your bookmarks if the web site is closed for financial
reasons?). This tool illustrates use Case 2.

Figure 10: Unified bookmark manager.

On Figure 10, the profile manager plays the role of a bookmark manager offering a
contextual representation of user bookmarks. The middle part of the profile manager

Presentation of
bookmarks relevant in a
given context

User characteristics
function of the
environment

External

TECHNICAL REPORT

22

displays the whole profile content, hence all the bookmarks, while the right hand side
offers a view of bookmarks filtered as a function of the user’s context.

The eventual goal of the profile store is to permit any application to get reliable
information from the profile store through a standard API.

In addition to these applications, we are designing and implementing a test bench for our
distributed profile system that will enable us to “play” out simulated scenarios, and
measure system performance. A central test control module will send transaction
commands to slave modules on multiple machines, each connected to a distributed profile
store end-point in the same way as our example applications. Transaction sequences
(involving multiple machines) are defined by scripts, allowing us to replay sequences on
different versions of our system. We plan to test the effect of altering cache migration
policy, possibly different coherence algorithms, and eventually we will experiment with
versions that will tolerate device disconnection.

7 Conclusion
Consumer acceptance of personalized e-commerce and user interfaces depends on the
availability of reliable, secure, and especially trusted profile information. We believe that
a user’s feeling of trust is related to a sense of ownership and control of profile data.

Based on the analysis of some use cases for profile data, we have made the choice of a
strictly coherent model, and have taken an approach to trust that restricts the permitted
location of data items based on data sensitivity, device capabilities, and a user-specified
trust policy. This allows us to deal with the heterogeneity of device security capabilities.
The implementation of these models is via the coherence protocol we propose: a write
invalidate protocol with dynamic conditional caching rights.

A research vehicle has been implemented in Java using RMI object level services such as
persistence and communication management. Further research entails running
experiments on this system to collect information on system behaviour when accessed
following identified patterns. We foresee that this will permit us to define pro-active
migration policies that may enable profile access in an intermittently connected
infrastructure.

External

TECHNICAL REPORT

23

8 References
[1] K.SCRIBBEN - Privacy@net An internation comparative study of consumer

privacy on the Internet- Consumers International. January 2001. ISBN 19023 91
31 68.

[2] MICROSOFT CORPORATION - Building User-Centric Experiences: An
Introduction to Microsoft .NET My Services - (formerly code-named
"Hailstorm")” September 2001.
http://www.microsoft.com/net/netmyservices.asp.

[3] LIBERTY ALLIANCE – Liberty Alliance Project -
http://www.projectliberty.org

[4] J. NEILSON - Noncommand User Interfaces- Communications of the ACM 36,
4 (April 1993), 83-99

[5] G. BREBNER - Matching user needs to product offerings in a friendly way - In
Proceedings of the COST 254 workshop on Intelligent Terminals, Bordeaux,
March 23-24, 2000. pp 75-78.

[6] BELARC INC. http://www.belarc.com/

[7] E. RAFFAELE, G. BREBNER - Consumable Services - HP Labs Technical
Report HPL 2000-161 December 2000.

[8] E. RAFFAELE, G. BREBNER - Process for executing a downloadable service
receiving restrictive access rights to at least one profile file - European Patent
Application 01410021.8-2201.

[9] A.K. DEY - Understanding and Using Context - Personal and Ubiquitous
Computing, Vol. 5, 2001.

[10] A.K. DEY, G.D. ABOWD -Towards a better understanding of context and
context-awareness CHI 2000, Workshop on the What, Who, Where and How of
Context Awareness (2000). ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf

[11] WORLD WIDE WEB CONSORTIUM – Platform for Privacy Preferences
Specification 1.0 - http://www.w3.org/TR/P3P/

[12] G. COULOURIS, J. DOLLIMORE, T. KINDBERG – Distributed Systems
Concepts and Design – second edition, Addison-Wesley, ISBN 0-201-62433-8.

[13] STARFISH SOFTWARE, INC – TrueSync -
Http://www.starfish.com/solutions/solutions.html

[14] PHILIP A.BERNSTEIN, NATHAN GOODMAN – Concurrency Control in
Distributed Database Systems- Computing Surveys, Vol. 13, No. 2, pp. 185-221,
June 1981.

http://www.microsoft.com/net/netmyservices.asp
http://www.projectliberty.org/
http://www.belarc.com/
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf
http://www.starfish.com/
http://www.starfish.com/

External

TECHNICAL REPORT

24

[15] M. SATYANARAYANAN - Scalable, Secure, and Highly Available
Distributed File Access - IEEE Computer, Vol. 23, No. 5, 1990.

[16] V. SRINIVASAN, J.C. MOGUL - Spritely NFS: Experiments with cache-
consistency protocol- Proceedings of the Twelfth ACM symposium on
Operating Systems principles, 1989.

[17] JOHN K. BENNETT, JOHN B. CARTER, WILLY ZWAENEPOEL, - Munin:
Distributed shared memory based on type-specific memory coherence - Proc. of
the 1990 Conference on Principles and Practice of Parallel Programming.

[18] DAVID MOSBERGER – Memory Consistency Models- Operating Systems
Review.

[19] M. DUBOIS, C. SCHEURICH, F. BRIGGS – Synchronization, Coherence, and
Event Ordering in Multiprocessors - IEEE Computer 21, 2 (February 1988), 9-
21.

[20] JOHN B. CARTER – Design of the Munin Distributed Shared Memory System-
Journal of Parallel and Distributed Computing. Special issue on distributed
shared memory, 1995.

[21] A. DEMERS, K.PETERSON, M. SPREITZER, D. TERRY, M. THEIMER, B.
WELCH –The Bayou Architecture: Support for Data Sharing among Mobile
Users- Proceedings IEEE Workshop on Mobile Computing Systems &
Applications.

[22] B. SCHNEIER - Secrets & Lies –Digital Security in a Networked World, John
Willey & Sons, Inc., 1963. ISBN: 0471253111.

[23] TRUSTED COMPUTING PLATFORM ALLIANCE -TCPA Specification
V1.1- http://www.trustedpc.org/home/home.htm .

[24] A. F. LATEGAN, M.S. OLIVIER – On Granting Limited Access to Private
Information – http://www10.org/cdroms/papers/309.

[25] NETSCAPE - Secure Sockets Layer – SSL 3.0 Specification,
http://www.netscape.com/eng/ssl3/

[26] INTERNET ENGINEERING TASK FORCE - Transport Layer Security (TLS) -
http://www.ietf.org/ids.by.wg/tls.html

[27] PGPI PROJECT - The International PGP Home Page - http://www.pgpi.org

[28] J.MORGAN, H. MORRIS, V. KRISHNAN, A.A. IVAN - Secure Web Access in
an Environment of Mutual Distrust - HP Laboratory Palo Alto, HPL 2001-60,
March 22nd, 2001

http://www.trustedpc.org/home/home.htm
http://www10.org/cdroms/papers/309
http://www.netscape.com/eng/ssl3/
http://www.pgpi.org/

External

TECHNICAL REPORT

25

[29] T. JOE - COMA-F: A Non-Hierarchical Cache Only Memory Architecture- PhD
thesis, Stanford University, 1995.

[30] A.GEFFLAUT, A. MOGA, J. JEONG, M. DUBOIS - Design and evaluation of
a Software-Controlled COMA - CENG Technical Report 96-03

[31] SUN MICROSYSTEMS, INC – Java Remote Method Invocation Specification-
Revision1.7, Java2SDK, Standard Edition, v1.3.0, December 1999.

[32] PEER-TO-PEER WORKING GROUP - what is peer-to-peer - http://www.peer-
to-peerwg.org/whatis/index.html.

[33] B. PARR – The Next Wave of Internet Users: Forecast and Analysis, 2001-
2005- IDC , April 2001, document #24441.

[34] MYBOOKMARKS.COM, INC – MyBookmarks -
http://www.mybookmarks.com

[35] MAGICALLY, INC - MagicalDesk - http://www.MagicalDesk.com

http://www.peer-to-peerwg.org/whatis/index.html
http://www.peer-to-peerwg.org/whatis/index.html
http://www.mybookmarks.com/
http://www.magicaldesk.com/

	Introduction
	A user-centred architecture
	Profile characteristics and usage model
	Profile definition
	Profile usage model
	Identified Usage models
	Case 1: Grouped, migratory – �e.g. Radio Station Data.
	Case 2: multiple-use, grouped data -�e.g. Address data.
	Case 3: Distributed, multi-application/machine data -�e.g. CPU resources.

	Target Area

	System overview
	Aims and principles
	Synchronization or shared memory?
	The choice of a consistency model
	Trust and security
	Device heterogeneity
	Level of Trust
	Traditional security and trust mechanisms
	Mechanisms to enhance privacy and user control

	System design

	First version of the research vehicle
	Flexibility
	Transparency

	Experiments
	Profile manager
	Internet Radio
	Unified bookmark

	Conclusion
	References

