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ABSTRACT
Random number generators (RNGs) based upon neighborhood-of-
four cellular automata (CA) with asymmetrical, non-local connec-
tions are explored. A number of RNGs that pass Marsaglia’s rigorous
DIEHARD suite of random number tests have been discovered. A
neighborhood size of four allows a single CA cell to be implemented
with a four-input lookup table and a one-bit register which are com-
mon building blocks in popular field programmable gate arrays
(FPGAs). The investigated networks all had periodic (wrap around)
boundary conditions with either 1-d, 2-d, or 3-d interconnection
topologies. Trial designs of 64-bit networks using a Xilinx
XCV1000-6 FPGA predict a maximum clock rate of 214 MHz to 230
MHz depending upon interconnection topology.
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1. INTRODUCTION
Since the beginning of the computer age, high-quality random num-
bers have played an important and expanding role in areas such as
Monte Carlo simulations [1, 2], computer-based gaming, VLSI chip
testing, and probabilistic computing methods like simulated anneal-
ing, genetic algorithms, and neural networks. As computers have
become more powerful and simulations more ambitious, the demands
on random number generators (RNGs) have likewise increased [3].
However, there is no single test to determine the quality of an RNG—
a battery of different tests is required. As our RNG touchstone, we
will use George Marsaglia’s widely acknowledged battery of strin-
gent [4] random number tests: DIEHARD [5-7].

Digital hardware designers have long relied on feedback shift reg-
ister methods [8, 9] for the generation of random numbers. In 1986,
Wolfram [10] suggested that cellular automata (CA), which rely on
bit-level computation and local interconnection, could be used for
efficient hardware implementation of random number generators due
to their simplicity and regularity of design.

With the advent of VLSI design, it became advantageous to incor-
porate a part of the chip testing system on the chip itself. Initially, lin-
ear feedback shift registers were used to implement the random
pattern generator portion of the built-in self-test. Hortensius et al.
[11] showed that nonhomogeneous CA composed of two linear func-
tions could generate superior random numbers to the linear feedback
shift register and to the homogenous nonlinear CA proposed by Wol-
fram [10].

Large-scale field programmable gate arrays (FPGAs) now make it
possible to build entire systems on a single FPGA chip [12]. The
building block of many FPGA architectures is the electrically repro-

grammable lookup table (LUT) and its associated single-bit register
for data storage. The typical LUT fanin is four, which yields a 16-row
truth table, whereas a CA with a radius of one (i.e., one neighboring
cell left and right of center) has a neighborhood of three, which
requires an eight-row truth table that wastes half of the LUT’s capac-
ity. A two-dimensional CA network, or alternatively, a one-dimen-
sional CA network with a radius of two, requires a 32-row truth table,
requiring two LUTs per CA bit position.

Our purpose was to explore the implementation of random num-
ber generators using four-input (i.e., neighborhood of four) cellular
automata with asymmetrical, non-local connections. Using a neigh-
borhood of four allows a single CA cell to be implemented efficiently
in a typical four-input LUT, thus allowing high-quality, inexpensive
RNGs to be implemented in FPGAs as system components. In con-
ducting this investigation, we have discovered a number of 64-bit
CA-based RNGs that pass the DIEHARD suite of random number tests.

In the next section, we will describe some of the previous work in
CA-based RNGs. Then in Section 3, we will provide an overview of
CA conventions and describe our extensions. Section 4 will describe
our experimental procedure and Section 5 will show some detailed
results.

2. PREVIOUS WORK
In 1986, Wolfram [10] described random sequence generation by
simple 1-d cellular automata with a neighborhood size of three. The
work focused on the properties of CA30 (so named by the decimal
value of its eight-row truth table). Seven statistical tests were per-
formed and the CA30 was shown to be superior to the linear feedback
shift register in the generation of random sequences. Wolfram
pointed out that very efficient hardware implementations should be
possible for the CA30. Referring to a single site, he pointed out that
for some critical applications, time sampling (allowing one or more
additional state updates between reads) would improve the statistical
quality of the sequence.

Hortensius et al. [11], in 1989, described the use of the CA30 as a
random number generator in a VLSI implementation of a two-dimen-
sional Ising computer. Later that year, Hortensius et al. [13],
described the application of CA-based RNGs to built-in self-test of
VLSI chips. By using a combination of CA90 (XOR of left and right
neighbors) and CA150 (XOR of left, right, and center cells) at vari-
ous cell sites they were able to generate results superior to the CA30.
They indicated that both time spacing and site spacing would
improve the statistical quality of the random numbers. Later, in 1991
and 1994 respectively, Taslides et al. [14] and Nandi et al. [15] per-
formed further work with the CA90/CA150 hybrid CA with regard to
generation of random number streams for on-chip test.
1



In 1994, Chowdhury et al. [16] described a class of two-dimen-
sional, neighborhood of five (i.e., N=5), cellular automata composed
of linear cells (XOR function). The target application was random
number generation for VLSI built-in self-test. They found that while
the quality of random numbers was better for the 2-d CA, the fault
coverage was not always better.

Since the number of hybrid (i.e., different truth table functions
possible at each cell position) CA is very large (256n for a neighbor-
hood of three with uniform interconnections where n is the number of
cells), Sipper and Tomassini [17], in 1996, described a process of
evolving the CA truth tables in situ (a co-evolution process termed
cellular programming). The lengths of the CA were 50 and 150 cells
with the quality of the random numbers being comparable to existing
CA-based RNGs.

In 1999, Tomassini et al. [18] introduced the use of Marsaglia’s
highly regarded DIEHARD random number test suite to provide a stan-
dardized means of comparing random number quality among CA-
based RNGs. Using the DIEHARD suite, they showed that their previ-
ous work [17] now failed five of the 18 listed tests. However, with a
time spacing of two (i.e., reading data on cycles i, i+3, i+6, …) the
one-dimensional RNG passed all of the tests.

In 2000, Tomassini et al. [19] again employed cellular program-
ming to evolve an two-dimensional CA-based RNG with a
neighborhood of five where the chromosome specification for a cell
indicated either XOR or XNOR functionality and to which cells in
the neighborhood it was connected. Although the DIEHARD p-values
were not published, they indicated that 14 tests were passed without
resorting to time spacing or site spacing. They also described the ran-
dom generation of an array using the same six-bit rules as the
evolved RNG with the restriction that at least five of the six bits be
1s. They indicated that an additional four DIEHARD tests were passed.
However, neither the p-values nor the exact configuration were pub-
lished.

3. CELLULAR AUTOMATA
Cellular automata can be thought of as dynamical systems, discrete in
both time and space [20]. The traditional view is that they are imple-
mented as an array of cells with homogenous functionality, con-
strained to a regular lattice of some dimensionality. Most often, these
lattices have been either one-dimensional strings/rings or two-dimen-
sional planes/toroids. Strings and planes result from fixed boundary
conditions and rings and toroids result from periodic boundary condi-
tions. Each cell has a state that is updated as a function of local neigh-
bor connections on each time step. For two-state cellular automata
with a neighborhood size of N there are possible implementations.

Cellular automata apparently came about as a result of conversa-
tions between Stanislaw Ulam [21] and John von Neumann in the late
1940s. Von Neumann used the concept of cellular automata in his
work on self-reproducing automata [22]. In the 1980s, Stephen Wol-
fram wrote extensively on cellular automata [23]. His work continues
to the present [24].

The function of a CA cell can be described by a truth table as
shown in Fig. 1(a). As shown in Fig. 1(b), there is an implicit one-bit
register associated with each cell. Since we are using four-input
lookup tables (implying a neighborhood size N of four) as the basis
for our experiments, there are 16 possible conditions to which a cell
can respond. The number of unique responses can be viewed as a 16-
bit binary number which yields 216 unique machines. Wolfram intro-
duced a notation embodying this number which uniquely names a
cell with a name describing its functionality as shown in Fig.1(c).

However, since we are extending the range of connectivity beyond
the local neighborhood, this functional name is no longer adequate to
uniquely describe a CA. As shown in Fig. 1(d), we have introduced a
relative displacement notation to indicate, relative to a given cell i,
how far away the connecting cells are.

We will use Fig. 2 to illustrate the effect of periodic boundary
conditions on networks of one, two and three dimensions. All of the
networks in our study contained 64 cells which allowed for the cre-
ation of 64-cell linear, planer and cubic networks.

Fig. 2(a) shows a one-dimensional ring network with a relative
connectivity of {-1, 0, 1, 2} from the perspective of cell 0. Due to the
periodic boundary conditions, cells 0 and 63 are adjacent, so a unit
displacement in the negative direction from cell 0 lands on cell 63.

Fig. 2(b) illustrates a two-dimensional network with periodic
boundary conditions which transform a plane into the surface of a
toroid where each row forms a ring and each column forms a ring.
We use the compass directions n, s, e, w as shorthand to indicate rela-
tive unit displacement along columns and rows relative to a center
cell c. Multiple steps in a given direction are indicated by a number
preceding the direction. The example illustrates the connectivity
implied by {2n2w, c, ne, s} with respect to center cell 7.

Cell 7 is both at the end of a row and a column which makes it an
interesting test case. Considering the 2n2w displacement from cell 7:
going north two steps takes us to cell 55, then going west two steps
from 55 takes us to 53. The c in the relative displacement list implies
a connection to itself, hence the 7. The ne displacement ends up at
cell 56 by first going north and wrapping around to cell 63, then
going east and wrapping around to cell 56. Directly south from cell 7
is cell 15.

By applying periodic boundary conditions to a cubic lattice as
shown in Fig. 2(c) we create a network that is composed of 12 inter-
secting toroids. This follows from the fact that each plane becomes a
toroid as in the previous example and since there are now three axes,
each with four planes, the total number of toroids is 12. Relative up
and down displacements along the z axis are indicated by u and d as
shown in the example.

8 8×

8 8×

2
2

N

Figure 1: (a) The functionality of a cell derives directly from
LUT truth table. (b) Cell symbology: each cell contains a 4-input
lookup table which defines the cell functionality and a 1-bit
register which holds the cell’s state. (c) The notation derives
directly from decimal value of the function’s 16-bit truth table.
Leading 0s are included to prevent confusion with 3-
neighborhood rules. (d) Connections to cell i are expressed as a
set of displacements from i’s ordinal value.

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
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1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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(a) CA truth table

(c) Truth table notation
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4. METHODOLOGY
For a given connection topology, rather than test all possible CA can-
didates with DIEHARD, we first performed an entropy screening test.
The best candidates from the entropy test were then subjected to the
DIEHARD suite. In the next two subsections we will describe the
search for high-entropy CA and then briefly outline the test results
generated by the DIEHARD test suite.

4.1 Finding CA candidates to test as RNGs
Since we are dealing with a neighborhood of four (due to the fanin of
four imposed by the lookup table size of popular FPGAs), there are
only 216 possible CA for a given connection topology. These can be
exhaustively searched for high-entropy candidates. We prescreened
candidate CA by calculating their 16-bit entropy S16 with the follow-
ing summation [20]:

where the 16-bit binary value of i represents the sub-sequence being
tested and pi is the observed probability of its occurrence in the out-
put of the RNG. For bit-entropy calculations, log2 of 0 is defined to
be 0. S16 has a maximum value of 16 (indicating maximum entropy)
which is obtained when all 16-bit sequences from all 0s to all 1s
occur with equal probability.

For a given interconnection topology, the highest entropy candi-
date CA were searched for by starting with CA00000, supplying it
with an initial state consisting of a single 1 in cell 0 with all other
cells set to 0. The CA is initalized to a high-entropy state by advanc-
ing 80 cycles (i.e., its length plus 16 cycles to fill the bit-serial regis-
ters used as part of the entropy calculation).

For a given CA state, 16-bit sub-sequences are checked from the
perspective of all 64 bits in the CA. The CA is viewed as a ring and
the first test looks at bits 0–15, the second test looks at bits 1–16, and
the 64th test looks at bits 63–14. Then the 16-bit shift registers con-
nected to each of the 64 bits of the CA are checked. This yields 128
tests per CA state.

The CA state is then advanced and checked for a total of 213

cycles before proceeding to the next CA truth table. For these param-
eters, the expected value (with a good RNG) for any of the 216 sub-
sequence counts is 16. The search is speeded considerably by reject-
ing any candidate whose sub-sequence count exceeds 4x the expected
value.

After all CA truth tables have been tested, the 1000 highest
entropy CA are tested with the DIEHARD random number test suite.
Figure 3 shows the distribution of 16-bit entropy for the best 1000
CA with connectivity {-7, 0, 11, 17}. Of these best 1000, 167 passed
the entire DIEHARD battery of tests (plotted with heavy dots). The list
is printed in the Appendix.

4.2 RNG testing
The DIEHARD [5-7] random number test suite provides an extensive
set of tests to evaluate a random number stream and can be down-
loaded from Marsaglia’s site on the Internet [7].

Data for each DIEHARD run were collected in the following man-
ner: The CA under test was first initalized to a high-entropy state by
clocking for 64 cycles from an initial state of a single 1 in cell 0.

Figure 2: (a) Periodic connections on the 1-d network form a
ring. In the example, the interconnection network is defined by
{-1, 0, 1, 2} and is illustrated for cell 0. (b) Periodic connections
on the 2-d networks form the surface of a toroid. For the 2-d
network, relative displacements are indicated by n, s, e, w, with c
being the target cell. (c) Periodic connections for the 3-d
network. Unit displacements in the z axis are noted by u and d as
shown in the example.

(a) 1-d connectivity example

(b) 2-d connectivity example
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Figure 3: Entropies of the 1000 highest-entropy CA with
connectivity {-7, 0, 11, 17}. The 167 CA that passed the DIEHARD
suite are plotted with a ‘•’. A frequency distribution is shown in
the lower portion of the plot.
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Then, data collection commenced on the 65th cycle and continued for
3 million cycles, collecting a total of 3 million 32-bit words com-
posed of the even-numbered bits and 3 million 32-bit words com-
posed of the odd-numbered bits. Both sets of data were required to
pass all DIEHARD tests for a CA to be considered as having “passed
DIEHARD.”

It is beyond the scope of this paper to explain in detail each of the
DIEHARD tests. There is a summary report issued with each test that
explains its statistical nature [7]. A number of the tests are also
explained in [4, 5, 6]. To provide some sense of what the numbers
mean that are plotted in the histogram (Figure 4), we will quote Mar-
saglia directly from the message that appears first on every DIEHARD

test report [7]:

NOTE: Most of the tests in DIEHARD return a p-value, which
should be uniform on [0,1) if the input file contains truly inde-
pendent random bits. Those p-values are obtained by p = F(X),
where F is the assumed distribution of the sample random
variable X—often normal. But that assumed F is just an
asymptotic approximation, for which the fit will be worst in
the tails. Thus you should not be surprised with occasional p-
values near 0 or 1, such as 0.0012 or 0.9983. When a bit
stream really FAILS BIG, you will get p’s of 0 or 1 to six or
more places. By all means, do not, as a Statistician might,
think that a p < 0.025 or p > 0.975 means that the RNG has
“failed the test at the 0.05 level.” Such p’s happen among the
hundreds that DIEHARD produces, even with good RNGs. So
keep in mind that “p happens.”

We will briefly list the DIEHARD tests below, numbering them as
they appear in digest histogram (Figure 4) and in the order that they
are printed in the DIEHARD test report. Some of the tests generate
multiple p-values and then provide a summary Kolmogorov-Smirnof
(KS) test value. In those cases, we plot the p-values as tic marks
above the baseline and the KS value is plotted as a tic mark below the
baseline. Otherwise, all test results are plotted as tic marks above the
baseline.

1. Birthday Spacings Test: Nine p-values and a KS test on those
values are reported.

2. Overlapping 5-Permutation Test (OPERM5): Two p-values are
generated by the test.

3. Binary Rank Test: One p-value is reported for tests on 31x31
matrices and one p-value is reported for tests on 32x32 matrices.

4. Binary Rank Test: Twenty-five p-values for tests on 6x8 matri-
ces and a KS p-value are reported.

5. Bitstream Test: Twenty p-values are reported.
6a. Overlapping Pairs Sparse Occupancy Test (OPSO): Twenty-

three p-values are reported.
6b. Overlapping Quadruples Sparse Occupancy Test (OQSO):

Twenty-eight p-values are reported.
6c. DNA Test: Thirty-one p-values are reported.
7. Count the 1s Test: The test is performed on a stream of bytes.

Two p-values are reported.
8. Count the 1s Test: The test is performed for specific bytes.

Twenty-five p-values are reported.
9. Parking Lot Test: Ten p-values and a KS test on those values

are reported.
10. Minimum Distance Test: Twenty p-values and a KS test on

those values are reported.
11. 3-D Spheres Test: Twenty p-values are along with a KS test on

those values are reported.
12. Squeeze Test: One p-value is reported.
13. Overlapping Sums Test: Ten p-values generated from KS tests

along with a KS test on those values are reported.
14. Runs Test: Ten p-values are generated for each test in a pair of

runs-up/runs-down tests and four KS test results are reported.
15. Craps Test: The results of 200,000 simulated games of craps

are analyzed, generating a single p-value each for the number of wins
and for the throws/game.

5. RESULTS

5.1 Comparison of CA-based RNGs
Figure 5 shows space-time diagrams and DIEHARD test result digests
for the well-known N = 3 CA30 and four of the N = 4 CA that were
discovered in this investigation. Each will be discussed below:

CA30 represents the best of the one-dimensional, locally con-
nected, neighborhood-of-three CA-based RNGs. As with all of the
other CA shown, it was initalized with a single 1 in cell 0 (top line,
far left). The space-time diagram shows 64 bits horizontally (0 to 63)
and 200 time steps, down the page. CA30 fails DIEHARD tests 2, 4,
6b, 6c, 8, 12, 14, and 15.

CA38490, a 1-d ring network, is interesting in that it is consider-
ably slower than the other neighborhood-of-four CA in advancing to
a high-entropy state. It passes all of the DIEHARD suite and has a rela-
tive connectivity of {-3, 0, 4, 9}.

CA50745 is a 1-d ring network with a connectivity of {-7, 0, 11,
17}. It was chosen as a contrast to the more locally connected net-
work of CA38490. It passes all of the DIEHARD suite.

CA27225 is a 2-d toroidal network (Figure 2b) with a relative
connectivity of {2n2w, c, n2e, 2se}. It passes all of the DIEHARD suite
and has a very rapid advancement to a high-entropy state.

CA29835 is a 3-d network (Figure 2c) with a relative connectivity
of {uw, c, dn, dse}. The CA passes all of the DIEHARD suite and has a
very rapid advancement to a high-entropy state.

Figure 4: Sample histogram digest of the test results from the
DIEHARD battery of random number tests. The tests are
numbered 1-15 in the order that they appear in the DIEHARD test
report and reported p-values are indicated as tic marks on each
test’s baseline. This example shows all tests passing.
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Figure 5 The top row shows space-time diagrams of five random number generators—the state of the CA (bits 0–63) is displayed
horizontally (white = 1, black = 0) and subsequent states are displayed down from the top (200 time steps shown). All are shown
starting with the same initial state of a single 1 in cell 0 (the left-most bit). The second and third rows are digests (as in Figure 4) of
DIEHARD test results for the even and odd bits respectively of the above random number generators. CA30, shown for contrast, fails
eight of the DIEHARD tests (indicated by solid square to the right of the failing test’s histogram).

CA30
{-1, 0, 1}

1-d

CA38490
{-3, 0, 4, 9}

1-d

CA27225
{2n2w, c, n2e, 2se}

2-d

CA29835
{uw, c, dn, dse}

3-d

CA50745
{-7, 0, 11, 17}

1-d

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

15

14

13

12

11

10

9

8

7

6c

6b

6a

5

4

3

2

1

5



5.2 Physical design experiments
Given the context of a conventional FPGA (Xilinx XCV1000-6) and
its physical design system (Xilinx Foundation Series ISI 3.3i), we
conducted four implementation experiments to determine if there
were any significant relationship between a CA’s network topology
and its maximum predicted operating clock frequency.

As shown in Figure 6, the place and route system responded dif-
ferently to each of the 4-bit CA networks. The maximum predicted
clock rate ranged from 214 MHz for the 1-d {-7, 0, 11, 17} topology
to 230 MHz for the 2-d {2n2w, c, n2e, 2se} topology.

5.3 Cycle length
Any finite state machine that is clocked through a sequence of states
must eventually encounter a previous state. The number of states in
this repeating sequence we term the cycle length C which is an
important measure for any CA being considered as a random number
generator.

The CA-based RNGs presented here were found to have multiple
cycles. The particular cycle that is finally entered is a function of the
initial state. In addition, the non-linear function implemented within
each CA cell allows multiple unique states to advance to the same
successor state. For every instance where k unique states advance to
the same single successor state, there must be k–1 states that have no
predecessor. As a consequence, the cycles tend to have many merg-
ing non-cyclic state sequences that feed into them, which we term
feeder states. For example, an exhaustive analysis of all the state

sequences of the length n = 31 CA50745 {-7,0,11,17} is shown in
Table 1 in terms of cycles, feeder states and no-predecessor proto-
states.

Additionally, we performed non-exhaustive cycle length experi-
ments for the two 1-d CA shown in Figure 5. For each experiment,
the CA length n was varied from 20 to 64 bits and the eventual cycle
length C was determined for an initial state consisting of a single 1.
The results are shown in Figure 7 where log2 C is plotted against n.

The location of the single 1 in the initial state is immaterial due to
rotational symmetry that results from the periodic boundary condi-
tions. It should be noted that these cycle lengths are not necessarily
the maximum cycle lengths for a given n. Also, the number of feeder
states leading from the initial state to a state in the final ring cycle can
be a substantial fraction of C or in cases where C is small, many
times C.

Figure 6: FPGA physical layouts and maximum predicted
operating frequency for the neighborhood-of-four cellular
automata random number generators shown in Figure 5 (based
upon Xilinx XCV1000-6).

1-d: {-3, 0, 4, 9} 1-d: {-7, 0, 11, 17}

3-d: {uw, c, dn, dse}2-d: {2n2w, c, n2e, 2se}

219 MHz 214 MHz

230 MHz 226 MHz

Table 1: Properties of the n = 31 CA50745 {-7, 0, 11, 17}.

Cycle length C Feeder states Proto-states

182466 2147090938 756834341

1705 109368 39339

279 98859 35371

31 0 0

1 1 1

Figure 7: Plots of cycle length C vs. CA length n for CA38490
and CA50745 from Figure 5. The initial condition for all trials
consisted of a CA state with a single 1. The resulting cycle
lengths are not necessarily maximal.
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6. CONCLUSION
We have described a class of cellular automata-based 64-bit random
number generators with a neighborhood of four which allows them to
be efficiently implemented with four-input lookup tables found in
widely used field programmable gate arrays. The random number
generators pass all of the tests in Marsaglia’s DIEHARD random num-
ber test suite.

Networks with periodic boundary conditions of one, two, and
three dimensions were explored. Physical design experiments for
these networks predicted a maximum clock frequency of from 214
MHz to 230 MHz according to the network. All of the CA-based ran-
dom number generators required one four-input LUT and a single
one-bit register per bit.
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APPENDIX
Listed below are the 167 CA with connectivity {-7, 0, 11, 17} that
passed our initial entropy screening and the DIEHARD battery of tests:

25946, 34425, 50745, 38553, 42075, 22117, 13929, 27029,
5865, 50739, 26211, 15045, 27795, 58395, 4845, 49977,
50742, 27027, 38454, 11985, 18870, 51510, 22121, 13005,
38501, 38595, 18615, 38565, 25398, 15513, 27798, 27705,
22933, 26307, 25449, 36210, 14742, 13257, 37692, 26262,
7905, 19125, 26775, 27225, 26313, 15507, 40086, 26006,
38556, 54315, 11220, 30855, 40545, 51555, 39267, 39363,
14025, 27237, 37788, 38547, 50019, 14019, 29835, 49974,
34170, 27702, 37833, 26937, 39318, 11475, 27801, 14649,
25500, 15561, 26969, 49470, 9690, 37737, 25961, 37782,
14652, 39990, 26166, 37731, 22953, 55335, 38457, 13974,
25494, 45645, 19890, 38249, 14745, 21865, 40035, 37485,
7395, 26965, 39273, 26979, 46155, 50793, 14793, 15459,
42329, 27033, 40131, 14646, 26966, 17340, 33660, 14739,
13515, 42345, 26025, 22695, 15411, 21165, 14787, 5355,
14697, 50838, 24990, 31875, 13923, 37689, 23715, 50787,
14748, 27081, 23189, 38601, 13980, 37785, 27843, 41310,
9180, 37995, 39015, 33405, 3315, 38451, 10200, 10455,
53295, 39574, 25443, 27747, 39258, 13161, 16830, 26931,
22181, 38489, 49725, 25545, 26934, 38549, 50235, 35190,
27753, 40041, 3060, 41820, 39510, 50490, 42840.
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