

XML Document Agents

Craig Sayers
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-288
November 12th , 2001*

XML
document,
agents,
persistence

In this report, we describe a mechanism for creating
lightweight mobile agents by embedding agent code within web
documents. Each of our agents is a document, and each of our
documents is an agent. As agents, they make use of well-
defined messaging protocols to communicate, both with other
document agents, and with external software agents. As
documents, they have a natural persistence and web presence.

By making agents that are very lightweight, we can dedicate
each agent to a particular narrow domain. For example, we
could have one agent for each combination of user and task.
Our goal is to support thousands of agents on a single host,
while easing the job of developing and debugging them. In
addition, each of our lightweight agents is encoded as an XML
document, so all of the usual tools for interacting with such
documents apply to our agents. For example: we create human-
readable web pages by running an XML style sheet over the
document agent; we query the state of an agent using standard
Xpath/Xpointer expressions; and we persist agents by storing
the XML in a file.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1

XML Document Agents
Craig Sayers

Hewlett Packard Labs, Palo Alto, CA.

Abstract

In this report, we describe a mechanism for creating lightweight mobile agents by
embedding agent code within web documents. Each of our agents is a document,
and each of our documents is an agent. As agents, they make use of well-defined
messaging protocols to communicate, both with other document agents, and with
external software agents. As documents, they have a natural persistence and web
presence.

By making agents that are very lightweight, we can dedicate each agent to a
particular narrow domain. For example, we could have one agent for each
combination of user and task. Our goal is to support thousands of agents on a
single host, while easing the job of developing and debugging them. In addition,
each of our lightweight agents is encoded as an XML document, so all of the usual
tools for interacting with such documents apply to our agents. For example: we
create human-readable web pages by running an XML style sheet over the
document agent; we query the state of an agent using standard Xpath/Xpointer
expressions; and we persist agents by storing the XML in a file.

HP Labs Technical Report HPL-2001-288,
Hewlett Packard Laboratories, Palo Alto, California, November 2001

2

1 Introduction

The World Wide Web is primarily described by HTML-encoded documents.
Those were intended for human consumption. The markup tags define how the
content is to be formatted, but not what the content represents.

Recently, with the move to XML encoding [1] and, in particular, the introduction
of higher-level representations such as RDF [2], it is practical to provide web pages
that contain machine-readable descriptions. In this evolution of the World Wide
Web to the Semantic Web, web pages become a store of data to be mined by
autonomous software agents [3].

We believe the next step will be to encode, not just the data about which agents
may reason, but also the agents themselves, in web-accessible documents. In
particular, we are exploring the notion of document agents, where every agent is an
XML document.

1.1 Background

The idea of having mobile, persistent, agents is not new (see [4] for a great
discussion). Constructing mobile code may now be achieved relatively easily in
Java-based systems with the assistance of Java serialization [5], or in languages such
as Scheme, through the transmission of a closure [6].

The idea of embedding software agents inside documents is also not new. For
example, Bharat and Cardelli developed a system for “migratory applications” [7].
Their idea was to have user interface applications that combined the code and user
interface within a migrating software agent. Migrating agents have even been
applied to multi-media applications [8].

In our approach, the agent state is stored in a transparent XML format, the state is
always present in the same document as the code and data (rather than only being
present while the agent it being migrated) and the code is written in an extended
version of ECMAScript [9]. In addition, our agents have a natural persistence
(since all state is maintained in a persistent XML document) and have a natural
web presence (since they exist as files which may be placed on a web server, and
viewed through a web browser).

Similar prior work is that of the “follow-me” project [10]. They encoded an agent’s
“mission” using XML to describe input parameters and code. Relevant work
using XML to describe agents has also been implemented by Lange et al [11].
They used XML to write the code of an agent, and have an elegant solution using a
custom programming language with an XML syntax.

3

2 XML Document Agents

Each of our document agents is both an agent and a web-accessible XML document
(see Figure 1). When viewed from the agent world, they look just like any other
agent. If you send one an agent communication language (ACL) message [12],
you’ll receive a response just as you would from any other agent. When visible on
a web server, they appear just like any other XML document. You can format
them with style sheets [13], and you can inspect them with the usual
Xpath/Xpointer expressions [14,15].

Each document agent includes its own data, code, and state. As the agent
processes messages, it stores any updated data, code or state by modifying its own
XML document. So, if we start with a document, X, the act of performing a single
unit of execution is to generate a new document, X’, which replaces the original.
Thus there is no state outside the document. To clone or migrate an agent, we
need only copy or move the document. To examine the running state of the agent,
we need only examine the document. The document is the agent, and the agent is
the document.

Since all of the code and state is stored locally, it is independent of other changes in
the system. To see why this may be helpful, imagine that we require a user to fill
out a sequence of forms. We would implement that by cloning a new document
agent for each new combination of user and sequence. Each user’s interaction is
then with a particular custom agent. That agent remembers where their particular
user is in the sequence of forms. The user may stop and resume at any time. More
interestingly, if we needed to upgrade the system, we simply update the way in
which we generate future document agents. Any previously-created agents are
unaffected. Their users continue to see a consistent interface throughout the
remainder of their particular sequence of forms.

4

Figure Figure Figure Figure 1111.... Each document agent coexists as both a document (that may be accessed via Each document agent coexists as both a document (that may be accessed via Each document agent coexists as both a document (that may be accessed via Each document agent coexists as both a document (that may be accessed via

the web), and an agent (which may send and receive messages). In addition, the web), and an agent (which may send and receive messages). In addition, the web), and an agent (which may send and receive messages). In addition, the web), and an agent (which may send and receive messages). In addition,
we provide the option of having a document agent perform processing in we provide the option of having a document agent perform processing in we provide the option of having a document agent perform processing in we provide the option of having a document agent perform processing in
response to webresponse to webresponse to webresponse to web----based queries by based queries by based queries by based queries by adding a JSPadding a JSPadding a JSPadding a JSP [[[[16161616] bridge that converts] bridge that converts] bridge that converts] bridge that converts
HTTP get/post operations into agent communication language (ACL) HTTP get/post operations into agent communication language (ACL) HTTP get/post operations into agent communication language (ACL) HTTP get/post operations into agent communication language (ACL)
messages.messages.messages.messages.

5

3 Agents as documents

Each of our agents is an XML document. Thus, all the usual operations on XML
documents apply. For example, we can examine the state of the agent by using
regular Xpath/Xpointer expressions to look inside the XML document.

To generate different “views” of an agent, we apply style sheets (XSLT) to the
document. There are four basic implementations for this: client side, server side,
agent-responsive, and agent-generated.

Client side

Link to a single style sheet from within the document agent; then a client can
directly load the document agent and apply the style sheet locally. In this case, all
of the processing is occurring on the client (just as it would for any other XML
document).

Server side

Rely on a JSP to apply a style sheet to the document agent – this is more robust
(we don’t have to worry about incompatibilities in style-sheet processing among
clients) and gives the option of dynamically selecting from among several style
sheets. Here the processing is occurring on the server, rather than the client.
Again, this is exactly the same procedure we’d use to do server-side styling of any
other XML document (even if it were not an agent).

As in the previous case, the agent is not directly aware of these transactions. They
are suitable for cases where an agent wishes to publish information, but need not
be directly involved in each request for a copy. They are also suitable for
debugging agents.

Agent-responsive

In this case, we give the agent an opportunity to perform processing in response to
an incoming HTTP post/get. Each new request is converted to an agent
communication language (ACL) message, and sent to the document agent. Then
document agent then processes the message, updating itself in the process. The
JSP waits for a response from the agent (indicating it has finished processing),
before instructing the client to reload the page. That reload may then initiate
either a server-side, or client-side, application of the style sheet (see above).

6

Figure Figure Figure Figure 2222.... Overview of a document agent system. In this case there are four document Overview of a document agent system. In this case there are four document Overview of a document agent system. In this case there are four document Overview of a document agent system. In this case there are four document

agents. The client views agent A using clientagents. The client views agent A using clientagents. The client views agent A using clientagents. The client views agent A using client----side stside stside stside style sheets and agent B yle sheets and agent B yle sheets and agent B yle sheets and agent B
using serverusing serverusing serverusing server----side style sheets. Agent C is given the opportunity to perform side style sheets. Agent C is given the opportunity to perform side style sheets. Agent C is given the opportunity to perform side style sheets. Agent C is given the opportunity to perform
processing in response to an incoming HTTP post/get operation, and agent D processing in response to an incoming HTTP post/get operation, and agent D processing in response to an incoming HTTP post/get operation, and agent D processing in response to an incoming HTTP post/get operation, and agent D
using agentusing agentusing agentusing agent----generated content. In addition, agent B is seen using the agent generated content. In addition, agent B is seen using the agent generated content. In addition, agent B is seen using the agent generated content. In addition, agent B is seen using the agent
commcommcommcommunication language (ACL) to communicate with both another document unication language (ACL) to communicate with both another document unication language (ACL) to communicate with both another document unication language (ACL) to communicate with both another document
agent and an external agent (E).agent and an external agent (E).agent and an external agent (E).agent and an external agent (E).

7

Agent-generated

In this case, we again convert the incoming HTTP post/get to an ACL message
and send it to the document agent. However, in this instance, we expect that the
agent itself will respond with an ACL message containing the formatted document
suitable for presentation. The agent has the option of simply sending itself,
applying a style sheet to itself, generating content programmatically, or perhaps
returning a small document which forces the client to reload an alternate page.
This particular method is analogous to the way JSPs work [16], and is similar to
the scheme used by Lange et al [11].

3.1 Persistent storage

We may store the XML document agents using regular files as the persistence
mechanism. In that case, all of the usual operations on files naturally apply to our
active document agents.

The act of migrating an agent is equivalent to moving the file (assuming, of course,
that the machine you move it to is running a suitable document agent system).
Similarly, the act of cloning an agent is equivalent to copying a file.

The last-modified date on the agent file serves as a convenient indication of recent
activity by that agent. In our current implementation, we show a list of agents on
the system, and color-code them based on how recently they were used. This is no
more difficult than obtaining a directory listing.

4 Documents as agents

Each of our documents is a lightweight agent. It combines data, state, and code
within a single XML document. The code takes the form of an interpreted
language (in our current implementation, we use a version of ECMAScript [9]
enhanced with a few custom extensions to support sending/receiving/interpreting
ACL messages, and to simplify interaction with XML-encoded content).

In common with other agent systems, our agents communicate by passing
messages. They may communicate both with other document agents, and with
external agents (in our current implementation, built on top of the JADE agent
platform [17], they may communicate with any FIPA-compliant agent).

Upon receiving a new message, the agent “wakes up”, processes the message
(optionally updating itself as a side-effect of that processing), and “goes back to
sleep”.

8

Waking up

Assuming it’s not already “awake”, the agent is awoken by reading the XML
document into an in-memory DOM.

Processing incoming message(s)

To process a message, the system searches the DOM for an appropriate behavior
node (one which contains a matching template for that message) and then executes
the code within that node. That code may include instructions to remove a
message from the input queue, to send one or more outgoing messages, and to
modify its own DOM.

Recall that, if we start with a DOM, X, the act of performing a single unit of
execution is to generate an updated DOM, X’ which replaces the original. In this
implementation, one unit of execution is equivalent to the processing of a single
behavior (initiated by a single incoming message). A side effect of updating the
DOM is to update the persistent store for the agent (in the current implementation,
this involves writing the DOM out to a file).

In future implementations, and when using interpreted languages other than
ECMAscript, it may be possible (and desirable) to reduce the size of an execution
unit below that of a whole behavior.

Going to sleep

The agent is put back to sleep by simply removing the DOM from memory (it
continues to reside in the persistent store). In some implementations, the agent
may awake for each incoming message. In others, it may remain awake until some
period of inactivity has occurred. Clearly there’s a tradeoff here: agents consume
more resources when awake, but also react more quickly to incoming messages.

9

5 Example – meeting assistant agents

In this toy example, we explore how agents could benefit the participants in a
meeting. We provide each attendee with an agent to assist him, or her, in taking
note of action items, and we provide the meeting itself with an agent to collect all
those notes for public display.

In this system, there are several document agents (one for the meeting itself, and
one for each attendee). Each agent supports a single view using a single style sheet.

The document agent representing the meeting maintains a list of action items.
When it receives an incoming ACL message containing a new action item, it adds
that to its list. (This is implemented by creating a node in the XML document to
hold action items. When an incoming message arrives, the agent parses the XML
describing that item, and appends it to that document node).

When that document agent is viewed in a browser, the client-side application of a
style sheet formats the document (including the list of action items) for display.

An overview of this agent is shown in Figure 3, and the XML for the agent itself is
shown in Figure 4.

Figure Figure Figure Figure 3333.... The meeting notes agent adds items in response to incoming ACL messages The meeting notes agent adds items in response to incoming ACL messages The meeting notes agent adds items in response to incoming ACL messages The meeting notes agent adds items in response to incoming ACL messages
from other agents. Clients may view the agent directly by loading its XML from other agents. Clients may view the agent directly by loading its XML from other agents. Clients may view the agent directly by loading its XML from other agents. Clients may view the agent directly by loading its XML
file into a browser, and performing clientfile into a browser, and performing clientfile into a browser, and performing clientfile into a browser, and performing client----side application ofside application ofside application ofside application of a style sheet. a style sheet. a style sheet. a style sheet.
They may view newlyThey may view newlyThey may view newlyThey may view newly----added items by hitting reload.added items by hitting reload.added items by hitting reload.added items by hitting reload.

10

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="duringMeeting.xsl"?>

<program name="meeting42">
<annotation>An agent to record notes from everyone during
meeting 42</annotation>

<data ID="history">
</data>

<behaviour name="main">
<var ID="count">0</var>
<code>

var message = FIPAReceive();
var messageContent = FIPAParseContent(message);
var history = XPathAPI.selectSingleNode("program/data");
history.appendChild(messageContent);
var reply = message.createReply();
reply.setPerformative(7);
reply.setContent("done");
FIPASend(reply);
count++;

</code>
</behaviour>

</program>

Figure Figure Figure Figure 4444.... Example of an XML document agent Example of an XML document agent Example of an XML document agent Example of an XML document agent –––– in this case, one for collecting action in this case, one for collecting action in this case, one for collecting action in this case, one for collecting action
items during a meeting. In this document, the items during a meeting. In this document, the items during a meeting. In this document, the items during a meeting. In this document, the data node is used to store an node is used to store an node is used to store an node is used to store an
actionactionactionaction----item history. When a new message arrives, the agent parses the item history. When a new message arrives, the agent parses the item history. When a new message arrives, the agent parses the item history. When a new message arrives, the agent parses the
content (assuming it cocontent (assuming it cocontent (assuming it cocontent (assuming it contains XML), and then appends the message content ntains XML), and then appends the message content ntains XML), and then appends the message content ntains XML), and then appends the message content
to its data node, before constructing and sending a reply. The final step in to its data node, before constructing and sending a reply. The final step in to its data node, before constructing and sending a reply. The final step in to its data node, before constructing and sending a reply. The final step in
the behavior is to increment a count variable (which is visible outside the the behavior is to increment a count variable (which is visible outside the the behavior is to increment a count variable (which is visible outside the the behavior is to increment a count variable (which is visible outside the
document as the tag document as the tag document as the tag document as the tag var with ID with ID with ID with ID count).).).).
The languThe languThe languThe language used is ECMAscript (implemented by calling the FESI age used is ECMAscript (implemented by calling the FESI age used is ECMAscript (implemented by calling the FESI age used is ECMAscript (implemented by calling the FESI
implementation [implementation [implementation [implementation [18181818]), with custom extensions to send/receive ACL messages]), with custom extensions to send/receive ACL messages]), with custom extensions to send/receive ACL messages]), with custom extensions to send/receive ACL messages
(implemented by calling Jade’s agent message(implemented by calling Jade’s agent message(implemented by calling Jade’s agent message(implemented by calling Jade’s agent message----handling functions) and to handling functions) and to handling functions) and to handling functions) and to
parse content and find nodes in the XML DOM (implementeparse content and find nodes in the XML DOM (implementeparse content and find nodes in the XML DOM (implementeparse content and find nodes in the XML DOM (implemented by calling d by calling d by calling d by calling
Apache’s Xerces and Xalan functions).Apache’s Xerces and Xalan functions).Apache’s Xerces and Xalan functions).Apache’s Xerces and Xalan functions).
In addition to manually storing persistent data directly in XML, we have In addition to manually storing persistent data directly in XML, we have In addition to manually storing persistent data directly in XML, we have In addition to manually storing persistent data directly in XML, we have
added support for persistent Javascript variables added support for persistent Javascript variables added support for persistent Javascript variables added support for persistent Javascript variables –––– these are instantiated from these are instantiated from these are instantiated from these are instantiated from
the persistent XML document whenever the script is ethe persistent XML document whenever the script is ethe persistent XML document whenever the script is ethe persistent XML document whenever the script is executed, and the xecuted, and the xecuted, and the xecuted, and the
persistent store is updated automatically after every execution step. (In this persistent store is updated automatically after every execution step. (In this persistent store is updated automatically after every execution step. (In this persistent store is updated automatically after every execution step. (In this
implementation, one execution step is the processing of a single behavior).implementation, one execution step is the processing of a single behavior).implementation, one execution step is the processing of a single behavior).implementation, one execution step is the processing of a single behavior).
Note that we have simplified this example by hiding code for message Note that we have simplified this example by hiding code for message Note that we have simplified this example by hiding code for message Note that we have simplified this example by hiding code for message
validation anvalidation anvalidation anvalidation and error handling.d error handling.d error handling.d error handling.

11

The document agents representing each attendee operate in a similar manner to the
one described above. Each maintains a list of action items, but this time, they are
for a particular attendee at this particular meeting.

When the attendee adds a new action item (using the web view of the agent), the
resulting HTTP post is translated into an ACL message and sent to the agent.
Upon receipt, it adds the new action item to its internal list, sends a message to the
meeting agent (asking it to add the item to the global list) and then replies to the
original message (indicating that processing is complete). That reply causes the
client to reload the page, which again causes client-side application of the style
sheet, and the updated list becomes visible.

Figure Figure Figure Figure 5555.... The attendee notes agent adds items in response to incoming ACL messages The attendee notes agent adds items in response to incoming ACL messages The attendee notes agent adds items in response to incoming ACL messages The attendee notes agent adds items in response to incoming ACL messages
(initiated, in this case, by an HTTP post from the client browser). It forwards (initiated, in this case, by an HTTP post from the client browser). It forwards (initiated, in this case, by an HTTP post from the client browser). It forwards (initiated, in this case, by an HTTP post from the client browser). It forwards
a copy of the new item to the meeting nota copy of the new item to the meeting nota copy of the new item to the meeting nota copy of the new item to the meeting notes agent, before updating itself, and es agent, before updating itself, and es agent, before updating itself, and es agent, before updating itself, and
indicating completion. At that point the client browser reloads the page to indicating completion. At that point the client browser reloads the page to indicating completion. At that point the client browser reloads the page to indicating completion. At that point the client browser reloads the page to
see the updated agent with the newlysee the updated agent with the newlysee the updated agent with the newlysee the updated agent with the newly----added item.added item.added item.added item.

12

6 Discussion and Conclusions

The document agents described here have a natural persistence and web presence.
They are also lightweight, consuming only disk space while asleep. It is thus
possible to support millions of agents on a single host system.

These document agents encourage a different programming model than is usual for
web-based applications. Rather than thinking of web pages as just the output of
the software system, we instead treat the web pages as the system itself. Each of
our documents is an agent, and each agent is a web-accessible document.

For agents that do a significant amount of computation, or which are accessed by
many users, it is appropriate to use a compiler – expending the cost of
interpretation only once, and gaining additional guarantees of correctness and
reliability up-front. Existing java-based agent platforms, such as Jade [17], serve
this well.

Document agents are best used when there are a large number of agents, where it is
desirable for the agents to have a web presence, or where the number of accesses to
any one agent is relatively low.

In many cases, a hybrid approach will work best, using conventional software
agents for the heavy processing, and using document agents to provide
personalized web-based interfaces.

While it would be possible to provide similar web interfaces using only JSPs, the
wins to using document agents are the incorporation of the messaging
infrastructure (making it trivial to communicate with other agent-based systems
and with other document agents), the desirability of having the code, data and state
encapsulated within a single XML document (and visible using standard XML
tools) and the convenience and agility of using an interpreted language.

7 Acknowledgements

Many thanks to David Bell at HP Labs for his careful review of this document.

The described testbed system was simplified due to the availability of excellent
libraries. The authors would particularly like to thank all those developers who
contributed to the Jade agent platform, the FESI ECMAScript interpreter, and
Apache’s Xerces and Xalan libraries.

13

8 References

1 Extensible Markup Language (XML), http://www.w3.org/XML/

2 Resource Description Framework (RDF), http://www.w3.org/RDF/

3 Tim Berners-Lee, James Hendler and Ora Lassila, The Semantic Web,
Scientific American, May 2001.

4 Dejan Milojicic et al, Mobile agent applications, IEEE Concurency, pages
80—90 July-September, 1999.

5 Danny B. Lange and Mitsuro Oshima, Mobile Agents with Java: The Aglet
API, in Programming and Deploying Mobile Agents with Java, Addison
Wesley, 1998.

6 David Halls, John Bates and Jean Bacon, Flexible Distributed Programming
using Mobile Code. In Proceedings of the Seventh ACM SIGOPS European
Workshop, pages 225—231, September, 1996.

7 Krishna Bharat and Luca Cardelli, Migratory Applications, Proceedings of the
ACM Symposium on User Interface Software and Technology 1995
(Pittsburgh, PA, Nov 1995). 1995.

8 John Bates, David Halls and Jean Bacon. Middleware support for mobile
multimedia applications, ICL Systems Journal, 12(2):289—314, November
1997.

9 ECMAScript Language Specification, Standard ECMA-262, 3rd Edition,
December 1999.

10 M. Breu et al. ESPRIT Project 25-338, Citrix Systems, Cambridge

11 Lange et al. A New Internet Agent Scripting Language Using XML, AAAI-99
Workshop on AI in Electronic Commerce, Orlando, Florida, July 1999.

12 Foundation for Intelligent Physical Agents (FIPA) Agent Communication
Language (ACL) Message Structure Specification,
http://www.fipa.org/specs/fipa00061/

13 The Extensible Stylesheet Language (XSLT),
http://www.w3.org/Style/XSL/

14

14 XML Path Language (Xpath) Version 1.0, W3C Recommendation 16 Nov
1999, http://www.w3.org/TR/xpath

15 XML Pointer Language (Xpointer) Version 1.0, W3C Candidate
Recommendation, 11 Sept 2001, http://www.w3.org/TR/xptr/

16 JavaServer Pages: Dynamically Generated Web Content,
http://java.sun.com/products/jsp/

17 The Java Agent Development framework (JADE),
http://www.sharon.cselt.it/projects/jade/

18 FESI a Free EcmaScript Interpreter,
http://home.worldcom.ch/jmlugrin/fesi/

