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ABSTRACT 
Workflow Management Systems (WFMS) play a very 
important role in constructing today’s e-commerce 
environment through automating intra-enterprise business 
processes and inter-enterprise services. To handle the rapidly 
changing business environment and global competition, 
WFMSs should have flexibility and scalability to meet the 
business requirement and to quickly introduce new and 
efficient business services. Achieving load balancing is 
essential to ensure scalability in a distributed WFMS. In this 
paper we discuss load-balancing technology for distributed 
WFMSs. First, we introduce a workflow load index to 
measure load level of workflow engines. Then we present a 
WFMS cluster architecture with a load balancing subsystem. 
We compare the performance of round robin versus load-
aware scheduling under the same load pattern. The 
experimental results show that the load index that we define 
in this paper is a good indicator of the load level in a 
distributed WMFS. The results also suggest that the load-
aware scheduling algorithm can distribute workload fairly on 
heterogeneous WFMSs; instead, the round robin scheduling 
can only guarantee load balance in uniform WFMS with 
uniform workload and resource capabilities. 
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1. INTRODUCTION 
Workflow Management Systems (WFMSs) play a very 
important role in constructing today’s e-commerce 
environment by automating intra-enterprise business 
processes and inter-enterprise services. A WFMS combines 
technologies of distributed computing, Internet, database and 
business process management. It provides the capabilities to 
define, develop, execute and monitor business processes 
[11][9]. To fit with the rapidly changing business 
environment and with the high-varying load of e-business 

applications, WFMSs should be scalable and should provide 
the required flexibility to cope with peaks in the system load. 
For example, many commercial webs-based applications are 
supported by workflow technology [10]. Such applications 
must execute hundreds of thousands business processes 
everyday. It is possible that many customers access those 
sites in a very narrow time interval, or that the total amount 
of business transactions increases dramatically, due to the 
introduction of new products or to marketing campaigns. The 
workload may exceed the design capacity of a single 
workflow engine. Simply duplicating installation of WFMS 
cannot guarantee that the performance of WFMS scales when 
the equipment and management investment increases.   

To solve this problem, we need to distribute the workload 
across multiple workflow engines so that the WFMS can 
maintain acceptable performance level under heavy load 
conditions. Our objective is to balance the workload in such 
a WFMS is to ensure performance scalability. WFMS load 
balancing mechanism with suitable resource configuration 
can also introduce many interesting features, such as quality 
management of business services, service reservation, and 
prioritized execution of selected business processes. 

Load balancing algorithms and implementation technologies 
are long time research topics for researchers in various fields 
like distributed and parallel computing [19] [13][16][17], 
database systems [14], middleware systems [15][1], web 
server cluster [4][2][5], network flow control, and process 
management. To balance the workload in a generic 
distributed system, we first need to describe the workload 
level with suitable indexes; second, we need to have current 
load information of available processing units; third, we 
should have a scheduling strategy for distributing the work 
among processing units in order to meet pre-defined 
performance criteria; finally, we need to appropriately 
interface the load balancing components with the processing 
units so that the system architecture is stable when load 
balancing strategies are changed.  

Load balancing for WFMSs share many challenges with 
distributed computing systems, distributed database systems 
and web server clusters. However, WFMSs have their own 
features that should be considered in balancing its workload. 
First, the workload of a WFMS is represented by business 
processes and their activities. The WFMS should be 
concerned not only with the performance of entire business 
processes, but also with the performance of the individual 
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activities and/or sub-processes that belong to those 
processes. Second, the execution of business processes may 
involve humans and external applications. Unlike human 
activities in common web applications, human workers 
interact with WFMS not only as clients of the system, but 
also as service providers. A load model for WFMS should be 
able to cover the load impacts of both human and automated 
service providers. 

In this paper, we present a workflow load index and a 
distributed WFMS architecture. This distributed WFMS 
architecture includes a Business Process Unit cluster and a 
load balancing sub system. Based on the load index, we 
propose a load aware Process Unit scheduling algorithm. 
Then, we compare its performance with that of a round robin 
Process Unit scheduling algorithm. The paper is organized as 
follows. Section 2 describes the process model and the 
architecture of our testing environment.  Section 3 proposes a 
load model for WFMSs. Section 4 discusses a distributed 
WFMS architecture with load balancing capability. Section 5 
gives performance results of two load-balancing policies on 
our prototype WFMS cluster. Finally, section 6 presents our 
conclusions and future research directions. 

2. A WFMS PROTOTYPE 
2.1 Process Model 
The process model of a workflow system outlines essential 
process definition elements and their relationships [18] [3]. 
A workflow is a graph composed of work nodes that 
represent work activities to be executed and arcs that defines 
execution dependencies among activities. Each node is 
associated to a service to be executed, that includes a 
resource rule that defines who should perform the service as 
well as the definition of the input and output data. A 
workflow definition also includes nodes that denote the 
starting and ending point of the process, called start node 
and end node respectively. A process is considered 
completed when there are no more active nodes and no other 
node can be scheduled for execution.  

2.2 WFMS Architecture 
Fig. 1 displays a high level view of the testing WFMS 
architecture. The Workflow Engine (WE), the Worklist 
Manager (WLM), and the Role Resolver (RR) are the main 
components.  The WE controls the execution of a process. It 
steps through definition of a process to determine the 
sequence in which activities are performed. The RR executes 
resource rules and assigns activities to the selected resource 
for execution. The WLM is a client management component, 
which acts as a work queue from which humans and 
applications can retrieve work items to be executed. The 
WLM joins WE to form a Process Unit (PU). The WLM 
picks up work items from worklist queues and enables their 
access to client applications. When a client notifies the WLM 
that he completed a work item, the Worklist Manager puts 
this work item into a Send queue, from which the WE will 
pull out completed work items. 

The WLM guarantees that clients can only access those 
worklists that are assigned to them by WFMS administrator. 
Several WLMs can be included in a WFMS configuration. 

Enabling multiple WLMs configuration eases the 
administration of WFMS and enhances the mapping ability 
between organization model and business process model. 
Clients who belong to different organizations, have different 
authorizations, or have different type of service abilities can 
be assigned to different WLMs. Multiple WLM installation 
also improves system performance when a WFMS runs 
business processes that involve many interactions between a 
WE and activity executors.  The RR is the role management 
component. It receives role description rules from the WE, 
read in the rule definition files. By running those rules, the 
RR resolves an address of the role that will carry out the 
activity and return this address to the Workflow Engine. 

 

RR WE 

WLM

Message 
Queues 

 
 WLM:     Worklist Manager;  

    RR:      Role Resolver; 

   WE:      Workflow Engine. 

 
Fig. 1 Major components of the testing WFMS. 

3. WFMS LOAD MODEL 
Before considering how to balance workload in a distributed 
workflow management system, we need to define what 
exactly the workload of a WFMS is. We should know how to 
describe workload with load indexes, and how to collect the 
load information from Workflow Engine.  

The major purpose of having a WFMS is to automate 
business process. Therefore, the basic workload of WFMSs 
is the business process. As we mentioned in section 2, 
business processes are composed by various business 
activities. The execution time of a business process is also 
composed by execution time of all its scheduled activities.   

The execution time of an activity includes two major parts: 
the time for the resource to complete his job and the time for 
the WE to process the activity completion messages and 
schedule the next one. When a new activity is scheduled, the 
WE retrieves the definition of the activity, finds out the 
service associated with this activity, asks RR to execute the 
resource rule of the service and return the address of the 
resource, and finally sends the work item to the worklist of 
this resource. However, the execution latency of each activity 
in a WE may vary considerably. This is because that if the 
number of active process instances running in the WE 
changes, the lengths of process instance queue, activity 
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queues and message queues will also change. These changes 
have direct impact on the engine response time for coming 
activity completion messages. 

The candidate load parameters of WFMS include process 
execution time, active process instance number and WE 
latency between two adjacency activities of a process 
instance. 

The execution time of a business process in a WFMS is an 
important performance parameter of both process clients and 
the WFMS. If multiple process instances are running 
simultaneously, the WFMS resources are shared by those 
instances. When the instance number increases, the shared 
execution time of each process instance in the workflow 
engine will decrease in a certain time period. Suppose that a 
process P is composed by a set of activities, iWN , we have P 
= { iWN | i = 0, 1, ..., n-1}. For a particular instance of this 
process, the execution path includes m activities. For each 
activity wn, we have wn∈  P. It is possible that m > n since 
some of the activities on the execution path may be executed 
more than once due to loops in the process. Let procT be the 
execution time of a business process instance PI of P, wnT  
be the interval between start time of the previous activity in 
PI and start time of the current activity in PI. The last activity 
of each PI is responsible for returning process results and 
cleaning system. Its execution time can be ignored. Then we 

have procT =∑
−

=

1

0

m

j
wn j

T . Let resourcewnT _ be the resource role 

execution time of an activity, enginewnT _ be the engine 

execution time of the same activity, we have the execution 
time of the activity wnT = resourcewnT _ + enginewnT _ . The 

enginewnT _  is measured through subtracting the resource 

execution time of the first activity from the interval between 
two adjacency activities.  

In our tests, when the number of active process instances 
increases, procT increases. procT  reflects the workload level 
trend in some degree. It could be a WFMS load index if it is 
only used to measure load level of a WFMS with a single 
workflow engine or distributed WFMS with uniform WEs. 
When comparing the load level of WFMSs running on 
heterogeneous platforms, or having different configurations, 
this parameter may lead to wrong conclusions of relative 
workload. A slower system with less active process instances 
will show a lower load level than that of a much faster 
system with more active process instances. It is not always 
true that the system with lower load level indicated by this 
load index can offer higher service capacity than the system 
with higher load level indicated by the same load index. 
Another limitation of using procT as load index is that it 
cannot reflect any load information about business activities. 

The WE execution latency between two adjacency activities 
of a process instance, enginewnT _ , describes the execution 

time of an activity on the WE. Our testing results indicate 

that change directions of this parameter reflect the same 
change trend of number of active process instances.  

We observed various timing parameters of executing 
activities by running a sample business process in the testing 
WFMS. Fig. 2 shows trends of these parameters of different 
process instances (PIs). In the test, the process initiator 
started 400 process instances one after another in an arrival 
rate at 600 PIs/hour. All resources involved in this process 
are Java client programs. These Java clients check fields of 
work items and modify some fields with timing information 
for measuring purpose. The resource execution time for 
activities of each process instance during the test is set to be 
identical. For each process instance, the first process client 
initiates the process by invoking the initiator of the sample 
process. It records the process startup information in its work 
item. The second client responds to the first activity. It 
checks the request of the initiator and calculates timestamp 
differences. The third client responds to the second activity 
and does the same thing as the second client. Fig.2 illustrates 
the wnT of the first two activities (T1i and T1f) in the test 
process of the first 50 process instances. While Txi ( x = 1, 2, 
3, 4) represent delays of execution the initiator, Txf (x = 1, 2, 
3, 4) represent delays of execution the first activity. The 
execution time of a client, resourcewnT _ , is close to a constant 

during the test. Comparing to the value of wnT , resourcewnT _  

can be ignored. Hence, from now on, we use wnT to represent 

resourcewnT _ .   
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T1i: Delay from beginning of process initiator to beginning of the 1st activity

T2i: Delay between beginning of two adjacent processe instances.

T3i: Delay from end of initiator of previous process instance to beginning of initiator of the current  process instance

T4i: Resource role execution delay of the 1st activity

T1f: Delay from beginning of previous activity to begin of current activity in the current process instance

T2f: Delay between beginning of the 1st activities of two adjacent processe instances.

T3f: Delay from end of the 1st activity of previous process instance to beginning of the 1st activity of the current process instance

T4f: Resource role execution delay of the 2nd activity.

 
Fig. 2 Process execution delay (50 process instances) 

 
Fig. 3 illustrates the relationship of wnT and the number of 
active process instances in a 2000 process instance test with 
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the same job arrival rate. It includes three parts. The top part 
shows that wnT of the start node of the test process increases 
in a quasi-linear function of time when the job arrival rate 
was fixed. At time 100.5, all 2000 process instances had been 
started. There would be no new job being initiated from this 
point. The middle part shows the change of the number of 
active process instances in the same time interval. The 
maximum number of active process instances is 910 in a 
2000 process instance test. The clock time when the WFMS 
reach this value is 100.5. This means that the wnT can 
represent the increasing trend of load accurately. The bottom 
part of Fig. 3 shows the wnT  trend of the first activity. At 
clock time 100.5, wnT began to decrease when there were no 
more process instances to start. At time 103, the WFMS 
completed the first activities of all 2000 process instances. 
This means that the wnT can also represents the decreasing 
trend of load accurately. 

According to the testing results, we have: 

CNT aPIwn +×= λ               (3.1) 

where aPIN  is the number of active process instances in a 
PU, λ is the execution latency increase rate, and C  is equal 
to the value of wnT  when there is only one active process 
instance in this PU. Both λ  and C are performance 
parameters of a PU. C indicates the processing capacity of a 
platform on which the PU is running. λ  is a function of the 
workload processing capacity of a certain PU configuration. 

wnT indicates the current load level of a PU. It also points 
out how long a business activity of a process instance will be 
finished in the PU.  

Based on this information, we introduce a load index for 
WFMS. Let PEL be the load index of a PU. We define that: 

kTL
k

i
enginewnPE i∑

−

=

=
1

0
_ , while k is the number of 

completed activities of all active processes in the WE during 
a recent period of time. We define 1PEL , 3PEL , 5PEL as the 
average activity delays for the past one-minute, three-minute 
and five-minute respectively. When the system starts up, the 
initial value of PEL  is set to 0. When there is no activity 
being completed during the pre-setting time period, the value 
of PEL  keeps its last value. 

There are four reasons for us to adopt PEL as the load index 
of WFMS. First, according to our testing results, PEL has a 
simple and close to linear function relationship with active 
process instances in the WE. Second, it is easy and cost 
effective to collect information from a WFMS to calculate 
the current value of PEL . Third, this index can be used 
directly to estimate the execution time of a process instance 
with assumptions of execution branch prediction and 
expected resource role execution time for each activity. 
Fourth, PEL is suitable to measure the load level of WFMSs 
running on platforms with different software and hardware 

configurations and capacities. With PEL as the load index, 
we have an identical measurement to weight the load level of 
WFMSs. We can also predict the execution time of both 
active process instances and incoming process instances with 
the value of the current load index, no matter what kind of 
platform the WFMS is installed on and how many process 
instances are running in the WFMS. 
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4. LOAD BALANCING IN A WFMS 
     WITH WF ENGINE CLUSTER 
4.1 Objectives of load balancing in WFMS 
The workload of a WFMS with a single Workflow Engine 
may exceed its capacity during the peak load periods. A 
WFMS should be scalable in order to cope with the peak 
loads. The service capability of a WFMS should increase as 
the number of kernel components, such as Worklist Manager 
and Workflow Engines of the WFMS, increase.  
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 The basic objective of balancing workload of WFMS is to 
make sure all system resources work effectively. A scalable 
WFMS can provide either a higher processing throughput 
under constant workload or a comparable processing 
throughput for heavier workload. The secondary objective is 
to improve the service quality of WFMS in a heavy workload 
environment. Our experimental results on the testing WFMS 
with a single Worklist Manager and Workflow Engine 
indicate that in a loaded system, if the job arrival rate is 
higher than the processing rate of the Workflow Engine, the 
latency between Workflow Engine’s pick up of two 
consecutive activities in a process instance increases. Since 
the execution time of all involved resource roles of the 
process instance in our test is close to constant, the increased 
latency between consecutive activities is introduced by 

enginewnT _  only. These latencies extend the execution time 

of both the individual activities of active process instances 
and the active process instances themselves. WFMS can 
control the value of its PEL  through a load scheduling and 
balancing mechanism, which means that the engine latencies 
between consecutive activities of active process instances are 
under control. Therefore, the value of procT for each active 
process instance is predictable given that the average 
execution time of each involved WFMS resource role is 
predictable based on its qualification and historical 
performance data. When a pre-defined threshold of PEL  is 
reached due to high rate of incoming process instances, a 
WFMS can hold them in a queue that is outside of 
processing components. Eventually, the response time of 
those queued process instances will increase. However, that 
is the cost WFMS has to pay under a heavy loaded 
environment so that it can maintain a reasonable performance 
for all active process instances. The process instances that are 
blocked in the outside queue will generally have a change to 
start in the WFMS with a predictable response time from the 
time they are issued into the WFMS processing units. Setting 
up different thresholds of PEL  and adopting different process 
instance and Workflow Engine scheduling strategies allows 
WFMS to offer many new features to business process 
definitions, such as quality of service management for 
business process, process with deadline and priority 
requirement, and WFMS processing power reservation for 
some important business processes. 

4.2 Design of Load Balancing Subsystem 
We developed a load balance mechanism for WFMS based 
on the load index that is introduced in section 3. The load 
balancing mechanism is designed as a subsystem of WFMS. 
The Load Balancing Subsystem (LBS) has four main 
components: the Workload Monitor (LBWM), the Load 
Balancing Decision Maker (LBDM), the Job Scheduler 
(LBJS), and the distributed worklist management component 
(DWLM). We use the name Process Unit (PU) in order to 
describe a Workflow configuration that contains a Workflow 
Engine (WE), a Role Resolver, and a Worklist Manager(s) 
(WLM). A PU is a basic processing unit from the viewpoint 
of the LBS. The Load Balancing Subsystem supports 
multiple PUs in a WFMS configuration. A process instance 
is the basic unit of job to be scheduled among available PUs. 

The LBWM is responsible for collecting load information 
from each PU in a WFMS and distributing them among all 
PUs. The LBDM is the load balancing policy carrier and 
executor. The LBJS allocates process instance to a PU that is 
selected by the LBDM according to current load level 
information and load balancing strategies. Fig. 4 
demonstrates the logic structure of LBS and the relationship 
between LBS and other WFMS components in a three-PU 
WFMS configuration. 

LBWMs collect load parameters once every minute and 
calculate the current value of vector ( 1PEL , 3PEL , 5PEL ). 
Based on the load index definition, the essential parameters 
for calculating load level of a PU are the difference between 
start-times of consecutive activities and the resource 
execution times of those activities. There are various ways 
for the LBWMs to measure those load parameters. The 
LBWM can access WFMS log database and figure out the 
current value of load parameters. WFMS can embed into 
some PU-special fields of each work item the resource 
execution time and the timestamp of when this activity was 
started. Then the LBWM can fetch them from work items. 
The LBS can also run a special performance test process. The 
LBWM can also get the current load level information of this 
PU while measuring the performance of this process 

The LBDM is the consumer of the load vector of each PU. 
The current load level of the PU satisfies the load policy that 
the LBDM current runs. The WFMS administrator sets up 
the load policy each time when the system is started. The 
policy can also be switched dynamically. The new policy will 
be effective in the next minute when the LBDM reads the 
updated load vectors from each PU. We will discuss more 
about load policies in section 4.4.  

The LBJS has two functionalities. The first one is to redirect 
the process instance to a PU that is selected by the LBDM. 
The second one is to maintain a ready job queue (RJQ). In a 
heavy load environment, the LBDM may not always return a 
PU that can receive a new job without decreasing the 
performance of some other active process instances running 
on it to a value lower than a pre-defined threshold.  Then all 
new incoming process instances will be held in RJQ. A 
WFMS administrator configures the size of a RJQ according 
to the peak load expectation of the WFMS and available 
system resources.  

The Distributed Worklist Management (DWLM) is 
implemented on top of the WFMS Worklist Manager 
(WLM). Worklists are interfaces between business processes 
and their participators. The WLM is the WFMS component 
that implements the worklist and work item services between 
Workflow Engine and clients. The WLM connects to 
Workflow Engine through a group of queues. It has two 
major client classes: custom client applications that talk to 
the WLM with WFMS API; human clients that access their 
worklists from the WLM through web browser.      

The need for to maintaining, manipulating and accessing 
distributed worklists comes from the need for supporting 
WFMS configured with multiple Process Units and load 
balancing among multiple PUs. In a multiple PU WFMS 
configuration, process instances of a business process may be 
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scheduled to run on different PUs due to the system 
workload distribution and load balancing strategies. A 
participator of this business process may need to execute 
work items of the process instances generated from different 
PUs. It’s not a practical to force a client to go through 
worklists of all PUs in the system to access his/her work 
items. The objective of the DWLM is to create a virtual, 
consistent worklist image for both process initiator and 
process participators, i.e. WFMS resource roles.  

Business processes are deployed on all PUs. Every process 
belongs to a process group. All PUs have the same business 
process group structure in a multiple PU WFMS. Worklist 
definitions on all WLMs are identical, so are user accounts 
on all PUs. Users can access worklists from all WLMs 
theoretically, but each worklist has a default host WLM. 
From the users viewpoint, they access their worklists from 
the host WLM of their worklists only. Each PU has a DWLM 
component. All DWLMs are connected with each other 
through a message bus. From the viewpoint of the Workflow 
Engine, the DWLM acts just like a WLM. From the 
viewpoint of the Worklist Manager, the DWLM acts on 
multiple PUs just like a WLM acting on a single PU. The 
WLM accesses worklists from the DWLM instead of queues 
of each PU. The DWLM monitors the worklist and work 
item information from queues of each PU. The DWLMs have 
the knowledge of which worklist is hosted by which WLM. 
They exchange work items with each other periodically. The 
DWLM only creates a virtual consistent worklist image of a 
worklist on its host WLM since the overhead of maintaining 
the same single virtual worklist image of each worklist on 
every WLM is high.  

4.3 Distributed Worklist Management 
The consistency of distributed virtual worklists of a WLM is 
maintained by the DWLM in the same PU. When the DWLM 
gets a work item from a worklist of the WLR in the same PU 
and finds out that the host WLM of this worklist is in the 
same PU, it adds the work item to the end of the 
corresponding virtual worklist. If the host WLM of this 
worklist is not the local WLM, then the DWLM will send the 
work item to the PU that has the host WLM of this worklist. 
When the DWLM gets a work item from other DWLMs, it 
attaches a PU identifier (PUid) to the work item before 
adding it at the end of the corresponding virtual worklist. 
When WFMS client completes a work item, the default 
WLM will send the work item to a virtual Send Queue. This 
Send Queue is accessed by the local DWLM. The DWLM 
checks the attached PUid of the work item before dispatching 
it. If the PUid is null, then this work item is sent to the Send 
queue of the local PU. Otherwise, the work item is sent to the 
PU indicated by the PUid.  

 
Fig. 4 Load Balancing Subsystem For WFMS 

 

4.4 Load Balancing in Processing Unit 
cluster of WFMS 
The objective of balancing workload in a distributed WFMS 
with multiple Process Units is to improve the performance of 
entire process instances and individual activities in process 
instances. In order to achieve these objectives, the load 
balancing sub system needs to allocate jobs to all PUs in the 
distributed WFMS in a way that PUs can have uniform 
workload according to the load index defined in section 3. 

We assume the following: first, the basic scheduling unit of 
LBS is a process instance; second, the workload is scheduled 
during the initiation stage; and third, there is no active 
process instance migration between Process Units.  

According to formula (3.1), in order to reduce wnT of a 
Process Unit, we should either reduce the value of λ  or 
control the number of active process instances in the Process 
Unit, aPIN .  The λ  is a platform dependent parameter that 
the load balancing subsystem cannot control. In order to 
reduce λ , the system should have better hardware and 
network connection. We focus our efforts on controlling the 
number of active process instances in a Process Unit. 

We present two Process Unit scheduling algorithms for 
workload control: Round Robin and Load-Aware. The 
Round-Robin algorithm schedules Process Units one at a 
time. It is effective when the processing power of each 
Process Unit is identical, the process types are the same, the 
initial load level of all Process Units are similar, and the 
resource role processing capacities are uniform. When any of 
these conditions is not satisfied, the workload of Process 
Units will not be distributed evenly.  

The Load Aware PU Scheduling Algorithm (LAPSA) is our 
solution to above problems. It has the ability to balance the 
workload of Process Units according to their current load 
index without considering relative processing capabilities of 
Process Units.  
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Fig. 5 shows the working procedure of LAPSA. The 
components participating in the PU scheduling procedure 
include LBJS, LBDM, LBWM and all PUs in the WFMS. 

LBJS LBDM LBWM PUs

L2

L1

PUq1

PUq3

PUq2

Fig. 5 Procedure of PU scheduling algor
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current load index information and the load pol
the LBDM always returns the PU with the lowest
The LAPSA reduces the new job arrival ratios o
higher load index values, through sending new jo
with the lowest load index. 

 

5. EXPERIMENTAL RESULTS 
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workflow management system that has only on
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The Round –Robin Algorithm distributes jobs to multiple 
PUs. However, this policy will cause problems when either 
the processing capabilities of PUs are not identical, or the 
load levels of PUs are not even. Approximately 50% of 
Process Instances that were processed by the Unix 
workstation have a wnT value higher than 700 relative delay Load query 
 
ithm 
m each PU 
M receives 
 It then gets 
BWM. The 
ding to the 
icy. So far, 
 load index. 
f PUs with 
b to the PU 

terogeneous 
based on a 
e PU. This 
 on a slow 
 a fast PC 
Hz CPU is 

 index and 
n behalf of 

rocess.  

00 business 
ns: WFMS 
and WFMS 

ound-Robin 
s instances. 
oad Aware 
50 PI/hour, 
NT server 
delay unit. 
 the Unix 
for process 
the Unix 

here will be 
 wnT  stops 

units with Round-Robin scheduling policy. 

The Load Aware Scheduling policy sends job to the PU that 
has the lowest load level. This load level is measured by the 
load index that is defined in section 3. In our test, The 
LAPSA sends 132 out of 200 Process Instances to NT server 
and 68 Process Instances to the Unix workstation. The 
average wnT of the NT server is maintained at approximately 
18 relative delay units. The average wnT of the Unix 
workstation is around 50 relative delay units. The balancing 
value of wnT between these two PUs is around 28 relative 
delay units. Since the LBWM updates the load index for each 
PU in a fixed time interval, the LBDM may allocate jobs to a 
PU that just received large number of jobs before the LBWM 
refreshing its load index in the LBDM. That’s why the Unix 
workstation has its average load index around 50 relative 
delay units. However, if the LBWMs update load index of 
their PU frequently, the load balancing subsystem will 
consume many CPU cycles and then will decrease the 
performance of all components of the WFMS. The faster PU 
processed more jobs with the LAPSA. There were few 
process instances that had their wnT higher than 100 relative 
delay units. There is a significant performance improvement 
to the execution of 200 test process instances.  

The reason for having fluctuation on curves in Fig 6 and 7 is 
that resource roles always get more than one work item from 
the WLM every time the WFMS is loaded.  The process time 
of an activity whose work item was pre-fetched is shorter 
than that of the activity whose work item was received from 
the WLM right before it was processed.  

 

6. Conclusions 
 
In this paper, we proposed a load index for job scheduling in 
distributed Workflow Management System. We studied a 
distributed WFMS architecture with distributed worklist 
management mechanism and load balancing sub system. We 
then presented Load Aware Process Scheduling Algorithm 
(LAPSA) for WFMS. The performance improvement of the 
LAPSA was verified on a distributed WFMS. The test results 
show that our load index represents the load level of PUs 
accurately and it can handle the heterogeneities of WFMS.   

The load aware balancing mechanism is suited for managing 
load of distributed workflow management system in order to 
achieve scalability. This mechanism gives WFMS the ability 
to support deadline and execution priority properties for 
business processes with multiple PUs. It also gives WFMS 

interval 
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engine the ability to maintain quality of service for running 
process instances.  

There has been many research efforts on defining load index 
and developing load-balancing policy for distributed systems 
[16][7][6][12]. Our work shares some common objectives 
with those efforts. However, our work focuses on load 
control technology within WFMS in which business 
processes are the workload of the distributed system. 

The load balancing in distributed workflow management 
systems is an open research area. Our future research 
directions will include: ensuring scalability in large scale 
distributed WFMS with PU cluster through improving load 
measurement and job scheduling technologies; enabling new 
features for business process definition through load control 
and re-configuring the system dynamically. 

WFMS on Unix Workstation: Round-Robin Scheduling
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WFMS on NT Server: Round-Robin Scheduling
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 Fig. 6 Twn/job order relation under Round-Robin 
Scheduling. 

(200 Process Instances, Job arrival rate = 250 PI/hour, 
100 on NT Server, 100 on the Unix workstation) 

 

WFMS on Unix workstation: Load Aware Scheduling
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WFMS on NT Server: Load Aware Scheduling
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 Fig. 7 Twn/job order relation under Load Aware 
Scheduling. 
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