

Load Balancing in Distributed Workflow
Management System

Li-jie Jin, Fabio Casati, Mehmet Sayal, Ming-Chien Shan
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-287
November 8th , 2001*

E-mail: ljjin@hpl.hp.com, casati.hpl.hp.com, sayal@hpl.hp.com, shan@hpl.hp.com

load
balancing,
workflow,
load index,
business
process

Workflow Management Systems (WFMS) play a very important role
in constructing today's e -commerce environment through automating
intra-enterprise business processes and inter-enterprise services. To
handle the rapidly changing business environment and global
competition, WFMSs should have flexibility and scalability to meet
the business requirement and to quickly introduce new and efficient
business services. Achieving load balancing is essential to ensure
scalability in a distributed WFMS. In this paper we discuss load-
balancing technology for distributed WFMSs. First, we introduce a
workflow load index to measure load level of workflow engines. Then
we present a WFMS cluster architecture with a load balancing
subsystem. We compare the performance of round robin versus load-
aware scheduling under the same load pattern. The experimental
results show that the load index that we define in this paper is a good
indicator of the load level in a distributed WMFS. The results also
suggest that the load-aware scheduling algorithm can distribute
workload fairly on heterogeneous WFMSs; instead, the round robin
scheduling can only guarantee load balance in uniform WFMS with
uniform workload and resource capabilities.

* Internal Accession Date Only Approved for External Publication?
Copyright ACM. Published in the ACM Symposium on Applied Computing (SAC 2001) 11-14
March 2001, Las Vegas, NV

SAC 2001

Load Balancing In
Distributed Workflow Management System

Li-jie Jin
HP Laboratories

Palo Alto, California, U.S.A
1 (650) 236 8093

ljjin@hpl.hp.com

Fabio Casati
HP Laboratories

Palo Alto, California, U.S.A
1 (650) 236 8437

casati@hpl.hp.com

Mehmet Sayal
HP Laboratories

Palo Alto, California, U.S.A
1 (650) 857 4497

sayal@hpl.hp.com

Ming-Chien Shan
HP Laboratories

Palo Alto, California, U.S.A
1 (650) 857 7158

shan@hpl.hp.com

ABSTRACT
Workflow Management Systems (WFMS) play a very
important role in constructing today’s e-commerce
environment through automating intra-enterprise business
processes and inter-enterprise services. To handle the rapidly
changing business environment and global competition,
WFMSs should have flexibility and scalability to meet the
business requirement and to quickly introduce new and
efficient business services. Achieving load balancing is
essential to ensure scalability in a distributed WFMS. In this
paper we discuss load-balancing technology for distributed
WFMSs. First, we introduce a workflow load index to
measure load level of workflow engines. Then we present a
WFMS cluster architecture with a load balancing subsystem.
We compare the performance of round robin versus load-
aware scheduling under the same load pattern. The
experimental results show that the load index that we define
in this paper is a good indicator of the load level in a
distributed WMFS. The results also suggest that the load-
aware scheduling algorithm can distribute workload fairly on
heterogeneous WFMSs; instead, the round robin scheduling
can only guarantee load balance in uniform WFMS with
uniform workload and resource capabilities.

Keywords

Load balancing, workflow, load index, business process

1. INTRODUCTION
Workflow Management Systems (WFMSs) play a very
important role in constructing today’s e-commerce
environment by automating intra-enterprise business
processes and inter-enterprise services. A WFMS combines
technologies of distributed computing, Internet, database and
business process management. It provides the capabilities to
define, develop, execute and monitor business processes
[11][9]. To fit with the rapidly changing business
environment and with the high-varying load of e-business

applications, WFMSs should be scalable and should provide
the required flexibility to cope with peaks in the system load.
For example, many commercial webs-based applications are
supported by workflow technology [10]. Such applications
must execute hundreds of thousands business processes
everyday. It is possible that many customers access those
sites in a very narrow time interval, or that the total amount
of business transactions increases dramatically, due to the
introduction of new products or to marketing campaigns. The
workload may exceed the design capacity of a single
workflow engine. Simply duplicating installation of WFMS
cannot guarantee that the performance of WFMS scales when
the equipment and management investment increases.

To solve this problem, we need to distribute the workload
across multiple workflow engines so that the WFMS can
maintain acceptable performance level under heavy load
conditions. Our objective is to balance the workload in such
a WFMS is to ensure performance scalability. WFMS load
balancing mechanism with suitable resource configuration
can also introduce many interesting features, such as quality
management of business services, service reservation, and
prioritized execution of selected business processes.

Load balancing algorithms and implementation technologies
are long time research topics for researchers in various fields
like distributed and parallel computing [19] [13][16][17],
database systems [14], middleware systems [15][1], web
server cluster [4][2][5], network flow control, and process
management. To balance the workload in a generic
distributed system, we first need to describe the workload
level with suitable indexes; second, we need to have current
load information of available processing units; third, we
should have a scheduling strategy for distributing the work
among processing units in order to meet pre-defined
performance criteria; finally, we need to appropriately
interface the load balancing components with the processing
units so that the system architecture is stable when load
balancing strategies are changed.

Load balancing for WFMSs share many challenges with
distributed computing systems, distributed database systems
and web server clusters. However, WFMSs have their own
features that should be considered in balancing its workload.
First, the workload of a WFMS is represented by business
processes and their activities. The WFMS should be
concerned not only with the performance of entire business
processes, but also with the performance of the individual

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SAC 2001, Las Vegas, NV

© 2001 ACM 1-58113-324-3/01/02...$5.00

SAC 2001

activities and/or sub-processes that belong to those
processes. Second, the execution of business processes may
involve humans and external applications. Unlike human
activities in common web applications, human workers
interact with WFMS not only as clients of the system, but
also as service providers. A load model for WFMS should be
able to cover the load impacts of both human and automated
service providers.

In this paper, we present a workflow load index and a
distributed WFMS architecture. This distributed WFMS
architecture includes a Business Process Unit cluster and a
load balancing sub system. Based on the load index, we
propose a load aware Process Unit scheduling algorithm.
Then, we compare its performance with that of a round robin
Process Unit scheduling algorithm. The paper is organized as
follows. Section 2 describes the process model and the
architecture of our testing environment. Section 3 proposes a
load model for WFMSs. Section 4 discusses a distributed
WFMS architecture with load balancing capability. Section 5
gives performance results of two load-balancing policies on
our prototype WFMS cluster. Finally, section 6 presents our
conclusions and future research directions.

2. A WFMS PROTOTYPE
2.1 Process Model
The process model of a workflow system outlines essential
process definition elements and their relationships [18] [3].
A workflow is a graph composed of work nodes that
represent work activities to be executed and arcs that defines
execution dependencies among activities. Each node is
associated to a service to be executed, that includes a
resource rule that defines who should perform the service as
well as the definition of the input and output data. A
workflow definition also includes nodes that denote the
starting and ending point of the process, called start node
and end node respectively. A process is considered
completed when there are no more active nodes and no other
node can be scheduled for execution.

2.2 WFMS Architecture
Fig. 1 displays a high level view of the testing WFMS
architecture. The Workflow Engine (WE), the Worklist
Manager (WLM), and the Role Resolver (RR) are the main
components. The WE controls the execution of a process. It
steps through definition of a process to determine the
sequence in which activities are performed. The RR executes
resource rules and assigns activities to the selected resource
for execution. The WLM is a client management component,
which acts as a work queue from which humans and
applications can retrieve work items to be executed. The
WLM joins WE to form a Process Unit (PU). The WLM
picks up work items from worklist queues and enables their
access to client applications. When a client notifies the WLM
that he completed a work item, the Worklist Manager puts
this work item into a Send queue, from which the WE will
pull out completed work items.

The WLM guarantees that clients can only access those
worklists that are assigned to them by WFMS administrator.
Several WLMs can be included in a WFMS configuration.

Enabling multiple WLMs configuration eases the
administration of WFMS and enhances the mapping ability
between organization model and business process model.
Clients who belong to different organizations, have different
authorizations, or have different type of service abilities can
be assigned to different WLMs. Multiple WLM installation
also improves system performance when a WFMS runs
business processes that involve many interactions between a
WE and activity executors. The RR is the role management
component. It receives role description rules from the WE,
read in the rule definition files. By running those rules, the
RR resolves an address of the role that will carry out the
activity and return this address to the Workflow Engine.

RR WE

WLM

Message
Queues

 WLM: Worklist Manager;

 RR: Role Resolver;

 WE: Workflow Engine.

Fig. 1 Major components of the testing WFMS.

3. WFMS LOAD MODEL
Before considering how to balance workload in a distributed
workflow management system, we need to define what
exactly the workload of a WFMS is. We should know how to
describe workload with load indexes, and how to collect the
load information from Workflow Engine.

The major purpose of having a WFMS is to automate
business process. Therefore, the basic workload of WFMSs
is the business process. As we mentioned in section 2,
business processes are composed by various business
activities. The execution time of a business process is also
composed by execution time of all its scheduled activities.

The execution time of an activity includes two major parts:
the time for the resource to complete his job and the time for
the WE to process the activity completion messages and
schedule the next one. When a new activity is scheduled, the
WE retrieves the definition of the activity, finds out the
service associated with this activity, asks RR to execute the
resource rule of the service and return the address of the
resource, and finally sends the work item to the worklist of
this resource. However, the execution latency of each activity
in a WE may vary considerably. This is because that if the
number of active process instances running in the WE
changes, the lengths of process instance queue, activity

SAC 2001

queues and message queues will also change. These changes
have direct impact on the engine response time for coming
activity completion messages.

The candidate load parameters of WFMS include process
execution time, active process instance number and WE
latency between two adjacency activities of a process
instance.

The execution time of a business process in a WFMS is an
important performance parameter of both process clients and
the WFMS. If multiple process instances are running
simultaneously, the WFMS resources are shared by those
instances. When the instance number increases, the shared
execution time of each process instance in the workflow
engine will decrease in a certain time period. Suppose that a
process P is composed by a set of activities, iWN , we have P
= { iWN | i = 0, 1, ..., n-1}. For a particular instance of this
process, the execution path includes m activities. For each
activity wn, we have wn∈ P. It is possible that m > n since
some of the activities on the execution path may be executed
more than once due to loops in the process. Let procT be the
execution time of a business process instance PI of P, wnT
be the interval between start time of the previous activity in
PI and start time of the current activity in PI. The last activity
of each PI is responsible for returning process results and
cleaning system. Its execution time can be ignored. Then we

have procT =∑
−

=

1

0

m

j
wn j

T . Let resourcewnT _ be the resource role

execution time of an activity, enginewnT _ be the engine

execution time of the same activity, we have the execution
time of the activity wnT = resourcewnT _ + enginewnT _ . The

enginewnT _ is measured through subtracting the resource

execution time of the first activity from the interval between
two adjacency activities.

In our tests, when the number of active process instances
increases, procT increases. procT reflects the workload level
trend in some degree. It could be a WFMS load index if it is
only used to measure load level of a WFMS with a single
workflow engine or distributed WFMS with uniform WEs.
When comparing the load level of WFMSs running on
heterogeneous platforms, or having different configurations,
this parameter may lead to wrong conclusions of relative
workload. A slower system with less active process instances
will show a lower load level than that of a much faster
system with more active process instances. It is not always
true that the system with lower load level indicated by this
load index can offer higher service capacity than the system
with higher load level indicated by the same load index.
Another limitation of using procT as load index is that it
cannot reflect any load information about business activities.

The WE execution latency between two adjacency activities
of a process instance, enginewnT _ , describes the execution

time of an activity on the WE. Our testing results indicate

that change directions of this parameter reflect the same
change trend of number of active process instances.

We observed various timing parameters of executing
activities by running a sample business process in the testing
WFMS. Fig. 2 shows trends of these parameters of different
process instances (PIs). In the test, the process initiator
started 400 process instances one after another in an arrival
rate at 600 PIs/hour. All resources involved in this process
are Java client programs. These Java clients check fields of
work items and modify some fields with timing information
for measuring purpose. The resource execution time for
activities of each process instance during the test is set to be
identical. For each process instance, the first process client
initiates the process by invoking the initiator of the sample
process. It records the process startup information in its work
item. The second client responds to the first activity. It
checks the request of the initiator and calculates timestamp
differences. The third client responds to the second activity
and does the same thing as the second client. Fig.2 illustrates
the wnT of the first two activities (T1i and T1f) in the test
process of the first 50 process instances. While Txi (x = 1, 2,
3, 4) represent delays of execution the initiator, Txf (x = 1, 2,
3, 4) represent delays of execution the first activity. The
execution time of a client, resourcewnT _ , is close to a constant

during the test. Comparing to the value of wnT , resourcewnT _

can be ignored. Hence, from now on, we use wnT to represent

resourcewnT _ .

Analyses of process execution time

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Process number

R
el

at
iv

e
D

el
ay

T1i: Delay from beginning of process initiator to beginning of the 1st activity

T2i: Delay between beginning of two adjacent processe instances.

T3i: Delay from end of initiator of previous process instance to beginning of initiator of the current process instance

T4i: Resource role execution delay of the 1st activity

T1f: Delay from beginning of previous activity to begin of current activity in the current process instance

T2f: Delay between beginning of the 1st activities of two adjacent processe instances.

T3f: Delay from end of the 1st activity of previous process instance to beginning of the 1st activity of the current process instance

T4f: Resource role execution delay of the 2nd activity.

Fig. 2 Process execution delay (50 process instances)

Fig. 3 illustrates the relationship of wnT and the number of
active process instances in a 2000 process instance test with

SAC 2001

the same job arrival rate. It includes three parts. The top part
shows that wnT of the start node of the test process increases
in a quasi-linear function of time when the job arrival rate
was fixed. At time 100.5, all 2000 process instances had been
started. There would be no new job being initiated from this
point. The middle part shows the change of the number of
active process instances in the same time interval. The
maximum number of active process instances is 910 in a
2000 process instance test. The clock time when the WFMS
reach this value is 100.5. This means that the wnT can
represent the increasing trend of load accurately. The bottom
part of Fig. 3 shows the wnT trend of the first activity. At
clock time 100.5, wnT began to decrease when there were no
more process instances to start. At time 103, the WFMS
completed the first activities of all 2000 process instances.
This means that the wnT can also represents the decreasing
trend of load accurately.

According to the testing results, we have:

CNT aPIwn +×= λ (3.1)

where aPIN is the number of active process instances in a
PU, λ is the execution latency increase rate, and C is equal
to the value of wnT when there is only one active process
instance in this PU. Both λ and C are performance
parameters of a PU. C indicates the processing capacity of a
platform on which the PU is running. λ is a function of the
workload processing capacity of a certain PU configuration.

wnT indicates the current load level of a PU. It also points
out how long a business activity of a process instance will be
finished in the PU.

Based on this information, we introduce a load index for
WFMS. Let PEL be the load index of a PU. We define that:

kTL
k

i
enginewnPE i∑

−

=

=
1

0
_ , while k is the number of

completed activities of all active processes in the WE during
a recent period of time. We define 1PEL , 3PEL , 5PEL as the
average activity delays for the past one-minute, three-minute
and five-minute respectively. When the system starts up, the
initial value of PEL is set to 0. When there is no activity
being completed during the pre-setting time period, the value
of PEL keeps its last value.

There are four reasons for us to adopt PEL as the load index
of WFMS. First, according to our testing results, PEL has a
simple and close to linear function relationship with active
process instances in the WE. Second, it is easy and cost
effective to collect information from a WFMS to calculate
the current value of PEL . Third, this index can be used
directly to estimate the execution time of a process instance
with assumptions of execution branch prediction and
expected resource role execution time for each activity.
Fourth, PEL is suitable to measure the load level of WFMSs
running on platforms with different software and hardware

configurations and capacities. With PEL as the load index,
we have an identical measurement to weight the load level of
WFMSs. We can also predict the execution time of both
active process instances and incoming process instances with
the value of the current load index, no matter what kind of
platform the WFMS is installed on and how many process
instances are running in the WFMS.

Delay of the initiator

0

500

1000

1500

2000

2500

3000

3500

87 89 91 93 95 97 99 101 103 105
Millions

clock time (ms)

R
el

at
iv

e
D

el
ay

4. LOAD BALANCING IN A WFMS
 WITH WF ENGINE CLUSTER
4.1 Objectives of load balancing in WFMS
The workload of a WFMS with a single Workflow Engine
may exceed its capacity during the peak load periods. A
WFMS should be scalable in order to cope with the peak
loads. The service capability of a WFMS should increase as
the number of kernel components, such as Worklist Manager
and Workflow Engines of the WFMS, increase.

Active Process instance Number

0

100

200

300

400

500

600

700

800

900

1000

87 89 91 93 95 97 99 101 103 105
Millions

Clock timestamp

ac
tiv

e
Pr

oc
es

s
in

st
an

ce
 n

um
be

r

Delay for the 1st activity

0

500

1000

1500

2000

2500

3000

3500

87 89 91 93 95 97 99 101 103 105
Millions

clock time (ms)

Fig. 3 Relationship between number of active process
instance and Twn

R
el

at
iv

e
de

la
y

SAC 2001

 The basic objective of balancing workload of WFMS is to
make sure all system resources work effectively. A scalable
WFMS can provide either a higher processing throughput
under constant workload or a comparable processing
throughput for heavier workload. The secondary objective is
to improve the service quality of WFMS in a heavy workload
environment. Our experimental results on the testing WFMS
with a single Worklist Manager and Workflow Engine
indicate that in a loaded system, if the job arrival rate is
higher than the processing rate of the Workflow Engine, the
latency between Workflow Engine’s pick up of two
consecutive activities in a process instance increases. Since
the execution time of all involved resource roles of the
process instance in our test is close to constant, the increased
latency between consecutive activities is introduced by

enginewnT _ only. These latencies extend the execution time

of both the individual activities of active process instances
and the active process instances themselves. WFMS can
control the value of its PEL through a load scheduling and
balancing mechanism, which means that the engine latencies
between consecutive activities of active process instances are
under control. Therefore, the value of procT for each active
process instance is predictable given that the average
execution time of each involved WFMS resource role is
predictable based on its qualification and historical
performance data. When a pre-defined threshold of PEL is
reached due to high rate of incoming process instances, a
WFMS can hold them in a queue that is outside of
processing components. Eventually, the response time of
those queued process instances will increase. However, that
is the cost WFMS has to pay under a heavy loaded
environment so that it can maintain a reasonable performance
for all active process instances. The process instances that are
blocked in the outside queue will generally have a change to
start in the WFMS with a predictable response time from the
time they are issued into the WFMS processing units. Setting
up different thresholds of PEL and adopting different process
instance and Workflow Engine scheduling strategies allows
WFMS to offer many new features to business process
definitions, such as quality of service management for
business process, process with deadline and priority
requirement, and WFMS processing power reservation for
some important business processes.

4.2 Design of Load Balancing Subsystem
We developed a load balance mechanism for WFMS based
on the load index that is introduced in section 3. The load
balancing mechanism is designed as a subsystem of WFMS.
The Load Balancing Subsystem (LBS) has four main
components: the Workload Monitor (LBWM), the Load
Balancing Decision Maker (LBDM), the Job Scheduler
(LBJS), and the distributed worklist management component
(DWLM). We use the name Process Unit (PU) in order to
describe a Workflow configuration that contains a Workflow
Engine (WE), a Role Resolver, and a Worklist Manager(s)
(WLM). A PU is a basic processing unit from the viewpoint
of the LBS. The Load Balancing Subsystem supports
multiple PUs in a WFMS configuration. A process instance
is the basic unit of job to be scheduled among available PUs.

The LBWM is responsible for collecting load information
from each PU in a WFMS and distributing them among all
PUs. The LBDM is the load balancing policy carrier and
executor. The LBJS allocates process instance to a PU that is
selected by the LBDM according to current load level
information and load balancing strategies. Fig. 4
demonstrates the logic structure of LBS and the relationship
between LBS and other WFMS components in a three-PU
WFMS configuration.

LBWMs collect load parameters once every minute and
calculate the current value of vector (1PEL , 3PEL , 5PEL).
Based on the load index definition, the essential parameters
for calculating load level of a PU are the difference between
start-times of consecutive activities and the resource
execution times of those activities. There are various ways
for the LBWMs to measure those load parameters. The
LBWM can access WFMS log database and figure out the
current value of load parameters. WFMS can embed into
some PU-special fields of each work item the resource
execution time and the timestamp of when this activity was
started. Then the LBWM can fetch them from work items.
The LBS can also run a special performance test process. The
LBWM can also get the current load level information of this
PU while measuring the performance of this process

The LBDM is the consumer of the load vector of each PU.
The current load level of the PU satisfies the load policy that
the LBDM current runs. The WFMS administrator sets up
the load policy each time when the system is started. The
policy can also be switched dynamically. The new policy will
be effective in the next minute when the LBDM reads the
updated load vectors from each PU. We will discuss more
about load policies in section 4.4.

The LBJS has two functionalities. The first one is to redirect
the process instance to a PU that is selected by the LBDM.
The second one is to maintain a ready job queue (RJQ). In a
heavy load environment, the LBDM may not always return a
PU that can receive a new job without decreasing the
performance of some other active process instances running
on it to a value lower than a pre-defined threshold. Then all
new incoming process instances will be held in RJQ. A
WFMS administrator configures the size of a RJQ according
to the peak load expectation of the WFMS and available
system resources.

The Distributed Worklist Management (DWLM) is
implemented on top of the WFMS Worklist Manager
(WLM). Worklists are interfaces between business processes
and their participators. The WLM is the WFMS component
that implements the worklist and work item services between
Workflow Engine and clients. The WLM connects to
Workflow Engine through a group of queues. It has two
major client classes: custom client applications that talk to
the WLM with WFMS API; human clients that access their
worklists from the WLM through web browser.

The need for to maintaining, manipulating and accessing
distributed worklists comes from the need for supporting
WFMS configured with multiple Process Units and load
balancing among multiple PUs. In a multiple PU WFMS
configuration, process instances of a business process may be

SAC 2001

scheduled to run on different PUs due to the system
workload distribution and load balancing strategies. A
participator of this business process may need to execute
work items of the process instances generated from different
PUs. It’s not a practical to force a client to go through
worklists of all PUs in the system to access his/her work
items. The objective of the DWLM is to create a virtual,
consistent worklist image for both process initiator and
process participators, i.e. WFMS resource roles.

Business processes are deployed on all PUs. Every process
belongs to a process group. All PUs have the same business
process group structure in a multiple PU WFMS. Worklist
definitions on all WLMs are identical, so are user accounts
on all PUs. Users can access worklists from all WLMs
theoretically, but each worklist has a default host WLM.
From the users viewpoint, they access their worklists from
the host WLM of their worklists only. Each PU has a DWLM
component. All DWLMs are connected with each other
through a message bus. From the viewpoint of the Workflow
Engine, the DWLM acts just like a WLM. From the
viewpoint of the Worklist Manager, the DWLM acts on
multiple PUs just like a WLM acting on a single PU. The
WLM accesses worklists from the DWLM instead of queues
of each PU. The DWLM monitors the worklist and work
item information from queues of each PU. The DWLMs have
the knowledge of which worklist is hosted by which WLM.
They exchange work items with each other periodically. The
DWLM only creates a virtual consistent worklist image of a
worklist on its host WLM since the overhead of maintaining
the same single virtual worklist image of each worklist on
every WLM is high.

4.3 Distributed Worklist Management
The consistency of distributed virtual worklists of a WLM is
maintained by the DWLM in the same PU. When the DWLM
gets a work item from a worklist of the WLR in the same PU
and finds out that the host WLM of this worklist is in the
same PU, it adds the work item to the end of the
corresponding virtual worklist. If the host WLM of this
worklist is not the local WLM, then the DWLM will send the
work item to the PU that has the host WLM of this worklist.
When the DWLM gets a work item from other DWLMs, it
attaches a PU identifier (PUid) to the work item before
adding it at the end of the corresponding virtual worklist.
When WFMS client completes a work item, the default
WLM will send the work item to a virtual Send Queue. This
Send Queue is accessed by the local DWLM. The DWLM
checks the attached PUid of the work item before dispatching
it. If the PUid is null, then this work item is sent to the Send
queue of the local PU. Otherwise, the work item is sent to the
PU indicated by the PUid.

Fig. 4 Load Balancing Subsystem For WFMS

4.4 Load Balancing in Processing Unit
cluster of WFMS
The objective of balancing workload in a distributed WFMS
with multiple Process Units is to improve the performance of
entire process instances and individual activities in process
instances. In order to achieve these objectives, the load
balancing sub system needs to allocate jobs to all PUs in the
distributed WFMS in a way that PUs can have uniform
workload according to the load index defined in section 3.

We assume the following: first, the basic scheduling unit of
LBS is a process instance; second, the workload is scheduled
during the initiation stage; and third, there is no active
process instance migration between Process Units.

According to formula (3.1), in order to reduce wnT of a
Process Unit, we should either reduce the value of λ or
control the number of active process instances in the Process
Unit, aPIN . The λ is a platform dependent parameter that
the load balancing subsystem cannot control. In order to
reduce λ , the system should have better hardware and
network connection. We focus our efforts on controlling the
number of active process instances in a Process Unit.

We present two Process Unit scheduling algorithms for
workload control: Round Robin and Load-Aware. The
Round-Robin algorithm schedules Process Units one at a
time. It is effective when the processing power of each
Process Unit is identical, the process types are the same, the
initial load level of all Process Units are similar, and the
resource role processing capacities are uniform. When any of
these conditions is not satisfied, the workload of Process
Units will not be distributed evenly.

The Load Aware PU Scheduling Algorithm (LAPSA) is our
solution to above problems. It has the ability to balance the
workload of Process Units according to their current load
index without considering relative processing capabilities of
Process Units.

SAC 2001

Fig. 5 shows the working procedure of LAPSA. The
components participating in the PU scheduling procedure
include LBJS, LBDM, LBWM and all PUs in the WFMS.

LBJS LBDM LBWM PUs

L2

L1

PUq1

PUq3

PUq2

Fig. 5 Procedure of PU scheduling algor
The LBWM queries the load index parameters fro
once in a fixed load query interval. The LBD
Process Unit scheduling requests from the LBJS.
the most current load information from the L
LBDM returns a PU handler to the LBJS accor
current load index information and the load pol
the LBDM always returns the PU with the lowest
The LAPSA reduces the new job arrival ratios o
higher load index values, through sending new jo
with the lowest load index.

5. EXPERIMENTAL RESULTS

We implemented a prototype WFMS with a he
PU cluster and a load balancing subsystem
workflow management system that has only on
prototype includes two PUs. One PU is installed
Unix workstation. The other one is installed on
running NT server. A PC with Pentium III 600M
used to generate workload, measure the load
execute the tasks that are defined in work items o
all resources that participate in the test business p

We measured the activity response latency of 2
processes on two different system configuratio
cluster with Round-Robin PU scheduling policy
cluster with Load Aware PU scheduling policy.

Fig. 6 illustrates the trend of wnT under R
scheduling policy. Each PU executes 100 proces
Fig. 7 shows the trend of wnT with the L
scheduling policy. When the job arrival rate is 2
through Round-Robin scheduling policy, the
maintains an average wnT around 12 relative
However, the slower WFMS installation on
workstation still shows a linear increase of wnT
instances with even PI identifiers. When
workstation receives the 100th process instance, t
no new jobs to be started by the LBJS. Thus, the

increasing for the Unix workstation. When the number of
active process instances decreases, the wnT decreases, too.
The Round –Robin Algorithm distributes jobs to multiple
PUs. However, this policy will cause problems when either
the processing capabilities of PUs are not identical, or the
load levels of PUs are not even. Approximately 50% of
Process Instances that were processed by the Unix
workstation have a wnT value higher than 700 relative delay Load query

ithm
m each PU
M receives
 It then gets
BWM. The
ding to the
icy. So far,
 load index.
f PUs with
b to the PU

terogeneous
based on a
e PU. This
 on a slow
 a fast PC
Hz CPU is

 index and
n behalf of

rocess.

00 business
ns: WFMS
and WFMS

ound-Robin
s instances.
oad Aware
50 PI/hour,
NT server
delay unit.
 the Unix
for process
the Unix

here will be
 wnT stops

units with Round-Robin scheduling policy.

The Load Aware Scheduling policy sends job to the PU that
has the lowest load level. This load level is measured by the
load index that is defined in section 3. In our test, The
LAPSA sends 132 out of 200 Process Instances to NT server
and 68 Process Instances to the Unix workstation. The
average wnT of the NT server is maintained at approximately
18 relative delay units. The average wnT of the Unix
workstation is around 50 relative delay units. The balancing
value of wnT between these two PUs is around 28 relative
delay units. Since the LBWM updates the load index for each
PU in a fixed time interval, the LBDM may allocate jobs to a
PU that just received large number of jobs before the LBWM
refreshing its load index in the LBDM. That’s why the Unix
workstation has its average load index around 50 relative
delay units. However, if the LBWMs update load index of
their PU frequently, the load balancing subsystem will
consume many CPU cycles and then will decrease the
performance of all components of the WFMS. The faster PU
processed more jobs with the LAPSA. There were few
process instances that had their wnT higher than 100 relative
delay units. There is a significant performance improvement
to the execution of 200 test process instances.

The reason for having fluctuation on curves in Fig 6 and 7 is
that resource roles always get more than one work item from
the WLM every time the WFMS is loaded. The process time
of an activity whose work item was pre-fetched is shorter
than that of the activity whose work item was received from
the WLM right before it was processed.

6. Conclusions

In this paper, we proposed a load index for job scheduling in
distributed Workflow Management System. We studied a
distributed WFMS architecture with distributed worklist
management mechanism and load balancing sub system. We
then presented Load Aware Process Scheduling Algorithm
(LAPSA) for WFMS. The performance improvement of the
LAPSA was verified on a distributed WFMS. The test results
show that our load index represents the load level of PUs
accurately and it can handle the heterogeneities of WFMS.

The load aware balancing mechanism is suited for managing
load of distributed workflow management system in order to
achieve scalability. This mechanism gives WFMS the ability
to support deadline and execution priority properties for
business processes with multiple PUs. It also gives WFMS

interval

SAC 2001

engine the ability to maintain quality of service for running
process instances.

There has been many research efforts on defining load index
and developing load-balancing policy for distributed systems
[16][7][6][12]. Our work shares some common objectives
with those efforts. However, our work focuses on load
control technology within WFMS in which business
processes are the workload of the distributed system.

The load balancing in distributed workflow management
systems is an open research area. Our future research
directions will include: ensuring scalability in large scale
distributed WFMS with PU cluster through improving load
measurement and job scheduling technologies; enabling new
features for business process definition through load control
and re-configuring the system dynamically.

WFMS on Unix Workstation: Round-Robin Scheduling

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

Arrival Order of Process Instances

Tw
n

WFMS on NT Server: Round-Robin Scheduling

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Arrival Order of Process Instances

Tw
n

 Fig. 6 Twn/job order relation under Round-Robin
Scheduling.

(200 Process Instances, Job arrival rate = 250 PI/hour,
100 on NT Server, 100 on the Unix workstation)

WFMS on Unix workstation: Load Aware Scheduling

0

20

40

60

80

100

120

0 50 100 150 200 250

Arrival order of Process Instances

Tw
n

WFMS on NT Server: Load Aware Scheduling

0

20

40

60

80

100

120

0 50 100 150 200 250

Arrival Order of Process Instances

Tw
n

 Fig. 7 Twn/job order relation under Load Aware
Scheduling.

7. REFERENCES

[1] Andreas, B. Simplify with COM+ load balancing,
Visual Basic Programmer’s Journal, Vol. 9, No. 11,
pp30-34. 1999.

[2] S. Baker and B. Moon, Distributed Cooperative Web
Servers, Proceedings of the 8th International World
Wide Web Conference, 1999

[3] Fabio Casati, Models, Semantics, and Formal Methods
for the design of Workflows and their Exceptions ,
Ph.D. thesis, Politecnico Di Milano, 1998.

[4] O. Damani and P. Chung and Y. Huang and C. Kintala
and Y. Wang, Techniques for Hosting a Service on a
Cluster of Machines, Computer Networks and ISDN
Systems, vol. 29, 1997.

[5] R. Farrell, Distributing the Web load, Network World,
1997

SAC 2001

[6] D. Ferrari, S. Zhou, A load index for dynamic load
balancing, 1986 Proceedings of Fall Joint Computer
Conference, Nov. 2-6, 1986, Dallas, Texas.

[7] Susan F. Hummel, J. Schmidt, R.N.Uma, J. Wein,
Load-Sharing in Heterogeneous System via Weighted
Factoring, Eighth Annual ACM Symposium on
PARALLEL ALGORITHMS AND
ARCHITECTURES, SPAA'96, June 24-26 1996,
Padua, Italy.

[8] E. Katz and M. Butler and R. McGrath, A scalable
HTTP server: The NCSA prototype, Computer
Networks and ISDN Systems, Vol. 27, 1994.

[9] Peter Lawrence, Workflow Handbook 1997, Workflow
Management Coalition , Jan. 1997.

[10] http://Letsbuyit.com

[11] Frank Leymann, Dieter Roller, Production Workflow:
concepts and Techniques. Prentice-Hall, Inc. 2000.

[12] P. Mehra, B.W. Wah, Automated learning of load-
balancing strategies in programmed distributed systems,
International Journal of Systems Science, Vol. 28, no.
11. pp 1077-1099.

[13] Dejan S. Milojicic, Milan Pjevac, LoadBalacing Survey,
Proceedings of the Autumn 1991 EurOpen Conference,
Sept. 1991, Budapest, Hungary.

[14] Erhard Rahm, Dynamic Load balancing in Parallel
Database Systems, Proceeding of Euro-Par 96
Conference, LNCS, Springer-Verlag, Lyon, Aug. 1996.

[15] Thomas Schnekenburger, Load Balancing in CORBA:
A Survey of Concepts, Patterns, and Techniques, The
Journal of Supercomputing, Vol. 15, Issue 2, 2000.

[16] Niranjan G. Shivaratri, Mukesh Singhal, A load index
and a transfer policy for global scheduling tasks with
deadlines, Concurrency: Practice and Experience, Vol.
7(7), 671-688, Oct. 1995.

[17] Jeffery WestBrook, Load Balancing for Response
Time. Journal of Algorithm 35, 1-16 (2000).

[18] WfMC, Interface 1: Process Definition Interchange –
Process Model, Ver. 1.1, Oct. 1999.

[19] S. Zhou and D. Ferrari, A Trace-driven Simulation
Study of Dynamic Load Balancing, Trans. On Software
Engineering, 14(9), pp 1327-1341, IEEE (Sept. 1988).

http://www.amazon.com/exec/obidos/Author=Lawrence%2C Peter/102-9576214-4957704
http://www.amazon.com/exec/obidos/Author=Workflow Management Coalition/102-9576214-4957704
http://www.amazon.com/exec/obidos/Author=Workflow Management Coalition/102-9576214-4957704

	INTRODUCTION
	A WFMS PROTOTYPE
	Process Model
	WFMS Architecture

	WFMS LOAD MODEL
	LOAD BALANCING IN A WFMS
	WITH WF ENGINE CLUSTER
	Objectives of load balancing in WFMS
	Design of Load Balancing Subsystem
	Distributed Worklist Management
	Load Balancing in Processing Unit cluster of WFMS

	EXPERIMENTAL RESULTS
	Conclusions
	REFERENCES

