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Abstract. These days it is rather common in cryptology to see ideas which originated in the

setting of �nite �elds being extended to Z�

N. However, the security results do not necessarily

generalise to Z�

N. In this paper we illustrate this phenomenon by pointing out a 
aw in the

soundness proof of a zero-knowledge protocol in a timed commitment scheme of Boneh and

Naor.

1 Introduction

These days it is rather common in cryptology to see ideas which originated in the setting of
�nite �elds being extended to Z�

N
. However, there is usually an asymmetry for protocols using Z�

N

since one party knows the group order while the other parties don't. Therefore, the owner of the
factorisation ofN can potentially cheat in a way which cannot be detected by the other parties. The
purpose of this paper is to emphasise this subtlety in the development of cryptographic protocols
which use Z�

N
.

As an illustration we study the timed commitment scheme of Boneh and Naor [1]. This is
a commitment scheme where the committed value can be recovered, after a certain amount of
computational e�ort (time), without the assistance of the committer. Part of the commitment in

their scheme is the number u = g2
2
k

(mod N) where N is a product of two large primes. When

the factorisation of N is known then it is easy to compute u (just compute a = 22
k

(mod '(N))
and then u = ga(mod N)). The underlying assumption is that, when the factorisation of N is not
known, computing u cannot be done any faster than the cost of 2k serial squaring operations.

For their scheme it is important that a committer prove to a veri�er that the number u is of the
correct form. In Section 2 we recall the protocol suggested by Boneh and Naor to achieve this. In
[1] it is claimed that a dishonest committer cannot cheat in that protocol with probability better
than about k=d where d depends on the factorisation of N . A veri�er knows that d > B where
B is a certain security parameter. Boneh and Naor suggest k � 40 and B � 128 so, as far as the
veri�er is concerned, the cheating probability is around 1=3.

In Section 3 we show that a dishonest committer has a cheating strategy for which the probabil-
ity of successful cheating is 1=2 (regardless of the chosen values for k and B). The general principle
behind the attack in Section 3 is a well-known trick available in groups which contain elements of
small order. Such an attack is usually prevented by checking the orders of group elements during
the veri�cation process, but this cannot be performed when the veri�er does not know the relevant
group order.
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It is not possible to point out the error in the soundess proof of [1] because a proof is not given.
Instead the authors simply refer to the work of [2], which is based on �nite �elds rather than Z�

N
.

We stress that the basic principles of the scheme of Boneh and Naor are sound, though a
solution with greater functionality has been provided by Mao [5].

We hope that this paper acts as a warning to researchers in the cryptologic community to be
very careful when adapting protocols from �nite �elds to the case of Z�

N
(see Section 3 of [3] for

some related examples).

2 The protocol of Boneh and Naor

The committer constructs N = p1p2 to be a product of two primes. In [1] there is no requirement
that the primes have a special form. The committer chooses an element h 2 Z�

N
and sends it to the

veri�er. Using this, the committer and veri�er can both construct an element g 2 Z�
N
such that no

primes l < B divide the order of g. This condition on the order of g is intended to enable the proof
of the soundness result, but as we will show, this condition is not suÆcient. Let q be the order of
g (which is only known to the committer).

The committer has published an element u 2 ZN and an integer k and wants to prove to a

veri�er that u � g2
2
k

(mod N).

To achieve this the committer publishes bi = g2
2
i

(mod N) for i = 0; 1; : : : ; k (i.e., bk = u). The

committer then proves that each triple (g; bi�1; bi) is of the form (g; gx; gx
2

) using the following

protocol:

1. The verifer sends commitments to integers 0 � ci � R for i = 1; 2; : : : ; k (where R is a security
parameter).

2. The committer chooses random numbers �i 2 Zq for i = 1; 2; : : : ; k and sends the values
zi = g�i(mod N), wi = b�i

i�1
(mod N) to the veri�er.

3. The veri�er opens the commitments to the ci.
4. The committer checks the commitments and, if they are all correct, sends yi = ci2

2
i�1

+
�i (mod q) for i = 1; 2; : : : ; k to the veri�er.

5. The veri�er checks whether

gyib�ci
i�1

� zi (mod N) and b
yi

i�1
b�ci
i

� wi (mod N)

for i = 1; 2; : : : ; k and accepts the run of the protocol if all these congruences are satis�ed.

It is easy to check that this protocol is complete (i.e., that a veri�er will accept the protocol
if the committer performs all operations correctly). In [1] it is claimed that the probability of
sucessful cheating by the committer in this protocol is at most k(1=d+�(d��)=(dR2)) where d is
the smallest prime factor of q and where � = R (mod d). Since the veri�er only knows that d > B

a suspicious veri�er can only know that the probability of successful cheating is around k=B.

3 The 
aw

Consider the following cheating strategy by a dishonest committer. Instead of publishing the correct

value g2
2
k

(mod N) one can publish u = �g2
2
k

(mod N) where � 2 Z�
N

has order l. Finding an
element � is easy since the committer knows the factorisation of N and may have even constructed
N speci�cally with this attack in mind. Even without knowing the factorisation one can always
choose � = �1 and l = 2.

We now explain how to behave during the protocol described in Section 2. All the bi may be
calculated correctly for i = 1; 2; : : : ; k� 1. The value for bk is of course set to be equal to u. Then,
all the zi; wi and yi may be calculated correctly for i = 1; 2; : : : ; k with the exception of wk which
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is taken to be �rb�k

k�1
where r is chosen at random in Zl. All the checks by the veri�er will be

successful except possibly for the ones involving bk or wk. The only equation involving either bk or
wk is the test whether

b
yk

k�1
b�ck
k

� wk (mod N):

If �ck � r (mod l) then this check will pass successfully.
It is obvious that the probability of successful cheating is 1=l. In the case where � has order 2

then this is a higher probability of cheating than that claimed by Boneh and Naor.
It is possible to develop a scheme with a higher soundness probability using methods such as

those in [4], [3] and [5]. However, we believe that it is necessary to use a modulus with a special
structure to achieve this (e.g., a product of safe primes). Basically, it is not only necessary to ensure
that a speci�c generator does not have small primes dividing its order, but to ensure that the group
itself does not have small primes dividing its order (obviously the prime 2 has to be handled in a
di�erent way).
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