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ABSTRACT

Long battery life and high performance multimedia decoding are competing design goals for portable appliances.
For a target level of QoS, the achievable battery life can be increased by dynamically adjusting the supply voltage
throughout execution. In this paper, an efficient offline scheduling algorithm is proposed for preprocessing
stored MPEG audio and video streams. It computes the order and voltage settings at which the appliance’s
CPU decodes the frames, reducing energy consumption without violating timing or buffering constraints. Our
experimental results elucidate the tradeoff of QoS and energy consumption. They demonstrate that the scheduler
reduces CPU energy consumption by 19%, without any sacrifice of quality, and by nearly 50%, with only slightly
reduced quality. The results also explore how the QoS/energy tradeoff is affected by buffering and processor
speed.
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1. INTRODUCTION

Energy is a critical scarce resource for portable battery-powered appliances. Such devices typically consist of a
variable voltage variable speed CPU, RAM, ROM, a radio interface, a micro-display, and glue logic. The CPU
can contribute as much as 12% of the energy of the system.1, 2 This component is therefore an attractive target
for energy minimization.

Emerging uses for portables include multimedia applications such as video telephony, movies, and video
games. These applications impose strict quality of service requirements in the form of timing constraints.
Ignoring energy consumption, operating the CPU at its highest speed is best for meeting timing constraints.
However, high speed operation quickly drains the batteries. Thus there is a tradeoff between reduced energy
consumption and increased quality of service.

For multimedia decoding applications, the processing speed and energy consumption required for a given
quality of service depends on frame timing constraints and on task complexity. Timing constraints in turn
depend on frame decoding order requirements, client display buffer availability, and stream synchronization
limits. Throughout the playback of a stream, the complexity of frame decoding and the time remaining to
meet the next deadline varies dynamically, which raises the potential for selectively reducing processing speed
to reduce energy consumption when timing constraints can be met easily.

Voltage scaling technology has the potential to exploit such variability in the ease of meeting timing con-
straints. By adjusting the operating voltage of the processor, the energy consumption and speed can be con-
trolled.3 Power regulators and variable voltage processors with response times in the microseconds range are
available.4 Fast response time makes it practical to dynamically adjust the voltage at run time.

This paper evaluates the impact of dynamic voltage scaling (DVS) on the QoS/energy tradeoff. It proposes
an efficient offline scheduling algorithm that assigns voltages to tasks such that timing constraints are met and
energy is minimized in a uniprocessor platform with a known number of display buffers. The algorithm assigns
a single voltage per task, and each task decodes without preemption a single media frame. The algorithm also
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determines the order in which the tasks are decoded, subject to precedence constraints. Namely, tasks within
a stream are constrained to a fixed partial order of execution. The algorithm constructs an interleaved total
order of execution that does not violate the partial order of any stream.

The algorithm could be employed by a media server delivering stored media to portable appliances. To
obtain the schedule, the server must pre-process the media and have knowledge of the hardware configurations
of the clients. The insight is to leverage the relatively abundant computing and storage at media servers in
order to manage more efficiently the scarce resources of portable clients. At playback time, the server transmits
both the media streams and the decoding schedule to the clients. The bandwidth overhead of transmitting the
schedule is negligible. For example, four bits per frame, say, could select the voltage/frequency of execution. For
a frame size of 720x480 with 24 bits per pixel and a compression ratio of 25, the overhead is 4∗25

720∗480∗24 = 0.00001
or 0.001%. The media and the schedule can be delivered to the client using the DSM-CC protocol.5 Prior to
playback, the server may present to the client a range of choices of playback QoS together with the corresponding
levels of energy consumption. With DVS, the energy consumed at desirable resolutions may be lower than that
consumed with a fixed voltage system.

The paper is organized as follows. Section 2 summarizes related scheduling techniques for energy mini-
mization. Section 3 formulates the energy optimization problem by deriving timing and precedence constraints
from a model of the decoding hardware. Section 4 explains the scheduling algorithm. Section 5 reports the
experimental results. Finally Section 6 presents conclusions.

2. RELATED WORK

Previously proposed scheduling techniques for reducing CPU energy can be classified into two categories: best-
effort, and hard real-time scheduling. Best-effort schedules lack deadline constraints, whereas hard real-time
schedules enforce them. For example, a number of best-effort scheduling methods to reduce energy while preserv-
ing interactive response for general purpose computing have been proposed.6, 7 Other best-effort schedulers can
handle general precedence constraints either by formulating the problem in terms of DFGs8 or computationally
expensive linear programming.9, 10

In this paper, we focus only on hard real-time schedules. For periodic tasks, an approach based on rate
monotonic scheduling,11 with extensions for power reduction has been proposed.12 Unlike our approach,
that algorithm does not consider precedence constraints and assumes that the tasks are pre-emptable. A more
general approach that handles arbitrary task arrival times and deadlines was presented by Yao et al.13 That
work, too, assumes pre-emptable tasks and does not include precedence constraints. Heuristics for scheduling
non-preemptable tasks are proposed by Hong et al.14 That work, however, also does not respect precedence
constraints.

3. OPTIMIZATION CONSTRAINTS

The goal of the algorithm is to find a schedule for the portable client to decode and present MPEG movies with
minimal CPU energy consumption while meeting all deadlines. In addition, the client’s display buffers must not
overflow. Our approach consists of two interdependent operations. One is to schedule the order of interleaving
of the audio and video frame decoding tasks, subject to precedence constraints within each stream. The second
operation is to assign for each frame the voltage and frequency at which it is processed.

An MPEG movie consists of a video stream and an audio stream. For quality playback, each stream must
be displayed at its sampling rate (intra-stream), and the two streams must be synchronized (inter-stream).
For instance, the sampling rates of video and audio can be 33 fps and 44K samples/sec.15 The synchroniza-
tion between corresponding video and audio frames must be within 80 ms to avoid perceptible degradation.16

Flexibility in the synchronization increases the options for scheduling.

Decoding consists of three steps: input, decoding, and display. An example for video is shown in Figure
1(a).17 Encoded frames arrive to an input buffer. We assume that the input buffer masks any jitter on the input
channel. Next, the variable voltage CPU retrieves each frame from the input buffer, decodes it and places the
result in either the audio or video display buffer. The decoded frames are removed from the display buffers by
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the display hardware, which displays audio and video frames simultaneously. For double buffering, each display
buffer has minimum capacity of two frames. Deeper buffers increase scheduling flexibility.

The order of decoding and display can differ for video. This difference must be accounted for by the
scheduling algorithm. The order differs when bidirectional predictive coded frames (B) are used. To decode
a B frame, the previous (in display order) I or P frame and the next P frame are referenced. Therefore, two
reference buffers are dedicated to store the corresponding I and P reference frames.

Each frame can potentially be decoded at a different voltage level. To determine the correct setting, the
scheduling algorithm needs to know, for each frame, the energy consumption and execution time at each voltage
setting. One way to gather that information in advance of scheduling is to probe with measurement equipment
a device that is identical to the portable client.

The parameters used in the algorithm are listed in Table 1. Using that notation, we next derive the values
of the display, deadline, and minimum start time parameters.

For video, the mapping d(i) from decode order (τ0, τ1, τ2, . . . ) to display order (τd(0), τd(1), τd(2), . . . ) is as
follows:

d(i) =




i− 1 If τi is a B-frame

i+m(i) If τi is a P-frame or I-frame
(1)

- b, b′ number of extra video and audio display buffers (exam-
ple: b = 1 for double buffering for video).

- Di, D
′
j display time for video frame τi and audio frame τ ′

j .

- E total energy consumption.

- Eidle the energy consumed in one time unit in idle mode.

- Ei,l the energy spent by video task τi at voltage level l.

- E′
j,l the energy spent by audio task τ ′

j at voltage level l.

- K synchronization skew between the end of display of a video
and audio frame (0 ≤ K ≤ Kmax).

- Mi, M
′
j minimum start times for video frame τi and audio

frame τ ′
j .

- N , N ′ highest numbered video and audio frames.

- Ri, R
′
j decoding deadline for video frame τi and audio frame

τ ′
j .

- Ts, T
′
s sample time (normalized to 1 ms units of time) for

video and audio frames.

- Ti,l the execution time of video task τi at voltage level l.

- T ′
j,l the execution time of audio task τ ′

j at voltage level l.

- t0 is the time of display of the first video frame

- τi frame i of the video stream, i = 0, 1, . . . , N − 1.

- τ ′
j frame j of the audio stream, j = 0, 1, . . . , N ′ − 1.

- vl the supply voltage for l = 0, . . . , lmax number of discrete
voltages.

Table 1: Algorithm Parameters
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where m(i) is the number of consecutive B frames immediately after τi in decode order. An example of the
difference between decode and display order is shown in Figure 1(b).

The display time Di of video task τi is t0 + Ts · d(i). Similarly, the display time D′
j of audio task τ ′j is

t0 + T ′
s · j + K. Note that the video stream begins no earlier than the audio stream because video ahead of

audio is tolerated better than the reverse.16

Each frame must be decoded before its display time. In addition, a frame used as a forward reference frame
(i.e. P frames and some I frames) must be decoded before the display time of the B frame that follows it
immediately in decode order. Therefore, the decoding deadline Ri for task τi is the following:

Ri =




If τi is a B-frame, or
Di (τi is an I-frame and

τi+1 is an I- or P-frame)

If τi is P frame, or
Di+1 (τi is an I-frame and

τi+1 is a B-frame)

(2)

The minimum start time Mi for the decoding of video frame τi is determined by the fixed decoding order
within a stream and by the video display buffer capacity. For those P and I frames that are decoded into
the reference buffers instead of the display buffers, the minimum start times are determined only by the fixed
decode order. Thus for those frames, Mi = Mi−1. Otherwise, for all other frames that do not satisfy this
condition, the minimum start time is the maximum of Mi−1 and the time when decoding gets as far ahead of
the display process as possible. That limit is determined by the size of the display buffer. Therefore Mi equals
the maximum of Mi−1 and the display time of the frame which is b ahead of τi in display order. That frame
is τd−1(d(i)−b). For audio task τ ′j , the minimum start time M

′
j depends only on the display buffer occupancy.

Thus:

M ′
j = Dj−b′

Mi =




If (τi is I/P & τi−1 is B)
Mi−1 or (τi is P & τi−1 is I)

or (τi is I & τi−1 is P)

If (τi is I & τi−1 is I)
max(Mi−1, Dd−1(d(i)−b)) or (τi is P & τi−1 is P)

or (τi is B)

0 If i = 0

(3)

The scheduling problem is as follows:

Find a voltage setting (Vi or V ′
j ) for each task (τi or τ

′
j) and a non-preemptive execution schedule

such that the total energy consumption

E =
N−1∑
i=0

Ei,Vi +
N ′−1∑
j=0

E′
j,V ′

j
(4)

is minimized subject to ordering and timing constraints. Frames in a stream must be processed in
decode order, and their processing must obey the minimum start times and deadline constraints.

4. SCHEDULING ALGORITHM

To be efficient, the scheduling algorithm must implicitly rule out a large number of orderings without explicitly
examining them. The key observation that enables enough orderings to be pruned is that many schedules share
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identical dependences at particular intermediate points in their executions. Specifically, suppose that a number
of feasible schedules all begin by executing (in various orders and voltage settings) exactly i video frame tasks
and j audio frame tasks. Suppose each such schedule finishes processing the i video and j audio frame tasks at
exactly the same time Tsplit. After time Tsplit, all the schedules have the same remaining work and same time
to meet future deadlines. Therefore, the scheduling of tasks after Tsplit is independent of the differences in the
schedules prior to time Tsplit.

Conceptually, we can split each schedule above into two independent “subschedules”: the initial subsched-
ule prior to Tsplit, and the subsequent subschedule after Tsplit. A complete energy optimal schedule can be
constructed by concatenating any minimum energy initial subschedule to any minimum energy subsequent
subschedule.

An early development in the theory of real-time task scheduling that used a similar concept was a dynamic
programming problem formulated by Lawler and Moore.18 Their algorithm finds a non-preemptive schedule
that minimizes an arbitrary non-decreasing cost function under task deadline constraints. Our optimization
problem can be partially mapped to that approach, with two differences. A difference that requires only
straightforward modifications is that our tasks have minimum start time constraints. The more significant
difference is that we support multiple synchronized streams of tasks, which requires a search of the feasible
interleaved orderings of tasks of multiple streams. One way to support multiple streams is to add dimensions to
the dynamic programming formulation. However, that would increase the computational complexity by a factor
of n for each new stream, where n is the number of tasks in a stream. For long streams or for many streams,
that cost is unacceptable. We show below how to avoid it by exploiting knowledge about the system’s memory
resources. With this approach, the display buffer size b bounds the number of task orderings to consider. It
also constrains the number of possible task completion times to be within a small time window.

We define the time windows wi,j in which i and j are the number of tasks in each stream that have
executed in a subschedule. The range of times [ti,jmin, t

i,j
max] within window wi,j includes the set of all permissible

completion times of the last task executed (either τi−1 or τ ′j−1). Let t be an offset into the time window wi,j

(i.e. 0 ≤ t ≤ ti,jmax − ti,jmin). The lower bound ti,jmin for wi,j is the earliest time when both τi−1 and τ ′j−1 are
complete. To assure that both are complete after ti,jmin, its value is the maximum of the minimum start times of
both tasks. Both tasks are guaranteed to be complete by time ti,jmax, which is the latest deadline of both tasks.
Thus

ti,jmin = max(Mi−1,M ′
j−1) (5)

ti,jmax = max(Ri−1, R′
j−1) (6)

As an example, Figure 2(a) shows a time window w5,4. In the example, t
5,4
min = M4 because M4 > M ′

3. Also,
t5,4max = R′

3 because R
′
3 > R4. It can be shown that an upper bound on the length (ti,jmax − ti,jmin) of any time

window is the product of the sampling time and the number of display buffers for one stream.

The range of values or i and j is given by the following condition:

i, j such that ti,jmin < min(Ri, R
′
j) (7)

If i and j violate this condition, then the time window starts too late to complete one or both τi or τ ′j , and the
time window is not considered by the algorithm.

To understand how the condition ti,jmin < min(Ri, R
′
j) limits the algorithm’s complexity by limiting the

combinations of i and j values, consider the case of equal sampling times for the two streams: Ts = T ′
s. Then,

some algebra reveals that the condition is satisfied by j = 1, 2, . . . , N ′ and i ∈ [d−1(j − b′ +K/Ts), d−1(j + b+
K/Ts)]. The intuition is as follows. As the skew K increases, the deadlines and minimum start times of the
audio tasks are delayed relative to their corresponding video tasks. That decreases the task number of the next
audio frame that can execute at each point in time without affecting the task number of the next video frame
that can execute. Therefore the allowed value of i is increased by K/Ts relative to j, which explains the shift
by K/Ts in the range for i. If the skew K = 0, then the audio and video frames in display at any time have

5



M3=R1 M4=R2 M5=R3 M6=R4 M7=R5

M ′
3=R

′
0 M ′

4=R
′
1 M ′

5=R
′
2 M ′

6=R
′
3 M ′

7=R
′
4

t5,4
min

t5,4
max

time

time

time

(a) Example: time window bounds for w5,4. Example
minimum start times and deadlines are shown for each
stream. Assume for simplicity that all video frames
are I or B frames, thus display time equals decoding
deadline, just as for audio. Buffer sizes are b = 2 and
b′ = 3.

τi−1

τi

τ ′
j

ti,j
min ti,j

maxti+1,j
min ti+1,j

max

ti+1,j+1
min ti+1,j+1

max

T i,j
split

T i+1,j
split

T i+1,j+1
split

time

IDLE

(b) Example: windows of adjacent vertices. Windows
wi,j , wi+1,j , wi+1,j+1 are shown. Note that task execu-
tion can be interrupted by idle periods.

Figure 2: Time Windows and Task Execution

the same display number, but the frames being decoded have display and decode numbers that depend on the
state of the display buffers. For decoding, j gets the furthest ahead of i when the audio buffer is full and the
video buffer is empty. In this case, d(i) = j − b′, and i = d−1(j − b′), the lower bound for i. Similarly j is the
furthest behind i in decoding when the video buffer is full and the audio buffer is empty. Thus i = d−1(j + b),
the upper bound for i. If we underrun the lower bound, a video deadline is missed. If we overrun the upper
bound, an audio deadline is missed.

We now describe the iterative steps of the scheduling algorithm, which is listed in pseudocode in Figure
3. The scheduling process can be visualized as the traversal of a graph. Each vertex Vi,j represents the set
of energy optimal initial subschedules that consist of exactly i video and j audio frame tasks. Vertex Vi,j is
associated with time window wi,j , the range of feasible completion times Tsplit of initial subschedules. An edge
from vertex Vi,j to vertex Vi+1,j represents the execution of video frame task τi immediately after an initial
subschedule. Execution of τ ′j is similarly represented by an edge from Vi,j to Vi,j+1. Figure 2(b) shows a possible
flow of execution of tasks τi−1, τi and τ ′j . Note the idle time between the completion of τi and the start of τ

′
j .

τ ′j is delayed until its minimum start time (M
′
j = ti+1,j+1min ).

For initialization, the display time t0 of video frame τ0 is set to the time when all the display buffers first
become full as a result of executing tasks at lowest voltage prior to any display. The algorithm next creates
(line 14) and visits vertices one “row” at a time, in each row covering all the values of i for a fixed value of j. A
vertex is created if its subscripts satisfy the constraint in Equation 7: ti,jmin < min(Ri, R

′
j). At vertex Vi,j , the

algorithm iterates through the time window (lines 15-21). At each Tsplit, it considers what would happen if task
τi or task τ ′j were to execute next at each voltage level. Execution of a task at a voltage that causes it to miss
its deadline is discarded. For each point in the time window, each proposed next task execution is appended
to the best initial subschedule. If the resulting longer subschedule has lower energy than that recorded in the
next vertex, then the record in that vertex is overwritten (line 18).

Once the algorithm reaches vertex (N,N ′), it scans all the entries in the time window of (N,N ′) to find the
schedule that uses the least energy. To extract the best schedule, the algorithm traces backward through the
graph, building a stack of task numbers, start times, and voltage settings.

The algorithm’s outer repeat loop executes for all possible settings of the skew between streams (K). K
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1: Suppose t0 is the display time of τ0. Then,
2:

3: ti,jmax = max(Ri−1, R′
j−1)

4: ti,jmin = max(Mi−1,M ′
j−1)

5: t0 =
∑b−1

i=0 Ti,0 +
∑b′−1

j=0 T ′
j,0

6:

7: Procedure SCHEDULE
8: for K = 0 to Kmax do
9: i = 1, j = 0: create vertex V1,0 and vertex V0,1
10: record execution of τ0 in V1,0
11: record execution of τ ′0 in V0,1
12: repeat
13: repeat
14: Conditionally generate vertices Vi+1,j and Vi,j+1
15: for t = 0 to (ti,jmax − ti,jmin) do
16: if Vi+1,j exists and an initial subschedule has been recorded for time window offset t then
17: Consider execution of τi (all voltages) after the initial subschedule, such that τi meets timing

constraints
18: Record new subschedule in Vi+1,j if it has lower energy than found so far at the same offset of

Vi+1,j
19: end if
20: repeat steps 16-18 for Vi,j+1 and τ ′j
21: end for
22: i++
23: until i > N or vertex Vi+1,j does not exist
24: j ++ /* next row */
25: i = lowest numbered col such that Vcol,j exists
26: until j > N ′

27: if a new optimal schedule found then
28: keep it
29: end if
30: delete the graph
31: end for
32: report the optimal schedule

Figure 3: Scheduling Algorithm

ranges from 0 to Kmax.

To derive the computational complexity of the algorithm, we consider the major steps it must complete for
two streams. At each vertex, it performs an O(1) operation for each of the O(Ts ∗ b) values in the time window.
For the O(Kmax) values of K, the algorithm visits O(N ∗ b) vertices. Therefore, the algorithm has complexity
O(Kmax ∗ Ts ∗N ∗ b2).

5. PERFORMANCE EVALUATION

Our initial goal for evaluation is to quantify the tradeoff between quality and energy savings. Our hope is
to improve the tradeoff through the use of dynamic voltage scaling (DVS), which exploits variability in the
execution times of frames. Our approach aims to provide insight into the design space by studying the impact
on quality and energy of two design parameters for the client hardware: processor frequency, and display buffer
capacity.
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5.1. Experimental setup

We measured decoding times on two machines, each having a fixed processor frequency and voltage: a Pentium
III at frequency Fhi = 500 MHz and voltage Vhi = 1.9V, and a Pentium II at frequency Fhi = 300 MHz and
voltage Vhi = 1.7. Execution time per frame was measured for a 1000-frame segment of the movie Batman
Forever in MPEG2 format. We obtained the execution time (Ti,hi) for frame i by instrumenting a software
decoder to measure elapsed time per frame. In the case of video we used the livid MPEG2 software decoder,
which uses MMX operations.19 For audio we used the livid AC3 software decoder.19

We wish to model client platforms, each having two voltage (Vlo, Vhi) and frequency (Flo, Fhi) settings. We
extrapolated the frame execution time measurements from the fixed voltage machines in order to obtain the task
energy-time tables for the DVS scheduling algorithm. We made three assumptions for the extrapolation. First,
frequency is inversely proportional to gate delay.14 Second, the number of cycles per frame remains constant
at any processor frequency. Here we assume that stalls due to the memory hierarchy structure are negligible.20

Third, for a given voltage setting, power dissipation is assumed constant. Thus energy is proportional to
execution time. This is a reasonable assumption since studies have shown that the power per instruction
remains fairly constant in the absence of non-ideal effects such as pipeline stalls.21

The data sheets for the Pentium II and Pentium III give the range of core voltages at which these processors
can operate.22, 23 We derived the frequency at which the processor would operate at the lowest voltage. Using
assumption one, frequency at some reference voltage is Fref = 1/tpref ∗ k. Propagation delay is tpref =
γ ∗ Vref/(Vref − Vt)2, where γ is a constant that depends on technology and total capacitance and Vt is the
threshold voltage.24 Taking the ratio, Flo/Fhi, and solving for Flo,

Flo = Fhi ∗ Vhi/(Vhi − Vt)2

Vlo/(Vlo − Vt)2
(8)

Using assumption two, Ti,lo = cycles/Flo = Fhi ∗ Ti,hi/Flo.
Using assumption three, energy per frame at the high voltage is Ei,hi = Phi ∗ Ti,hi, where Phi and Ti,hi

are respectively the dynamic power and execution time of frame i at Vhi. The dynamic power is given by
P = α ∗ Cl ∗ V 2

dd ∗ f , where α ∗ Cl, is the effective switching capacitance of the processor, Vdd is the supply
voltage and f is the processor’s frequency.24 We normalize power Phi to 1 when the processor operates at Vhi.
To extrapolate to operation at a lower voltage Vlo, we derive power Plo as a function of the previous parameters.
Taking the ratio, Phi/Plo, and solving for Plo, we get,

Plo = Phi ∗ (Flo/Fhi) ∗ (Vlo/Vhi)2 (9)

Thus Ei,lo = Plo ∗ Ti,lo.
There are many choices for metric of quality. For our experiments, we chose to use the scale factor s =

resolution of frame
max frame resolution as the metric of quality, where we define resolution as the product of the X and Y dimensions
of the frame (keeping the aspect ratio approximately constant). Despite our use of scale factor as a convenient
way to represent different resolutions, we do not mean to imply that there is a linear relationship between frame
resolution and quality. A scale factor is assumed to have better quality than any lower one, but otherwise it is
left to the user to assess the relative desirability of different scale factors (resolutions). We expect that most
users would experience high quality by operating close to scale factor s = 1. The maximum frame resolution
of the movie Batman is 720x480 = 354,600. To obtain lower resolution qualities of the movie, we used the
FlaskMPEG encoder25 to recode the movie to lower resolutions such that the scale factor varies between 0 and
1. To maintain the aspect ratio of the original picture (720/480 = 1.5), we only recoded to frame resolutions
that kept this ratio constant.

5.2. Frame execution times

Dynamic voltage scaling has the potential to reduce energy consumption by exploiting variability in the work-
load. We measured the variability in frame execution time for audio and video. For audio, little variability was
found; all frames took approximately 3 ms to decode. For video, more variability is expected because I, P, and
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B frames require different types of processing. Figure 4 shows the measured video frame execution times for
scale factors 0.73 and 1. Execution time varies significantly for different frames. The ratio of the maximum to
the minimum execution time is 1.33, a result that agrees with results reported recently by Hughes et al.20
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5.3. Energy savings vs picture quality

Our goal is to explore the relationship between levels of picture quality (QoS) and energy consumption. We
expect the energy consumption of DVS to increase with higher QoS, since DVS would have to speed up (using the
higher voltage setting) the decoding of more frames in order to meet the display deadlines. We show how much
energy can be saved if voltage-frequency per frame are scheduled by the DVS algorithm as opposed to decoding
all frames at the fixed highest voltage. Our experiments start with the following client hardware configuration:
the Pentium III processor, two core voltage settings, Vhi = 1.9V@500MHz and Vlo = 1.4V@316MHz and one
video (b = 1) and one audio buffer (b′ = 1). To reveal the energy savings delivered by the DVS algorithm, we
plot normalized energy vs. scale factor (QoS) in Figure 5(a).

The dvs curve shows energy consumption incurred by the DVS algorithm. The hi volt curve shows energy
consumption when all frames are decoded at the highest voltage (highest speed). And the lo volt curve shows
energy consumption when all frames are decoded at the lowest voltage (lowest speed). Of the three curves,
dvs and hi volt guarantee deadlines, but lo volt does not (at points where dvs uses more energy). From Figure
5(a), we draw several conclusions. The Pentium III processor can decode most of the low quality streams (<
0.69) entirely at the lowest voltage, and thus DVS has no impact in that range. At scale factor 0.69, not all
frames can be decoded at the lowest voltage and meet the deadlines. Above 0.69, there is a sudden increase
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Figure 6: Pentium II and buffering: Vhi = 1.7V, Vlo = 1.4V

in energy used by DVS. Despite this increase, the DVS algorithm decodes streams at lower energy than at the
fixed higher voltage setting.

Figure 5(b) shows the percent energy savings achieved by DVS versus decoding all frames at the highest
voltage, at the same scale factors. Even at the highest quality (scale = 1), DVS delivers 19% savings in energy.
Note that savings between 40% and 50% are achieved with only modest decrease in quality. The percent savings
decreases with higher quality because more frames must be decoded at the higher voltage. This is shown in
Figure 5(c), where we show the percentage of frames decoded with DVS at the high and low voltage vs scale
factor.

5.4. Display buffers

The results above all used a single model of the client hardware. Here we explore the impact of changing two
client hardware parameters: display buffer capacity and processor frequency. Increasing buffering increases the
flexibility of the DVS algorithm in scheduling the frame decoding start times. That may lead to lower energy
schedules. We increased the number of video and audio buffers in the following pair sequences: (1,1), (2,1),
(3,1), (2,2), (3,2), (3,3) and (6,3), where the first and second pair elements represent the video (b) and audio
(b′) buffers respectively.

For the Pentium III, increasing the number of display buffers resulted in minimal improvement in energy
savings (less than 2% at the same scale factors). This is because the Pentium III is fast enough to decode
the frames by their deadlines without exploiting the extra buffers. In contrast, it is plausible that a slower
processor could make better use of extra buffers for reducing energy. Therefore, we next evaluate the impact of
adding buffers to a slower Pentium II-based configuration with two core voltage settings: Vhi = 1.7V@300MHz
and Vlo = 1.4V@225MHz. We start with the b = 1 and b′ = 1 buffer combination and plot the total energy
consumption in Figure 6(a), just as we did with the Pentium III. For scale factors 0.73 and higher, the DVS
algorithm could not find a schedule even when decoding all frames at the highest voltage. Thus the QoS window
for which DVS improves the energy-QoS tradeoff is smaller with this hardware configuration, ranging between
0.6 and 0.73.

We next increase the number of buffers to increase scheduling flexibility. Figure 6(b) shows the energy
consumption incurred with the DVS algorithm for different video and audio buffer combinations. The primary
observation is that increasing the number of buffers does not significantly improve energy consumption. We
suspect this is because the variability in frame execution time is not severe enough to benefit from extra buffers
that could accomodate bursts. However, extra buffers do enable slightly higher quality video to be decoded
without missing deadlines. For the (1,1) buffer combination, the QoS window ranges between 0.6 and 0.73. But
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for the (3,3) and (6,3) combination, the QoS window ranges between 0.62 and 0.75. With more buffers, the
DVS algorithm can decode some frames earlier. Having more time for decoding, it can then decode all frames,
at s = 0.6, at the lowest voltage. Similarly, the algorithm can find an energy efficient schedule at s = 0.75.
Thus at 0.75 in Figure 6(c), the algorithm saves 16% in energy.

6. CONCLUSIONS

In this paper, the impact of dynamic voltage scaling on the tradeoff between low energy consumption and high
picture resolution in multimedia decoding was investigated. An efficient offline algorithm was proposed that
computes client execution schedules that use DVS on a per-frame basis to minimize energy consumption while
satisfying timing and buffering constraints. The experimental results show that the use of DVS significantly
reduces energy consumption within a range of high frame resolutions. For a high performance processor (Pentium
III), savings of 19% can be achieved at the highest quality, and up to 50% savings are obtained at slightly reduced
quality. In addition, the results reveal that the main impact of increasing the number of display buffers at the
client is to shift upward the range of resolutions for which energy consumption is improved by DVS.

Our proposed offline scheduling algorithm can be applied to MPEG media types such as audio, video,
graphics, and text, which together will likely comprise a significant fraction of the workload for future portable
devices. Before transmission, the media is stored and pre-processed by the server. At playback, clients are
presented options for QoS level, along with corresponding energy consumption information.

An important assumption in our algorithm is that the decoding order within each stream is fixed. Subject to
that constraint, the algorithm finds the best schedule that accounts for limited display memory at the client and
for inter-frame dependencies of the MPEG compression code. The algorithm is also useful for coding schemes
that lack frame dependencies, such as JPEG2000,26 because the need to account for limited display memory
remains. To our knowledge, that aspect has not been addressed by prior investigations.14

A natural extension to the problem solved in this paper is online scheduling, in which the media is not pre-
processed, possibly because it is transmitted live, as it is captured. An online solution that always minimizes
energy consumption is impossible, and thus heuristic approaches should be investigated. We can envision
extending our approach to transition at runtime from one pre-calculated schedule to another as needed. However,
there may be a loss of frames during the transition because of differences in the two schedules. The offline
algorithm proposed in this paper provides a lower bound on energy consumption, to which online results may
be compared.

This work takes a first step towards analyzing the QoS-energy tradeoff for multimedia applications. Al-
though we have concentrated on one QoS metric (frame resolution) and one application (MPEG), other media
parameters such as frame rate, display brightness, or spectral frequency range present similar quality-energy
tradeoffs for MPEG and other compression techniques. The progressive coding standard JPEG2000, for exam-
ple, is likely well suited for such exploration, since coding for dynamic changes in frame rate and resolution
are part of the standard. We envision a future scenario in which the user may adjust energy consumption dy-
namically through a software knob, and in response the system dynamically adjusts various media parameters
throughout the presentation to maximize the perceived quality for a desired level of energy consumption.
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