

HOLOS – A Simulation and Multi
Mathematical Modelling Tool

Chris Tofts
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-276
October 31st , 2001*

E-mail: chris_tofts@hp.com

simulation,
process
algebra,
petri net,
abstraction,
rewriting,
compilation

The widespread adoption of analytic modelling techniques
for computer systems analysis is hampered by many
obstacles including “steep learning curve” on mathematics;
lack of “reality” of models; and a widespread lack of belief
in abstractions as preserving useful content. We present
the HOLOS system an attempt to address these problems,
the first by providing compilers from a common executable
language DEMOS2k into various mathematical forms, the
later two by providing translations and abstractions within
the DEMOS2k language. The system is supported by an
open extensible interface and is freely available under
open source liscencing.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

HOLOS - A Simulation and Multi Mathematical Modelling Tool.

C. Tofts∗

HP Research Laboratories Bristol,
Filton Road, Stoke Gifford,

Bristol, BS34 8QZ,
chris tofts@hp.com

October 25, 2001

Abstract

The widespread adoption of analytic modelling techniques for computer systems analysis is
hampered by many obstacles including ‘steep learning curve’ on mathematics; lack of ‘reality’ of
models; and a widespread lack of belief in abstractions as preserving useful content. We present
the HOLOS system an attempt to address these problems, the first by providing compilers
from a common executable language DEMOS2k into various mathematical forms, the later
two by providing translations and abstractions within the DEMOS2k language. The system is
supported by an open extensible interface and is freely available under open source liscencing.

1 Introduction

It is widley known that computer systems engineers and architects rarely model their systems before
construction and deployment, unlike their civil engineering counterparts. There are many reasons
why they do not model but major influences include: the perception that models are never detailed
enough to reflect the ‘true’ behaviour of the system; and the difficulty of learning the appropriate
techniques, especially in the view of the former prevailing view.

Simulation techniques have had some success as generic modelling approaches. In the large
part this is because the representation of the models is often undertaken in a standard programing
language of which the engineer is already familiar. However, whilst the use of a general purpose
programming language frees the engineer from learning any new syntax, it does introduce a risk
of errors in their own constructed simulation framework, and often repititous coding of essentially
the same structures.

Using Simula[3] as his base language, during the course of constructing more than 70 modelling
examples, Graham Birtwistle discovered that he was constantly writing the same structures and
consequently wrote a framework (DEMOS) [2] to support those activities. This simple language
has had considerable success as a presentation language for discrete event simulations. As the
framework provides all of the basic synchronisation and timing mechanisms it is possible (at least
via repeated use) to reduce the possiblity of error in the underlying simulator1.

∗On projects of this scale authorship is difficult, but as I wrote the document I will take the blame. Major
contributions to this system have been made by R. Taylor, A. Christodoulou, and Maher Rahmouni.

1It is of considerable interest that by and large, the software community is aware of the possiblity of programming
error, but the simulation community which often produces models of comparable complexity (and cost of error)
expects boundary tests to detect mistakes.

1

More analytic approaches to modelling are typically not adopted as the level of expertise required
usually means that any particular modeller will only be aware of a limited number of techniques.
As it is often the case that the precise questions that the model needs to address have a major
impact on the choice of modelling approach, the consequences of an inappropriate choice (delayed
or no results, wasted time) mean that no abstract model is attempted.

Our view is based on the following observations about the experimental comprehension of models
(or simulation). Simulation is considered a powerful modelling approach because:

1. it provides a clear debug by execution approach, reassuring the modeller that the basic system
description is correct;

2. data is always obtained, little risk of no results;

3. there is no need to know in advance what questions you need to answer

4. there is little need to abstract, if any;

5. the problem will always be representable, if we assume the language is Turing complete;

6. the dynamic presentation that can be very compelling, especially as an explanatory tool for
others.

However a pure simulation approach to understanding a system is limited in many ways:

1. the results are fundamentally experimental in nature, and experiments ae always hard to
design and frequently ambiguous;

2. we have to execute the model on each data point, rarely do we have an reasonably small
parameter space;

3. it does not make the modeller abstract and concentrate on the ‘essence’ of their problem;

4. it is very language dependent;

5. it is exposed to programming errors both in the model and in the underlying execution
environment.

We are attempting to get all of the benefits of both basic approaches to modelling. To achieve
some of our goals particularly the proper definition of our presentation language we need it to be
closed. The original DEMOS system was dependent in a large part on the underlying Simula and
thus to formalise the complete language would require a formalisation for all of Simula, a very
difficult task. So given our earlier work on the semantics of DEMOS both operational [5, 6] and
denotational [7, 22, 8, 9] we took this language and extended it until we could express (hopefully
elegantly) all of the original examples [2]. Equally we attempted to achieve the same level of
expressive power as Milner’s Pi calculus [14].

The HOLOS system consists of a process oriented concurrent system presentation language
which may be executed (simulated) along with a set of compilers into multiple formal modelling
techniques. This view is given in figure 1.

The current implementation permits the addition of arbitrary extra compilers as sml[16] func-
tions, see below for further details.

2

Figure 1: The Holos system.

2 DEMOS2K

DEMOS is a process oriented discrete event simulation language originally defined as an extension
to the simula language. The current version has little changed from the original other than in how
entities slave themselves to others. DEMOS has essentially 3 components.

1. entities, defined as instances of classes. A class provides the definition of a collection of actions
that an instance entity will undertake. An entity can be thought of as an inidividual parallel
process interacting with others and the environment;

2. resources, are atomic accessible counters an used as locks (limits) similar to semaphores;

3. bins, are atomic counters of numbers of objects in a queue. Bins form desynchronisation
points as opposed to resources that are synchronisation points.

These elements all have definitional forms:

1. entity(name,className,offfset) and class name=body

2. res(foo,amt);

3

3. bin(foo,amt);.

Entities are the active elements of the system, resources can be thought of a semaphores and
bins are points of asynchrony. Entities interact with other elements of the system in the following
manner:

1. getR(resN,amt) and putR(resN,amt) repectively claim and free the amt of resource resN,
an entity cannot return amounts of resource it does not own;

2. getB(binN,amt) and putB(binN,amt) repectively claim and free the amt of bin binN;

3. sync(name) slaves the current entity on name. The current entity waits to be claimed and
released on the name and then continues its execution from the next command;

4. getS(syn,amt) and putS(syn,amt) repectively claim and free the amt of sync syn, an entity
cannot return amounts of sync it does not own.

5. Entity(name,className, offset) spawns a new instance of className called name at time
offset into the future;

6. Hold(ti) advances the simulation clock ti into the future.

Collectively getR(resN,amt), getB(binN,amt) and getS(syn,amt) are refered to as acquisitions.
The following compound operations are defined on them:

1. req[acq1,...,acqN] requires that all of the requests can be granted simutaneously before the
entity can proceed.

2. try [req1] then Bd1 etry [req2] then Bd2 ... etry [reqN] then BdN; will try each of
the requests in turn until one can be satisfied, otherwise it blocks until one can be satisfied.
Often used with ... etry [] then hold(t) as a non-blocking test.

Finally we allow loops

1. repeat body executes body forever;

2. do n body executes body n times;

3. while [req] body as long as the requirement can be met execute the body. Note a require-
ment can be a boolean.

A DEMOS program consists of an entity (conventionally referred to as main) that sets up class
and other definitions and then invokes entities to form the running system.

3 Operational Semantics

The execution of a DEMOS program is defined operationally, the first analysis of the interaction
fragments are in [5, 6]. The full semantics runs to some 50 pages see [25]. We have to define how
the system state will change as a function of all of the commands we may execute. The system
state consists of 3 parts.

1. event list, those entities which are ‘active’;

2. blocked list, those entities waiting on acquisitions;

4

3. a store, holding variable/constant values, class definitions, resource, bin and sync levels;

Since the store can be defined in many different ways we omit its presentation as obvious.
Both the event list and the blocked list consist of process descriptors so we give an outline of their
definition. Finally in this section we present the outline of the semantics with the full presentation
of the semantics of putBS.

3.1 Event notices

The event notice has the following form, PD(id,pr,Body,Attrs,evt), which can be understood
as follows:

id a name identifying the entity;

pr the current priority of this entity, can be changed with the priority command;

Body the list of actions the entity wishes to engage in, the list providing the order over the
actions;

Attrs a store containing three types res, sync and var. The res being the name and amount of
currently held resources. The sync a list of synced processes in the order in which they were
claimed. The var is the values of local variables.

evt the time at which this notice should next be considered active.

3.2 Operational definitions

As each program command is executed the system will change from one state to another

(EL, BL, S) =⇒ (EL’, BL’, S’)

Execution is so framed that the next action to be executed is always the first action in the action
list of the first object in the event list. Thus given the event list pattern-matching

EL = PD(c, pr ,b::Body, Attrs, evt)::...

— the next action must be b and the system time is said to be at the time of this action, evt.
It is now straightforward to give a semantics as a case statement over the structure of DEMOS

commands, as sketched below:

1. an error arises if the event list becomes empty (the system should be shut down with a call
on close).

exec ([], BL, S) =error

2. When a process has exhausted its actions, a check is made to see whether it still owns any
attributes. An error results if it does. If not, all is well. The object is deleted from the event
list. The simulation proceeds from the next action of the new current.

exec (PD(c,pr,[],Attrs,evt)::EL, BL, S)
= if Attrs = empty

then exec(EL, BL, S)
else error

5

3. The normal case — we focus on PD(c, pr, b::Body, Attrs, evt) the object at the head of
the event list, and execute its next action b. The names Body, Attrs, and evt are directly
accessible in the case clause, as is cp’, the “expected next current process object”. We add
some global information, current time along with bin and resource levels, into the store at
this point.

3.2.1 putBS(id,exL,reL,sL)

Add a bin item with parameters given in the expression list exL to the bin id, also has resources
as specified by reL and syncs specified by sL;
Semantics:

putBS(id,exL,reL,sL)
= (evalN (Attrs⊕S) id, bins) 6∈ S⇒ error
| let n = evalN (Attrs⊕S) id in

let vL = map evalN (Attrs⊕S) exL in
let rL = map evalR (Attrs⊕S) reL in
let sL = map evalN (Attrs⊕S) sL in
if pr=-15000 then
let S’ = ADDITEM(n, bins, (vL,rL,syN)) S in

promote(putBS(n,eL,reL,sL), evt, EL, BL, S’)
else
let (cp”,syN) = removeSL(sL,cp’,[]) in
in (ENTER PD(cn,-15000,[putBS(n,vL,rL,syN)],(),evt) removeRL(rl,cp”)::EL, BL, S)

Interpretation:

1. (evalN (Attrs⊕S) id, bins) 6∈ S: error if the bin identifier does not exist;

2. Normal case

(a) let n = evalN (Attrs⊕S) id : work out the resource name;

(b) let vL = map evalN (Attrs⊕S) exL: evaluate the expressions passed with the bin item;

(c) let rL = map evalR (Attrs⊕S) reL: evaluate the amounts of each resource passed along
with the bin item;

(d) let sL = map evalN (Attrs⊕S) sL: and work out the ground sync names;

(e) if pr=-15000 then: we are actually doing the put;

(f) let S’ = ADDITEM(n, bins, (vL,rL,syN)) Sput the parameterised bin item in the store,
with its associated values, resources and syncs;

(g) use the semantic function promote(putBS(n,eL,reL,sL), evt, EL, BL, S’) to enable any
entities that may have become unblocked. Since the evaluated form has been stored in
the state, we only use the name and hence have no state overwrite problems. Note the
current entity has only one action and hence will die.

(h) else

(i) let (cp”,syN) = removeSL(sL,cp’,[]): remove the syncs from the current process notice,
note may lead to an error if we pass on syncs we do not have;

(j) (ENTER PD(cn,-15000,[putBS(n,vL,rL,syN)],(),evt) removeRL(rl,cp”)::EL, BL, S): then
enqueue the actual return as the last activity at this clock instant.

6

4 Execution Support

For any model simulation, or exploration by execution provides us with two major benefits. Firstly
it allows us to explore our model dynamically and often identify errors in our modelling. Secondly,
there are limits to the scale of models that can be addressed analytically and consequently a
simulator guarantees that the modelling effort will deliver some results, even if their provenance is
limited. The DEMOS simulator is component based:

1. an engine written in sml, to give closest match to the operational semantics;

2. an sml parser;

3. a perl[27]/Tk front end, displayed in Figure 2;

4. a perl/Tk data accumulator;

5. a VRML[1] data visualisation system, displayed in Figure 3.

One of the major drivers in the above choices was that all of the components should be based
on open software. We have also concentrated our compilation efforts into those areas where tool
support is also open.

Furthermore the front end supports plug in compilers. It can be extended with sml components
that can be executed on the currently live DEMOS program. These additions can be made without
any coding within the primary interface. Other plugins allow the addition of different data filters
written in perl, the ability to add perl components to the main interface, and the ability to activate
executables and batch files.

5 Translations

To formally present each of the following translations will require approximately 20 pages each so
in the interest of brevity we will take the example DEMOS program below and show its translation
into each of the four formal presentations.

Our simple example works as follows: work is generated by a source at an a rate arrive, this
work accumulates in a bin called em work. A server takes an item of work and then processes it
using resource R1, this takes an amount of time task1. This resource is needed for all processing.
It then has a choice for the second stage of processing. If there is a sec serv slave available it is
used and returned and this stage of the job takes quick amount of time. This path is prefered.
Alternatively it can make use of R2 and the secondary task will take time slow. Having completed
the task whichever set of resources/syncs are held are returned, and the complete job begins again.

Bin(work,0); //an empty bin
Res(R1,2); //a number of slots
Res(R2,1); //backup server

(*a Source of work*)
class src={repeat{hold(arrive);putB(work,1);}}

(*a secondary server-note we can put hysterysis here*)
class sec_serv={repeat{sync(service);hold(hysterysis);}}

7

Figure 2: The interface with a DEMOS program on the left, results on the right (including graphs)
and the compilers menu active.

(*the primary service*)
class serv=
{repeat
{getB(work,1); //work to do
getR(R1,1); //need the first resource
hold(task1); //first handling stage
(*second stage is quicker with sec_serv used

but will use R2 instead*)
try [getS(service,1)] then {hold(quick);putS(service,1);}
etry [getR(R2,1)] then {hold(slow);putR(R2,1);}
putR(R1,1);

}
}

entity(Src,src,0);
entity(SS,sec_serv,0);

8

Figure 3: The data visualisation system.

do 3 {entity(service,serv,0);}
hold(sim_time);
close;

5.1 Petri Nets

The translation of the above DEMOS program into a probabilistic Petri net [17, 18, 19] is presented
below. An account of the full translation of DEMOS currently understood can be found in [26].
These models can be automatically analysed with tools such as [20].

5.2 CCS

The original work on the relationship between DEMOS and CCS [12] was in the form of structural
observation [5]. An automatable translation is presented in [22, 8, 9] and its relationship with the
operational semantics demonstrated in [7]. The CCS representatoin allows us to address questions
such as livelock and deadlock, using tools including the Edinburgh Concurrency Workbench [15, 10]

*Bin work max=3

9

Figure 4: The simple example as a Petri net.

agent Bwork_3 getwork.Bwork_2;
agent Bwork_2 getwork.Bwork_1 + putwork.Bwork_3;
agent Bwork_1 getwork.Bwork_0 + putwork.Bwork_2;
agent Bwork_0 putwork.Bwork_1;

*Resource R1
agent R1_2 getR1.R1_1;
agent R1_1 getR1.R1_0 + putR1.R1_2;
agent R1_0 putR1.R1_1;

*Resource R2
agent R2_1 getR2.R2_0;
agent R2_0 putR2.R2_1;

*class src
agent Csrc ’putwork.holdArrival.Csrc;

10

*class sec_serv
agent Csec_serv getSservice.putSservice.holdHysterysis.Csec_serv;

*class serv
agent Cserv ’getwork.’getR1.holdtask1.CservCh;
agent CservCh ’getSservice.holdfast.’putSservice.’putR1.Cserv

+ ’getR2.holdslow.’putR2.’putR1.Cserv;

set R {getwork,putwork,getR1,putR1,getR2,putR2,getSservice,putSservice};

agent Main (Bwork_0|R1_2|R2_1|Csrc|sec_serv|Cserv|Cserv|Cserv)/R;

5.3 WSCCS(1)

To formally analyse the probabilistic, priority and timing properties of DEMOS programs we need
a formal language that can encompass all of these phenomena. A prototypical extension to Milner’s
SCCS [11] is WSCCS [21, 24]. This translation can be extended to a large fragment of DEMOS
[25] and there is detail of automated analysis support in the same document.

*Bin work max=3
bs Bwork_3 1.getwork:Bwork_2 + 1.t:Bwork_3
bs Bwork_2 1.getwork:Bwork_1 + putwork.Bwork_3 + 1.t:Bwork_2
bs Bwork_1 1.getwork:Bwork_0 + putwork.Bwork_2 + 1.t:Bwork_1
bs Bwork_0 1.putwork:Bwork_1 + 1.t:Bwork_0

*Resource R1
bs R1_2 1.getR1:R1_1 + 1.t:R1_2
bs R1_1 1.getR1:R1_0 + 1.putR1:R1_2 + 1.t:R1_1
bs R1_0 1.putR1:R1_1 + 1.t:R1_0

*Resource R2
bs R2_1 1.getR2:R2_0 + 1.t:R2_1
bs R2_0 1.putR2:R2_1 + 1.t:R2_0

*class src
bs Csrc 1@1.putwork^-1:Csrc1 + 1.t:Csrc
bs Csrc1 Arrival.t:Csrc + (1-Arrival).t:Csrc1

*class sec_serv
bs Csec_serv 1.getSservice.Csec_serv_1 + 1.t:Csec_serv
bs Csec_serv_1 1.putSservice:Csec_serv_2 + 1.t:Csec_serv_1
bs Csec_serv_2 Hysterysis.t:Csec_serv + (1-Hysterysis).t:Csec_serv_2

*class serv
bs Cserv 1@1.getwork^-1:Cserv_1 + 1.t:Cserv
bs Cserv_1 1@1.getR1^-1:Cserv_2 + 1.t:Cserv_1
bs Cserv_2 task1.t:CservCh + (1-task1).t:Cserv_2
bs CservCh 1@2.getSservice^-1:CservCh_1_1 + 1@1.getR2^-1:CservCh_2_1 + 1.t:CservCh

11

bs CservCh_1_1 fast.t:CservCh_1_2 + (1-fast).t:CservCh_1_1
bs CservCh_1_2 1@1.putSservice:Cserv_3 + 1.t:CservCh_1_2
bs CservCh_2_1 slow.t:CservCh_2_2 + (1-slow).t:CservCh_2_1
bs CservCh_2_2 1@1.putR2^-1.Cserv_3 + 1.t:CservCh_2_2 ’
bs Cserv_3 1@1.putR1^-1#done:Cserv + 1.t:Cserv_3

basi R done

btr Main Bwork_0|R1_2|R2_1|Csrc|sec_serv|Cserv|Cserv|Cserv\R;

5.4 WSCCS(2)

A dual approach to the representation of performance problems within a synchronous process
algebra allows us to greatly reduce the size of the state space[23], and consequently the analysis
time can also be exploited to analyse DEMOS programs. An example of that form of translation
is presented below.

*Bin work max=3
bs Bwork_3 1.getwork:Bwork_2 + 1.t:Bwork_3
bs Bwork_2 1.getwork:Bwork_1 + putwork.Bwork_3 + 1.t:Bwork_2
bs Bwork_1 1.getwork:Bwork_0 + putwork.Bwork_2 + 1.t:Bwork_1
bs Bwork_0 1.putwork:Bwork_1 + 1.t:Bwork_0

*Resource R1
bs R1_2 1.getR1:R1_1 + 1.t:R1_2
bs R1_1 1.getR1:R1_0 + 1.putR1:R1_2 + 1.t:R1_1
bs R1_0 1.putR1:R1_1 + 1.t:R1_0

*Resource R2
bs R2_1 1.getR2:R2_0 + 1.getR2#putR2.R2_1 + 1.t:R2_1
bs R2_0 1.putR2:R2_1 + 1.t:R2_0

*class src
bs Csrc 1@1.putwork^-1#dArrival:Csrc + 1.t:Csrc

*class sec_serv
bs Csec_serv 1.getSservice.Csec_serv_1 + 1.getSservice#putSservice:Csec_serv_2 + 1.t:Csec_serv
bs Csec_serv_1 1.putSservice:Csec_serv_2 + 1.t:Csec_serv_1
bs Csec_serv_2 1.dHysterysis:Csec_serv

*class serv
bs Cserv 1@1.getwork^-1#getR1^-1#dtask1:CservCh + 1.t:Cserv
bs CservCh 1@2.getSservice^-1#dfast#putSservice^-1#putR1^-1#done:Cserv \

+ 1@1.getR2^-1#dslow#putR2^-1#putR1^-1#done:Cserv + 1.t:CservCh

basi R done, dArrival, dtask1, dfast, dslow

btr Main Bwork_0|R1_2|R2_1|Csrc|sec_serv|Cserv|Cserv|Cserv\R;

12

6 Abstraction

Abstraction is an activity largely undertaken by modellers. In most modelling contexts the problem
owner will not be responsible for constructing the model. They engage in a discourse with a modeller
who, usually, abstracts the system under consideration and then derives what they believe the
information the problem presenter required. One of the consequences of this is that often the
amount of abstraction used gives the problem owner little or no belief in the results of the model.
As organisations grow and the gap between problem owner and modeller grow increase problem
can become acute.

One of the consequences of the hegemony of the C programming language has been the work on
optimising compilers onto particular processors. In this context there are both globally useful work;
optimisations that work on all underlying architectures, and locally useful work; optimisations that
work on particular underlying architectures. In the context of modelling we may regard a particular
mathematical analysis as a processor and the act of translating from some, neutral representation,
into that as being compilation. In this context if the neutral representation can be comprehended
by execution then we have the chance to explain our abstraction. We can proceed by presenting a
chain of models aimed at a particular analysis technique. In the worst instance we can demonstrate
by experiment that the models are broadly in agreement. In the best case we may be able to prove
that particular rewrites cannot change the results of the model.

However, for the above to work we must agree to concentrate on a particular presentation
language something that has been singularly lacking within the formal methods community2. The
major problems in this space will be the temptation to use a language that is particularly suited
to one mathematical technique and the obvious consequences of the triviality of achieving Turing
completeness with almost any programtic presentation.

7 Conclusions and Further Work

There are clear and immediate benefits to being able to take one representation of a model and
derive formal models that permit multiple forms of an anlysis. However the attempt to produce
such systems present us with major challenges. Firstly the definition of the primary presentation
language must extend beyond that of its syntax. Any choice of initial presentation language will
have an intended execution model and unless this is well defined it will be impossible to comment on
the relationship of any results derived from a more formal analysis of a compilation of the original
text. One pleasing result is that the outcome in our examples above of the DEMOS2k text being
much shorter than the other forms is the usual outcome. To the point where the author, despite
being the originator of WSCCS uses DEMOS as his primary presentation language.

The above observation limits our choice of original presentation given the difficulty of defining
the behaviour of even relatively ‘clean’ languages [13]. Our choice of presentation language has been
guided by two principles; firstly, it has been widely used in the past; secondly, we already knew that
it could be formally defined and compiled into analysable mathematics which could be related to
the original definition. The current form of DEMOS is largely a consequence of having to remove
all dependencies on an underlying Simula system. Otherwise we would need to provide a semantics
for that language, an even greater challenge. Equally we wished to remove all explicit scheduling
activities from the coder and to achieve (as much as possible) expressive power comparable with
Milner’s Pi calculus [14].

2It has always been amusing that the main concurrency theory conference acronym is CONCUR.

13

Our interface design is deliberately intended to permit the easy addition of alternative compilers
to encourage experimentation within as many forms as possible.

We are currently investigating how we might derive queueing and difference equation models
directly from DEMOS representations. One major area of interest is the translation of one DE-
MOS program into another. The major benefit of process algebraic representations is that we can
(occasionally) prove that various alternative forms of model are equivalent. Often merely changing
the view of the model can lead to better forms of compilation. In particular the two forms (Petri
net/automata) views shown in this document provide an interesting view of DEMOS2k. The Petri
view is based essentially translating all interactions as mediated by bins. The automata (Process
Algebra) view would be of all interactions being syncs. Both of these views provide normal forms
for DEMOS which may admit efficient compilation.

Finally there is abstraction in the traditional sense, of omitting some of the complexity of the
problem. One of our major requirements was the ability to construct ‘chains’ of models as witnesses
to abstraction, and indeed this is relatively straightforward within the syntax of DEMOS. Clearly
an ideal situation to reach would be one where this abstraction is (largely) automated in response
to the particular questions the modeller has. Equally clearly this is an immense technical challenge,
but possbily achievable when viewed from the perspective of complier optimisation.

References

[1] A. Ames, D. Nadeau & J. Moreland, VRML 2.0 Sourcebook (2nd Edition) John Wiley &
Sons, 1996.

[2] G. Birtwistle. DEMOS — a system for discrete event modelling on Simula. Macmillen, London,
1979.

[3] G. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula begin. Studentlitteratur,
Lund, Sweden, 1973.

[4] G. Birtwistle, R. Pooley, and C. Tofts. Characterising the Structure of Simulation Models in
CCS. Transactions of the Society for Computer Simulation, 10(3):205–236, 1993.

[5] G. Birtwistle and C. Tofts. Operational Semantics of Process-Oriented Simulation Languages.
Part 1: πDEMOS. Transactions of the Society for Computer Simulation, 10(4):299–333, 1993.

[6] G. Birtwistle and C. Tofts. Operational Semantics of Process-Oriented Simulation Languages.
Part 2: µDEMOS. Transactions of the Society for Computer Simulation, 11(4):303–336, 1994.

[7] G. Birtwistle and C. Tofts. Relating Operational and Denotational Descriptions of πDEMOS.
Simulation Practice and Theory, 5(1):1–33, 1997.

[8] G. Birtwistle and C. Tofts. Getting DEMOS Models Right - Part I: Practice. to appear
Transactions of the Society for Computer Simulation, 2001.

[9] G. Birtwistle and C. Tofts. Getting DEMOS Models Right - Part II: ... and Theory. to appear
Transactions of the Society for Computer Simulation, 2001.

[10] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems. ACM Transactions on Programming Lan-
guages and Systems, 15(1), 1993.

14

[11] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science, 25:267–310,
1983.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

[13] R. Milner, M, Tofte, D. MacQueen & R. Harper. Definition of Standard ML. The MIT press,
1997.

[14] R. Milner. Communication and Mobile Systems. CUP, 1999.

[15] F. G. Moller. The Edinburgh Concurrency Workbench, Version 6.0. Technical Report, Com-
puter Science Department, University of Edinburgh, 1991.

[16] L. C. Paulson ML for the Working Programmer, Cambridge University Press, 1996.

[17] W. Reisig. A Primer in Petri Net Design, Springer Compass International, 1992.

[18] W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets,
Springer Verlag, 1998.

[19] W. Reisig & G. Rozenburg (Eds), Lectures on Petri Nets Basic Models : Advances in Petri
Nets, Springer Verlag Lecture Notes in Computer Science, 1491, 1998.

[20] R. Sahner , K. S. Trivedi & A. Puliafito. Performance and Reliability Analysis of Computer
Systems : An Example-Based Approach Using the Sharpe Software Package, Kluwer Academic
Publishers, 1995

[21] C. Tofts. Processes with Probability, Priority and Time. Formal Aspects of Computer Science,
6(5):536–564, 1993.

[22] C. Tofts and G. Birtwistle. A denotational semantics for a process-based simulation language.
ACM Transactions on Modelling and Simulation, 8(3):281–305, 1998.

[23] C. Tofts. Symbolic Approaches to Probability Distributions in Process Algebra. To appear,
Formal Aspects of Computer Science, 2001.

[24] C. Tofts. Performance Modelling Using Probabilistic Process Algebra. In T. Hoare, M. Broy,
R. Steinbruggen, editors, Engineering Theories of Software Construction Vol. 180, pp223-257,
2001.

[25] C. Tofts. The Operational Semantics of DEMOS2k. Report HPL-2001-263 Hewlett Packard
Research Laboratories Bristol, 2001.

[26] C. Tofts. Translating DEMOS into Petri Nets.. Report HPL-2001-274 Hewlett Packard Re-
search Laboratories Bristol, 2001.

[27] L. Wall, T. Christiansen & J. Orwant, Programming Perl (3rd Edition), O’Reilly & Associates,
2000.

15

