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Abstract

System models are often studied through the use of computer simulation. This approach can
be very attractive as it provides a simple dynamic view of the system under study, which can be
used for debugging, and performance data can be gathered by repeated experiment. However,
simulation has the limitations that all experiments do, the cost of each data point, potential
to avoid particular cases and difficulty in establishing precisely what has been measured. A
dual approach of using a simulation style to present and debug programs followed by a formal
mathematical analysis would have the benefits of both approaches. We demonstrate how a
large fragment of a process oriented simulation language DEMOS can be translated into Petri
Nets. This translation has benefits in that it permits the simular access to the analysis tools
for Petri Nets (we demonstrate automated translation both to the Sharpe and SPNP formats)
and provides a succinct formal account of DEMOS. The current compiler is abstracted from
the underlying Petri Net representation syntax and consequently can be rapidly retargeted at
an arbitrary Petri Net representation. Given the ratio between the Petri Net representation
and the DEMOS shown herein it may well be the case that the later is a significantly better
approach to introducing Petri Net analysis.

1 introduction

Many complex problems are studied by building simulation models that are intended to replicate
selected aspects of their behaviour [12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 28, 32, 33]. Once we
have a model, the first step is to validate it, that is show it exhibits certain expected behaviours.
The standard practice of running the simulation “enough” times cannot guarantee that all possible
model paths will be covered, so harmful behaviours such as deadlock may be missed by this ap-
proach. Equally data can only be gathered in an experimentaly fashion with all of the exposure to
statistical risk, which it is essentially impossible to quantify in a discrete setting with the potential
for deadlock and livelock (infinite cost points) without a complete systems analysis. In other work,
I have demonstrated[5, 30, 9, 10] with colleagues how some of these questions may be addressed by
exploiting a process algebra[19, 20] as the formal underpining. This approach is very advantageous
in two settings

1. proving correctness properties[5, 9, 10];

2. proving relationships between operational and denotational accounts[8] of the languages se-
mantics, an essential check of our understanding.

1



However, whilst the process algbera approach does admit some elegant solutions in the case or
formal performance analysis in situations based on counting (such as queues) it may be better to
exploit an underlying formalisms that contains counters as native. So we examine the difficultly in
formalling expressing a discrete event simulation language (in this instance DEMOS, although it can
be regarded as prototypical[4] for all languages/descriptions in this class) as Petri Nets [25, 26, 27]

1.1 DEMOS

DEMOS [2, 6, 7] is a process oriented discrete event simulation language defined as an extension
to the simula [3] language. The current version [11] has little changed from the original other than
in how entities slave themselves to others. DEMOS has essentially 3 components.

1. entities, defined as instances of classes;

2. resources;

3. bins.

These elements all have definitional forms:

1. entity(name,className,offfset) and class name=body

2. res(foo,amt);

3. bin(foo,amt);.

Entities are the active elements of the system, resources can be thought of a semaphores and
bins are points of asynchrony. Entities interact with other elements of the system in the following
manner:

1. getR(resN,amt) and putR(resN,amt) repectively claim and free the amt of resource resN,
an entity cannot return amounts of resource it does not own;

2. getB(binN,amt) and putB(binN,amt) repectively claim and free the amt of bin binN;

3. sync(name) slaves the current entity on name;

4. getS(syn,amt) and putS(syn,amt) repectively claim and free the amt of sync syn, an
entity cannot return amounts of sync it does not own.

5. Entity(name,className,offset) spawns a new instance of className called name at time
offset into the future;

6. Hold(ti) advances the simulation clock ti into the future.

Collectively getR(resN,amt), getB(binN,amt) and getS(syn,amt) are refered to as acquisitions,
we permit the following compound operations on them:

1. req[acq1,...,acqN] requires that all of the requests can be granted simutaneously before the
entity can proceed.

2. try [req1] then Bd1 etry [req2] then Bd2 ... etry [reqN] then BdN; will try each of
the requests in turn until one can be satisfied, otherwise it blocks until one can be satisfied.
Often used with ... etry [] then hold(t) as a non-blocking test.
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Finally we allow loops

1. repeat body executes body forever;

2. do n body excutes body n times, usually used in setup

3. while [req] body as long as the requirement can be met execute the body. Note a require-
ment can be a boolean.

A demos program consists of an entity (conventionally referred to as main) that sets up class
and other definitions and then invokes some entities to form the running system.

1.2 Petri Nets

Petri nets are one of the original methods used to describe concurrent systems [25]. There are many
fine textbooks detailing how they are understood and extended in order to describe phenomena
such as time and probability [1, 27]. What follows is a very brief description of the kind of nets we
shall be using throughout the sequel.

Basically Petri nets have 4 components:

1. places;

2. events;

3. arcs;

4. tokens.

Essentially places are counters that hold tokens; events are actions that an observer may record
(which may include the passage of time); the arcs establish which events are the consequences of
tokens being in places. The pattern of tokens at places is called a marking Furthermore the nets
behaviour is established by a firing rule, this determines which events can take place given any
particular marking. Standardly the rule requires that there are tokens at all of the source arcs
of an event, and that after the event has taken place a token is is added at all of the destination
places.

In Figure 1, we show some simple nets illustrating standard program constructions, in this
instance sequence, parallel execution and non-deterministic execution. by moving the tokens (solid
blobs) in accordance with the firing rules we see the following. In the sequential we perform the
event a followed by the event b. In the parallel we can perform either event a1 or event a2, in any
order but can do both. In the non-determinism case we can perform either b1 or b2 but not both.

As an extension we may permit our events to represent durations, in the following simple
example this is in the form of rates. The net in Figure 2 represents a system where the are a
number of items to be sold. When a customer arrives (a token at place customer) the event selling
can be performed (as long as there is more than 1 token at waiting) when the cusomer token is at
sold it then waits for a time given by rate(arrive) until it appears to make another purchase. One
at a time unsold items are polished at rate(polish) to keep them clean and then returned to the
waiting area.

Further refinements include relative probabilities on competing transitions, the use of multip-
ilicity arcs that require that some number (n say) of tokens are present before a firing can occur;
and the introduction of inhibitor arcs, the presence of tokens preventing events from occuring.
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Figure 1: Three simple Petri nets.

2 Preliminary Example

Consider the classic1 first Demos program given below. In this example Boats arrive at a dock, in
order to dock they must have a jetty to dock at and two tugs to help them dock; they must retain
a jetty whilst docked. The boats then unload and undock. To undock they require the assitance
of a tug. When they have finished undocking then they relese control of their jetty. An obvious
question of such a system how long the arrival interval between boats must be on average for the
dock to cope?

Cons arrival=negexp(10.0);
Cons Leaving=2.0;
Cons dock=2.0;
Cons unload=normal(14,3);
Cons tug=3;
Cons jetty=2;
Cons sim_dur=28.0*24.0;

class boat=
{ hold(arrival);

Entity(boat,boat,0);
getR(jetties,1);

getR(tugs,2);
hold(dock);

putR(tugs,2);

hold(unload);

1If you are a Demos programmer!
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Figure 2: Simple timed Petri net.

getR(tugs,1);
hold(2.0);

putR(tugs,1);
putR(jetties,1);

} (***boat***)

Res(tugs, tug);
Res(jetties, jetty);
Entity(boat,boat,0.0);
hold(sim_dur);
close;

This program can is equivalent to the net in Figure 3. In this net the named transitions have
the duration assocaied with the name. The numbered ars require that many, rather than 1, tokens
to fire. Only three places are named for clarity.

3 The full translation

This is presented diagramatically as a recursive descent on the syntax of DEMOS. It is assumed that
the reader will understand a block stands for the remainder of a Net that has yet to be translated.
This presentation is prefered to a more formal synactic presentation2 for clarity. The diagramatic
presentation of nets is generally more readable than the syntactic.

One important point is the role of the token that represents the local sequence controller [2].
A class is translated as a collection of places and transitions with an inital place where the tokens
representing the number of live entity instances of that class are placed. Throughout the execution
of the class body this token repesents the point to which execution of this class has proceeded.

2although that is what is used within the compiler.
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Figure 3: Boat system as Petri Net

3.1 Class definition

We translate the code fragment:

class fred={Body};

as the net given in figure 4.
We continue to translate the body in the manner that follows. This simple translation gives us

a place to put tokens that indicate that an instance (entity) of the class should be started. These
tokens are then used to express the sequentiality within the entity, and can be considered to be the
local sequence controllers of DEMOS entities. These tokens are passed out of the entity. Notice
that at this point we cannot add the arcs denoting when the entity is started those are added when
that fragment of the demos code is encountered. This is the case for all of the definitional forms.

3.2 Resource definition

We translate the code fragment:

Res(fred,n);

as the net given in figure 5.
In this case the place acts simply as a counter of ‘free’ tokens. Arcs from the place will indicate

gets on this resource and to the place with be the puts.
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Figure 4: The translation of a class definition.

3.3 Bin definition

We translate the code fragment:

Bin(fred,n);

as the net given in figure 6.
As for resources the place acts simply as a counter of ‘free’ tokens. Arcs from the place will

indicate gets on this bin and to the place with be the puts.

3.4 Entity creation

We translate the code fragment:

entity(foo,name,0);Body

as the net given in figure 7.
Here we essentially duplicate the sequentiality token, keeping one copy locally, our local sequence

controller and placing one in the class place as the local sequence controller for the spawned entity.
Whilst we can always normalise DEMOS programs to have zero delay on entity creation, we could
equally introduce a delay transition on the path of the new sequence controller token.

3.5 Synchronisation point

We translate the code fragment:

Sync(name);Body

as the net given in figure 8.
Here we create two places. The first allows the master entity to claim the local sequence

controller, and hence control of the local computation. The second allows it to be returned and
consequently the local execution can then resume at the correct point.
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Figure 5: The translation of a resource definition.

3.6 Simple acquisition

We translate the code fragments:

getR(fred,amt);Body
getB(fred,amt);Body
getS(fred,amt);Body

as the net given in figure 9.
We use the event to distinguish the type of acquisition, useful for debugging/measurement. In

this instance the presence of the local sequence control token and the required number of tokens
on the source place allow the event to occur and the entity to proceed.

3.7 Returns

We translate the code fragments:

putR(fred,amt);Body
putB(fred,amt);Body
putS(fred,amt);Body

as the net given in figure 10.
We have two outgoing arcs from the transition. One is the token representing the continuation

of the execution of the current entity. The other is the return of the tokens to the place where
either the bin or resource contents are held, our the continuation place of the synchronisation.

3.8 Requires- multiway synchronisations

We translate the code fragments:

req[acq1,acq2,...,acqN];
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Figure 6: The translation of a bin definition.

where the acqi are drawn from getR(n,a), getB(n,a), getS(n,a) as the following net given in
figure 11.

In this case the event can only fire when all of the requirement places simultaneously hold
enough tokens for each of the arcs to fire. Afterwards we pass on the sequence token to the next
state of the current entity.

3.9 Try choices (non-determinism)

We translate the code fragments:

try [req1] then {Bd1}
etry [req2] then {Bd2}
...
etry [reqN] then {BdN};
Body

where the reqi are requirements as above; as the net given in figure 12.
For any event to fire all of the places for its requirements must be met. Having fired it then

passes the sequence token into the appropriate subnet. Hence, only one of the subnets is chosen. If
more than one requirement could be met then the choice is resolved non-deterministically but only
one instance of a subnet will acquire the execution token. If the Net framework admits priority
than we can prioritise the events in presentation order to resolve the non-determinism. Fianlly,
when (if) the subnet finishes execution it will pass the sequence token on to the continuation of the
class.

3.10 Repeat

We translate the code fragment:

repeat {Body}
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Figure 7: The translation of an entity creation.

as the net given in Figure 13:
This forces the local sequence token to return to this point afte the body has executed, thus

restarting the body.

3.11 Do

We translate the code fragment:

Do n {body}

as the net given in figure 14.
In this instance we split the flow into a place with the sequence tokens and one with n tokens.

Each time the body completes it puts a token back in the loop sequence controller. When the
body has executed n times we can then firec the completion event as there is a token in the loop
controller and n in the completion counter.

3.12 hold

We translate the code fragment:

hold(time);Body

as the net given in Figure 15, assuming that suitable timed transitions exist, for instance negative
exponential times, fixed times, max/min,...:

We simply introduce a timed event that has the duration associated with the hold.
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Figure 8: The translation of a synchronisation.

3.13 Main

To ensure that the system initialises correctly we translate main as any other class body. However,
we place a single token in the first place to initiate the system.

3.14 Variables

Some extensions to Petri nets permit the addition of variables, in the presence of these extensions
it would be straightforward to add translations for variables and boolean conditions in the class
bodies and requirements respectively.

4 Automation

There are many tools for the analysis of Petri Nets [1], and there are also many different syntactic
representations (Sharpe, SPNP, PML,...). To cope with this problem the implementation of the
conversion from DEMOS to Petri nets works in two stages:

1. convert the system to an internal representation of a net, abstract notion of places and
transitions in sml;

2. convert the internal representation into the appropriate syntax for the tool.

As nets have only 5 basic components this later transformation is a relatively straightforward
task for any particular tool, as long as it does not rely on graphical input! The major limitation
is the precise level of expressiveness of the nets that can be studied, and the forms of analysis the
tool will permit. For a good overview see www.daimi.au.dk/PetriNets/tools/.
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Figure 9: The translation of a acquisition.

The compiler from DEMOS to Petri nets is available from chris tofts@hp.com as part of the
demos simulation tool.

4.1 For the Sharpe tool

As an example this is the input syntax for the Sharpe tool [29] generated by the boat example
(slightly altered as there are no fixed times, just negative exponential distributions) earlier.

gspn main
main_0 0
main 1
main_1 0
jetties 2
tugs 3
boat_11 0
boat_10 0
boat_9 0
boat_8 0
boat_7 0
boat_6 0
boat_5 0
boat_4 0
boat_3 0
boat_2 0
boat_1 0
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Figure 10: The translation of a return.

boat_0 0
end
boathl_9 ind undock
boathl_7 ind unload
boathl_5 ind dock
boathl_1 ind arrival
end
mainS ind 1
mainsp_1 ind 1
boatpR_11 ind 1
boatpR_10 ind 1
boatgR_8 ind 1
boatpR_6 ind 1
boatgR_4 ind 1
boatgR_3 ind 1
boatsp_2 ind 1
end
main mainS 1
main_0 mainsp_1 1
boat_10 boatpR_11 1
boat_9 boatpR_10 1
boat_8 boathl_9 1
boat_7 boatgR_8 1
tugs boatgR_8 1
boat_6 boathl_7 1
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Figure 11: The translation of a require.

boat_5 boatpR_6 1
boat_4 boathl_5 1
boat_3 boatgR_4 1
tugs boatgR_4 2
boat_2 boatgR_3 1
jetties boatgR_3 1
boat_1 boatsp_2 1
boat_0 boathl_1 1
end
mainS main_0 1
mainsp_1 main_1 1
mainsp_1 boat_0 1
boatpR_11 boat_11 1
boatpR_11 jetties 1
boatpR_10 boat_10 1
boatpR_10 tugs 1
boathl_9 boat_9 1
boatgR_8 boat_8 1
boathl_7 boat_7 1
boatpR_6 boat_6 1
boatpR_6 tugs 2
boathl_5 boat_5 1
boatgR_4 boat_4 1
boatgR_3 boat_3 1
boatsp_2 boat_2 1
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Figure 12: The translation of a try.

boatsp_2 boat_0 1
boathl_1 boat_1 1
end
end

4.2 As SPNP

An alternative presentation for nets that is popular is as extensions to C [31]

net () {
place("main_0");
place("main");
init("main",1);

place("main_1");
place("jetties");
init("jetties",2);

place("tugs");
init("tugs",3);

place("boat_11");
place("boat_10");
place("boat_9");
place("boat_8");
place("boat_7");
place("boat_6");
place("boat_5");
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Figure 13: The translation of a repeat.

place("boat_4");
place("boat_3");
place("boat_2");
place("boat_1");
place("boat_0");
trans("mainS");
trans("mainsp_1");
trans("boatpR_11");
trans("boatpR_10");
trans("boathl_9");

rateval("boathl_9",undock);
trans("boatgR_8");
trans("boathl_7");

rateval("boathl_7",unload);
trans("boatpR_6");
trans("boathl_5");

rateval("boathl_5",dock);
trans("boatgR_4");
trans("boatgR_3");
trans("boatsp_2");
trans("boathl_1");

rateval("boathl_1",arrival);
iarc("mainS","main");
iarc("mainsp_1","main_0");
iarc("boatpR_11","boat_10");
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Figure 14: The translation of a do.

iarc("boatpR_10","boat_9");
iarc("boathl_9","boat_8");
iarc("boatgR_8","boat_7");
iarc("boatgR_8","tugs");
iarc("boathl_7","boat_6");
iarc("boatpR_6","boat_5");
iarc("boathl_5","boat_4");
iarc("boatgR_4","boat_3");
miarc("boatgR_4","tugs",2);
iarc("boatgR_3","boat_2");
iarc("boatgR_3","jetties");
iarc("boatsp_2","boat_1");
iarc("boathl_1","boat_0");
oarc("mainS","main_0");
oarc("mainsp_1","main_1");
oarc("mainsp_1","boat_0");
oarc("boatpR_11","boat_11");
oarc("boatpR_11","jetties");
oarc("boatpR_10","boat_10");
oarc("boatpR_10","tugs");
oarc("boathl_9","boat_9");
oarc("boatgR_8","boat_8");
oarc("boathl_7","boat_7");
oarc("boatpR_6","boat_6");
moarc("boatpR_6","tugs",2);
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Figure 15: The translation of a hold.

oarc("boathl_5","boat_5");
oarc("boatgR_4","boat_4");
oarc("boatgR_3","boat_3");
oarc("boatsp_2","boat_2");
oarc("boatsp_2","boat_0");
oarc("boathl_1","boat_1");

}

5 Conclusions

The mapping between DEMOS and Petri nets seems to be a ‘good’ one. If we think of the DEMOS
classes in terms of their states then we get one place for each state. The multiplicity of entities
in that state is represented by the number of tokens at the place. Furthermore the subtlety of
control[2] of allowing the scheduler to be simply another DEMOS process also carries over into
the Petri net models with little additional cost. Indeed this seems to be the only extraneous cost
incurred and could be removed with some simple optimisation (if required).

Given the current uptake of formal approaches, the simplicity of the DEMOS approach may
well provide a better presentation language than the nets. Equally the cost of moving the DEMOS
compiler from one net representation to another (provided they are not purely graphical) is low
amounting to approximately 40 lines of SML code. DEMOS may also provide a better central
notation for the various (and varied) Petri net analysis tools, the classical machine independence
through compilation approach.

For the simulation side many of the current Petri net analysis tools [16] can numerically analyse
very large systems. This allows for validation of simulation results and for the gathering of results
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that are not exposed to the problems of experiments.
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A DEMOS to SPNP

In the context of small demos programs we show the compilation of the various constructs into
SPNP for completeness.

DEMOS SPNP

20



class pr=

{repeat

{putB(foo,2);

hold(negexp(0.1));

}

}

class c=

{repeat

{getB(foo,1);

hold(negexp(0.2));

}

}

bin(foo,1);

entity(pr,pr,0);

entity(c,c,0);

close;

net () {

place("main_0");

place("main");

init("main",1);

place("main_2");

place("main_1");

place("foo");

init("foo",1);

place("c_2");

place("c_1");

place("c_0");

place("pr_2");

place("pr_1");

place("pr_0");

trans("mainS");

trans("mainsp_2");

trans("mainsp_1");

trans("crp_3");

trans("chl_2");

rateval("chl_2",0.2);

trans("cgB_1");

trans("prrp_3");

trans("prhl_2");

rateval("prhl_2",0.1);

trans("prpB_1");

iarc("mainS","main");

iarc("mainsp_2","main_1");

iarc("mainsp_1","main_0");

iarc("crp_3","c_2");

iarc("chl_2","c_1");

iarc("cgB_1","c_0");

iarc("cgB_1","foo");

iarc("prrp_3","pr_2");

iarc("prhl_2","pr_1");

iarc("prpB_1","pr_0");

oarc("mainS","main_0");

oarc("mainsp_2","main_2");

oarc("mainsp_2","c_0");

oarc("mainsp_1","main_1");

oarc("mainsp_1","pr_0");

oarc("crp_3","c_0");

oarc("chl_2","c_2");

oarc("cgB_1","c_1");

oarc("prrp_3","pr_0");

oarc("prhl_2","pr_2");

oarc("prpB_1","pr_1");

moarc("prpB_1","foo",2);

}
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res(sem,1);

class cs=

{repeat

{getR(sem,1);

hold(negexp(0.2)); (*cs*)

putR(sem,1);

hold(negexp(0.4)); (*non cs*)

}

}

entity(cs,cs,0);

entity(cs,cs,0);

entity(cs,cs,0);

close;

net () {

place("main_0");

place("main");

init("main",1);

place("main_3");

place("main_2");

place("main_1");

place("cs_4");

place("cs_3");

place("cs_2");

place("cs_1");

place("cs_0");

place("sem");

init("sem",1);

trans("mainS");

trans("mainsp_3");

trans("mainsp_2");

trans("mainsp_1");

trans("csrp_5");

trans("cshl_4");

rateval("cshl_4",0.4);

trans("cspR_3");

trans("cshl_2");

rateval("cshl_2",0.2);

trans("csgR_1");

iarc("mainS","main");

iarc("mainsp_3","main_2");

iarc("mainsp_2","main_1");

iarc("mainsp_1","main_0");

iarc("csrp_5","cs_4");

iarc("cshl_4","cs_3");

iarc("cspR_3","cs_2");

iarc("cshl_2","cs_1");

iarc("csgR_1","cs_0");

iarc("csgR_1","sem");

oarc("mainS","main_0");

oarc("mainsp_3","main_3");

oarc("mainsp_3","cs_0");

oarc("mainsp_2","main_2");

oarc("mainsp_2","cs_0");

oarc("mainsp_1","main_1");

oarc("mainsp_1","cs_0");

oarc("csrp_5","cs_0");

oarc("cshl_4","cs_4");

oarc("cspR_3","cs_3");

oarc("cspR_3","sem");

oarc("cshl_2","cs_2");

oarc("csgR_1","cs_1");

}
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res(sem,1);

bin(foo,0);

class csP=

{repeat

{getR(sem,1);

hold(negexp(0.2)); (*cs*)

putR(sem,1);putB(foo,1);

hold(negexp(0.4)); (*non cs*)

}

}

class csc=

{repeat

{req[getR(sem,1),getB(foo,1)];

hold(negexp(0.2)); (*cs*)

putR(sem,1);

hold(negexp(0.4)); (*non cs*)

}

}

entity(csp,csP,0);

entity(cs,csP,0);

entity(csc,csc,0);

close;

net () {

place("main_0");

place("main"); init("main",1);

place("main_3");place("main_2");

place("main_1");place("csc_4");

place("csc_3");place("csc_2");

place("csc_1");place("csc_0");

place("csP_5");place("csP_4");

place("csP_3");place("csP_2");

place("csP_1");place("csP_0");

place("foo");place("sem"); init("sem",1);

trans("mainS");

trans("mainsp_3");

trans("mainsp_2");

trans("mainsp_1");

trans("cscrp_5");

trans("cschl_4");rateval("cschl_4",0.4);

trans("cscpR_3");

trans("cschl_2");rateval("cschl_2",0.2);

trans("cscreq_1");

trans("csPrp_6");

trans("csPhl_5");rateval("csPhl_5",0.4);

trans("csPpB_4");

trans("csPpR_3");

trans("csPhl_2");rateval("csPhl_2",0.2);

trans("csPgR_1");

iarc("mainS","main");iarc("mainsp_3","main_2");

iarc("mainsp_2","main_1");iarc("mainsp_1","main_0");

iarc("cscrp_5","csc_4");iarc("cschl_4","csc_3");

iarc("cscpR_3","csc_2");iarc("cschl_2","csc_1");

iarc("cscreq_1","csc_0");iarc("cscreq_1","foo");

iarc("cscreq_1","sem");iarc("csPrp_6","csP_5");

iarc("csPhl_5","csP_4");iarc("csPpB_4","csP_3");

iarc("csPpR_3","csP_2");iarc("csPhl_2","csP_1");

iarc("csPgR_1","csP_0");iarc("csPgR_1","sem");

oarc("mainS","main_0");oarc("mainsp_3","main_3");

oarc("mainsp_3","csc_0");oarc("mainsp_2","main_2");

oarc("mainsp_2","csP_0");oarc("mainsp_1","main_1");

oarc("mainsp_1","csP_0");oarc("cscrp_5","csc_0");

oarc("cschl_4","csc_4");oarc("cscpR_3","csc_3");

oarc("cscpR_3","sem");oarc("cschl_2","csc_2");

oarc("cscreq_1","csc_1");oarc("csPrp_6","csP_0");

oarc("csPhl_5","csP_5");oarc("csPpB_4","csP_4");

oarc("csPpB_4","foo");oarc("csPpR_3","csP_3");

oarc("csPpR_3","sem");oarc("csPhl_2","csP_2");

oarc("csPgR_1","csP_1");

}

23



res(sem,1);

bin(foo,0);

class csP=

{repeat

{getR(sem,1);

hold(negexp(0.2)); (*cs*)

putR(sem,1);putB(foo,1);

hold(negexp(0.4)); (*non cs*)

}

}

class csc=

{repeat

{try[getR(sem,1),getB(foo,1)] then

{hold(negexp(0.2)); (*cs*)

putR(sem,1);

}

etry[getB(foo,1)] then {hold(negexp(2));}

hold(negexp(0.4)); (*non cs*)

}

}

entity(csp,csP,0);

entity(cs,csP,0);

entity(csc,csc,0);

close;

net () {

place("main_0");place("main"); init("main",1);

place("main_3");place("main_2");place("main_1");

place("csc_2");place("csc_tBR1_2");place("csc_tBR1_1");

place("csc_tBR0_3");place("csc_tBR0_2");place("csc_tBR0_1");

place("csc_1");place("csc_0");place("csP_5");

place("csP_4");place("csP_3");place("csP_2");

place("csP_1");place("csP_0");

place("foo");

place("sem"); init("sem",1);

trans("mainS");trans("mainsp_3");

trans("mainsp_2");trans("mainsp_1");

trans("cscrp_3");

trans("cschl_2"); rateval("cschl_2",0.4);

trans("csc_tBR1hl_2"); rateval("csc_tBR1hl_2",2);

trans("csc_EBR1_1");trans("csc_tBR0pR_3");

trans("csc_tBR0hl_2"); rateval("csc_tBR0hl_2",0.2);

trans("csc_EBR0_1");trans("cscCF_1");

trans("csPrp_6");

trans("csPhl_5"); rateval("csPhl_5",0.4);

trans("csPpB_4");trans("csPpR_3");

trans("csPhl_2"); rateval("csPhl_2",0.2);

trans("csPgR_1");

iarc("mainS","main");iarc("mainsp_3","main_2");

iarc("mainsp_2","main_1");iarc("mainsp_1","main_0");

iarc("cscrp_3","csc_2");iarc("cschl_2","csc_1");

iarc("cscCF_1","csc_tBR1_2");iarc("csc_tBR1hl_2","csc_tBR1_1");

iarc("csc_EBR1_1","csc_0");iarc("csc_EBR1_1","foo");

iarc("cscCF_1","csc_tBR0_3");iarc("csc_tBR0pR_3","csc_tBR0_2");

iarc("csc_tBR0hl_2","csc_tBR0_1");iarc("csc_EBR0_1","csc_0");

iarc("csc_EBR0_1","foo");iarc("csc_EBR0_1","sem");

iarc("csPrp_6","csP_5");iarc("csPhl_5","csP_4");

iarc("csPpB_4","csP_3");iarc("csPpR_3","csP_2");

iarc("csPhl_2","csP_1");iarc("csPgR_1","csP_0");

iarc("csPgR_1","sem");

oarc("mainS","main_0");oarc("mainsp_3","main_3");

oarc("mainsp_3","csc_0");oarc("mainsp_2","main_2");

oarc("mainsp_2","csP_0");oarc("mainsp_1","main_1");

oarc("mainsp_1","csP_0");oarc("cscrp_3","csc_0");

oarc("cschl_2","csc_2");oarc("csc_tBR1hl_2","csc_tBR1_2");

oarc("csc_EBR1_1","csc_tBR1_1");oarc("csc_tBR0pR_3","csc_tBR0_3");

oarc("csc_tBR0pR_3","sem");oarc("csc_tBR0hl_2","csc_tBR0_2");

oarc("csc_EBR0_1","csc_tBR0_1");oarc("csPrp_6","csP_0");

oarc("csPhl_5","csP_5");oarc("csPpB_4","csP_4");

oarc("csPpB_4","foo");oarc("csPpR_3","csP_3");

oarc("csPpR_3","sem");oarc("csPhl_2","csP_2");

oarc("csPgR_1","csP_1");

}
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class simple=

{repeat

{sync(foo);

hold(negexp(0.3));

}

}

class handle=

{repeat

{getS(foo,1);

hold(negexp(0.3));

putS(foo,1);

hold(negexp(0.2));

}

}

entity(s,simple,0);

entity(h,handle,0);

close;

net () {

place("main_0");

place("main");

init("main",1);

place("main_2");

place("main_1");

place("handle_4");

place("handle_3");

place("handle_2");

place("handle_1");

place("handle_0");

place("simple_2");

place("simple_1");

place("simple_0");

trans("mainS");

trans("mainsp_2");

trans("mainsp_1");

trans("handlerp_5");

trans("handlehl_4");

rateval("handlehl_4",0.2);

trans("handlepS_3");

trans("handlehl_2");

rateval("handlehl_2",0.3);

trans("handlegS_1");

trans("simplerp_3");

trans("simplehl_2");

rateval("simplehl_2",0.3);

iarc("mainS","main");

iarc("mainsp_2","main_1");

iarc("mainsp_1","main_0");

iarc("handlerp_5","handle_4");

iarc("handlehl_4","handle_3");

iarc("handlepS_3","handle_2");

iarc("handlehl_2","handle_1");

iarc("handlegS_1","handle_0");

iarc("handlegS_1","simple_0");

iarc("simplerp_3","simple_2");

iarc("simplehl_2","simple_1");

oarc("mainS","main_0");

oarc("mainsp_2","main_2");

oarc("mainsp_2","handle_0");

oarc("mainsp_1","main_1");

oarc("mainsp_1","simple_0");

oarc("handlerp_5","handle_0");

oarc("handlehl_4","handle_4");

oarc("handlepS_3","handle_3");

oarc("handlepS_3","simple_1");

oarc("handlehl_2","handle_2");

oarc("handlegS_1","handle_1");

oarc("simplerp_3","simple_0");

oarc("simplehl_2","simple_2");

}
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