

Operational Semantics of DEMOS 2000

Chris Tofts, Graham Birtwistle1

Information Infostructure Laboratory
HP Laboratories Bristol
HPL-2001-263
October 26th , 2001*

E-mail: chris_tofts@hp.com, graham@scs.leeds.ac.uk

semantics,
discrete event
simulation,
functional
programming,
correctness

We take a process oriented simulation language, DEMOS 2000,
and define its operational semantics. This achieves two goals:
firstly, we can unambiguously define the behaviour of any
DEMOS program; secondly, we can use the semantics to check
the behaviour of any implementation of the language. An
operational semantics has been given for the simple
synchronization fragment of µDEMOS before (Birtwistle &
Tofts, 1993, 1994), but that fragment lacked many features of a
complete discrete event simulation language. DEMOS 2000 is a
slight redesign of DEMOS that frees it from the underlying
Simula. In this semantics we give an account of the complete
language which includes features such as: parametric classes;
value, resource, entity handling synchronisations; multi-way
competing synchronisations; priority; conditional
synchronisations; random number sampling; data dependent
entities; data dependent work.

* Internal Accession Date Only Approved for External Publication
1 School of Computer Studies, Leeds University, Woodhouse Lane, Leeds, UK
 Copyright Hewlett-Packard Company 2001

Operational Semantics of DEMOS 2000.

Chris Tofts Graham Birtwistle
HP Laboratories Bristol School of Computer Studies
Filton Road Leeds University
Stoke Gifford Woodhouse Lane
Bristol Leeds
chris tofts@hp.com graham@scs.leeds.ac.uk

October 10, 2001

Abstract

We take a process oriented simulation laguage, DEMOS 2000, and define its operational
semantics. This achieves two goals: firstly, we can unambiguously define the behaviour of any
DEMOS program; secondly, we can use the semantics to check the behaviour of any implemen-
tation of the language. An operational semantics has been given for the simple synchronisation
fragment of µDEMOS before [3, 4], but that fragment lacked many features of a complete dis-
crete event simulation language. DEMOS 2000 is a slight redesign of DEMOS that frees it from
the underlying Simula. In this semantics we give an account of the complete language which
includes features such as: parametric classes; value, resource, entity handling synchronisations;
multi-way competing synchronisations; priority; conditional synchronisations; random number
sampling; data dependent entities; data dependent work.

1 Introduction

One of the major problems of any programming activity is being certain that the program is
behaving correctly. Programming languages are largely defined by example and intent. That is
examples of code and its results are presented then the results of executing similar code in other
situations must be inferred by the programmer. If the results of the program have no value, an
unlikely outcome given the effort to construct any non-trivial progam, then this would be of little
consequence. However programs are often used to control potentially life threatening systems, and
to support business threatening decisions.

When the program is of a conventional form, a simple variant of the lambda calculus (Imperative,
Functional or Declarative) then one may assume that the program inherits its meaning from that
underlying implicit formalism. Alternatively when the language is not in this class we have two
problems, what mathematical entities does it represent, and how should we execute it correctly.
However it is still the case that for a ’real’ programming language, even one based on a very clear
mathematical underpinning, the effort of providing a semantics is a major undertaking [10].

One of the major activies of business (design) support is the use of simulation, often undertaken
by computer using either extensions to general purpose programming languages or via a speciliased
language. These languages have representations for interaction and other complex constructions
that are presented by intent. Given the need for efficient programming languages for systems
modelling to support decision making we attack the second of these problems by precisely defining

1

the excution model of a simulation oriented programming language. In companion papers the
mathematical framework(s) within which this language should be understood are detailed[6, 5].

DEMOS 2000 is a modest extension of the DEMOS system [2] a simulation environment built
within the Simula [1] compiler. The aims of the extensions are:

• to remove the dependency on an underlying programming environment, and hence upon its
semantics;

• removing all programmer organized syncrhonisation points, no explicit queue maintenance
by the programmer;

• use a process algebra view to guide expressivity.

One of the most pleasant outcomes is that this requirements do not impose major changes on
either the syntax or the semantics of DEMOS. For further details of the DEMOS system under
construction see w3.hpl.hp.com/demos/.

In this form we can regard DEMOS(2000) as a guarded command language (cf unity, Dijkstra
like languages). All active commands test the current system state, if the condition they represent
can be meet then they are executed otherwise they are blocked until such time as the condition can
be met. The major difference between process oriented simulation languages and guarded command
languages is that the conditions have side effects, the assignment of resource to the active entity.
Hence change of state is mediated not only by assignment to variables, but by assignment and
claim of resource, and by entities becoming resources themselves.

One of the major changes from our semantic presentation of DEMOS is that we have exploited
the observed normal form, that all guards are simple versions of a compound guard. Hence,
the inclusion of the various atomic forms of the commands is syntactic sugar1. Consequently the
difficulty within the semantics, that is commands that cause more activity than trivial state update:
is all located within two areas the satisfaction of case based compound requests; the unblocking
effects of a resource return or variable assignment.

Again we permit ourselves to summarize the natural deduction style presentation of the struc-
tural operational semantics by using SML like functional presentation. This semantics is a general-
isation of that presented in [3, 4]. We present the syntax in its unambiguous functional form. The
external input syntax is a more conventional form and as two examples: x:=e; is written Ass(x,e)
and try req1 then bd1 etry req2 then bd2; is written Cond([(req1,bd1),(req2,bd2)]). However, since
the mapping from the infix to the functional form of the language is trvial we omit these details.

2 Notational Preliminaries

2.1 Lists

There are many ordered structures we wish to maintain within the DEMOS system, such as events,
blocked items, waiting entities and ordered queues. All of these structures can be maintained using
lists.

The empty list is denoted by []. When we wish to display a nonempty list in full, we enumerate
it. The process body below with three actions:

[getR(fs "w", 1), hold 3, putR(fs "w", 1)]

1strictly its absence of a syntactic wrapper

2

is actually short for

getR(fs "w", 1)::hold 3::putR(fs "w", 1)::[]

where :: is the infix operator (usually called cons) used to glue atoms onto lists at their head. Most
of the time we wish to focus upon the first action in a process body, since that will be its next
action to be carried out, For this we use the technique of pattern matching: if we write

b::Body = [getR(fs "w", 1), hold 3, putR(fs "w", 1)]

then in the ensuing text, b is matched to the head of the list getR("w", 1) and Body is matched
to its tail [hold(3), putR("w", 1)].

We define two higher order functions that can greatly simplify list manipulation:
map f [] = []—
map f h::t = f(h)::(map f t)

imap f [] L = L
imap f h::t L = imap f t f(h,L)

the first applies a function over all of the elements of a list, the second applies a function to a
list of elements accumulating the results of repeated application in a result list.

For more detail, see almost any text on a modern functional programming language.

2.2 Storage

We use storage to hold information about the states of resources, synchronizations class definitions
and the values of variables and constants. We leave the precise implementation details unstated,
but assume that we have the following operations on storage.

Given a store S then the following operations are defined upon it.

Membership. (id, rt) ∈ S returns true if an entry for id of type rt lies in S, false if not. In this
context, the usual question we wish to resolve is whether an identifier is fresh (not found) or
not. notUnique id S returns false only if id is fresh with respect to the environment S. Some
of the values stored are in the form of lists to maintain order. We augment standard store
operations to manipulate the list

Lookup an entry. LOOKUP (id, rt) S returns rd when (id, rt, rd) ∈ S. The call is an error if
(id,rt) 6∈ S.

Remove an entry. When (id, rt, rd) ∈ S, S — (id,rt) removes the entry for (id,rt) and returns
the reduced store S’. The call is an error if (id,rt) 6∈ S.

Delete an entry. When (id, rt, rd) ∈ S, DELETE id S removes the entry for id and returns the
entry and the reduced set S’ as a pair: (rd, S’). The call is an error if (id,rt) 6∈ S.

Update an item. If (id,rt) 6∈ S, UPDATE (id, rt, rd) S adds an entry (id, rt, rd) to S. If (id,rt)
∈ S, then it overwrites the previous entry for (id,rt). If the update simply adds an item, we
will usually write S ++ (id,rt).

Add to a list If (id,rt) 6∈ S, ADDITEMS (id, rt, vL) S adds an entry (id, rt, vL) to S. If
(id,rt,oldvL) ∈ S, then it replaces the previous entry for (id,rt) with (id,rt,oldvL@vL). Note
that we preserve the order in which the store is built up.

3

Get from a list If (id,rt) 6∈ S, then raise an error, else GETITEMS (id, rt, amt) S returns a
pair consisting of a list if length amt from the list vL from the stored item (id,rt,vL) and the
stored value becomes (id,rt,reduce(n,vL)). So we return (vL, S’). Where reduce(n,L) is the
standard list function that removes the first n items from a list.

store union Given two stores S ⊕ S’ forms a new store from the stores S and S’, if there is a
clash of elements i.e (id,rt,v) ∈ S and (id,rt,v’) ∈ S’, then the first element takes precedence.
This permits us to define local scope, by permitting the local values to take precendence over
globals.

make available Given a store convert availability of res, bin and sync record types to variables.
mk av S given (id,ty,v) in S then (AV id,var,avail(v)) is constructed in a new store.

store overwrite Given two stores S → S’ for all triples it (id,ty,v) ∈ S perform UPDATE (id,ty,v)
S’ returning the store formed by all of the operations.

Note we do not need an explicit size function for stored lists as length(LOOKUP (id,rt) S) with
the standard list length function will perform this task.

2.3 The event and blocked lists

The event list is an ordered list of the form PD(id, pri, Body,Attrs,evt) ranked by increasing time
evt and pri if the times are the same. We postpone the full explanation of process descriptors to
Section 3.1.

Given that

EL= [PD(id1, p1, b1, a1, t1), PD(id2, p2, b2, a2, t2), ..., PD(idn, pn, bn, an, tn)]

then t1 ≤ t2 ≤ ... ≤ tn and further if tk =tk+1 then pk ≤pk+1. We posit two basic event list routines
and two auxiliaries: here are their explanations together with concrete FCFS list implementations.
The first process in the event list is referred to as current. The simulation clock time is the event
time of current.

evTime en (event notice en) returns the event time of en.

evTime PD(id,pr,Body,Attrs,evt) = evt

pPri en (event notice en) returns the priority of en.

pPri PD(id,pr,Body,Attrs,evt) = pr

future en time makes the event notice active at time and returns the new event notice:
future PD(id,pr,Body,Attrs,evt) time = if time<0

then PD(id,pr,Body,Attrs,evt)
else PD(id,pr,Body,Attrs,evt + time)

pName en (event notice en) returns the identifier of en.

pName (PD(id,pr,Body,Attrs,evt)) = id

ENTER en EL: enters the event notice en into the event list EL ranked in according to its event
time and priority, using the priority to resolve the order for entities with the same time. It

4

is entered after the last notice with an earlier time, and after all notices with the same time
and equal or higher priority.

ENTER en [] = [en]
ENTER en1 (en2::EL) = if evTime en1 < evTime en2

then en1::en2::EL
else
if evTime en1 = evTime en2
then if pPri en1 ≥ pPri en2
then en1::en2::EL
else en2::(ENTER en1 EL)

else en2::(ENTER en1 EL)

BENTER projF end EL: enters the event notice data end into the blocked list EL ranked
in according to its priority. The projection function allows us to order event notices by
priority when the occur within complex data structures, such as the triples used to maintain
synchronisations. This is the dual of enter when it is used to maintain blocked lists. We use
the same data structure as this permits us to observe the amount of time an entity stays
blocked for. Again at equality those objects already in the list take precedence. We pass in a
projection function so this function can be used on more complex data structures using event
notices, for standard usage the function is simply pPri.

BENTER projF end [] = [end]
BENTER projF end1 (end2::EL) = if pPri(projF end1) ≥ pPri(projF end2)

then end1::end2::EL
else end2::(BENTER projF end1 EL)

ADDPrITEM(id, rt, vL) projF S We maintain lists of prioritised objects within our stores.
In particular there a situations where we need to add items to a list which contain pro-
cess descriptors respecting priorites. In this instance we must provide a projection function
Data→ evNote, so we can locate the event notice within the data structure. ADDPrITEM
(id, rt, vL) S If (id,rt,oldvL) ∈ S, then it replaces the previous entry for (id,rt) with (id,rt,
imap (BENTER proj3) oldvL vL).

2.4 Attributes

Every time an object releases a share in a resource or a synchronisation, we check that it did indeed
own it at the time. It follows that, for each process object, we must keep track of resource seizures
as they are made. The simplest way of doing this is to maintain a store of current attributes
local to each process object. A major source of error in concurrent systems is the ‘mislaying’ of
semaphores. By ensuring that only resources that are actually held can be freed, we can observe
these errors before they propogate through the system. Further for convenience a notion of local
variable greatly simplifies entity definitions, and these bindings will be stored as local attributes.

Attributes may be shares in resources, or synced processes. They are maintained in a store
with three types, resource, syncs and variables. The syncs are stored as a list of event notices. We
exploit the general store operations to maintain this type of store.

We define a couple of auxiliary functions to simplify the manipulation of attributes:
getAttrs PD(id,pr,Body,Attrs,evt) = Attrs
setAttrs PD(id,pr,Body,Attrs,evt) Attrs’ = PD(id,pr,Body,Attrs’,evt)

5

These functions allow us to get the store within a process descriptor and to set it to a new store.

2.5 Expression evaluation

Define the semantic function EV S e, which given an expression e and a store S returns its value,
straightforward recursion over the syntax. Letting N range over names, V range over values, Uop
over unary operators, Bop over binary numerical values, and dis(̃(p)) over distributions taking a
parameter vector (̃p) we obtain the following:

EV S V = V
EV S N = let val nm=evalN S N in

if (nm,var) ∈ S then LOOKUP (nm,var) S
else if (nm,cons) ∈ S then EV S (LOOKUP (nm,cons) S)
else error unknown variable

EV S Uop(ee) = Uop(EV S ee)
EV S Bop(e1,e2) = Bop(EV S e1,EV S e2)
EV S DisPtr(nm) = let val (dn(p̃),sd,sn)=(LOOKUP (nm, dist) S)

in UPDATE(seed,var,sd) S
in ret=sample(dn(map EV S (̃p)))
in UPDATE(nm,dist,(de,LOOKUP (seed,var) S,sn+1)) S
in ret

The above is standard except for the fact that constants are stored as expressions, and conse-
quently re-evaluated. This permits us to bind distributions to constants and consequently re-sample
them whenever the constant is re-evaluated. To allow us to sample distributions with well seper-
ated seeds, each distribution expression is (essentially) conveted to a triple of the expression, its
previous random drawing, and the number of times it has been sampled. We then set the seed
to the previous draw for this distribution and then sample the distribution, as a side effect this
updates seed as the mod-congruence generator defines. Subsequently we store the next draw values
and the fact this distribution has been used one more time. See Section 11 for details of the sample
functions used.

2.6 Expression conversion

Define the semantic function EC S e, which given an expression e and a store S returns the expres-
sion with all of its fixed terms evaluated. This is used to minimize expressions within distributions
as they are stored.

EC S V = V
EC S N = let val nm=evalN S N in

if (nm,var) ∈ S then LOOKUP (nm,var) S
else if (nm,cons) ∈ S then EV S (LOOKUP (nm,cons) S)
else error unknown variable

EC S Uop(ee) = Uop(EC S ee)
EC S Bop(e1,e2) = if isVal(e1) andalso isVal(e2)

then Bop(EC S e1, EC S e2)
else Bop(e1,e2)

EC S Dis(p̃) = Dis(map EC S p̃)
This function evaluates all of the subexpressions of a distribution expression and grounds them.

The predicate isVal checks to see if a term does not containd a reference to a distribution sample
and if so the expression can be evaluated.

6

2.7 Boolean evaluation

Define the semantic function BV S b, which given a boolean expression b and a store S returns
its value, straightforward recursion over the syntax. Allowing Bp to range over binary boolean
operators, Up ranging over unary binary operators, Rop over relational operators then we can
define the function as follows:

BV S true = true
BV S false = false
BV S Up(be) = Up(BV S be)
BV S Bp(b1,b2) = Bop(BV S b1, BV S b2)
BV S Rop(e1,e2) = Rop(EV S e1, EV S e2)

2.8 Parametrised Names

We permit all of the names used for identifiers to have dependency on the system state. Essentially
we have name arrays. The auxiliary function evalN takes an identifier and a store pair and returns a
fixed name based on the state. Here the first store takes precedence as it represents local definitions.
Hence in a context where the variable i=3 then the identifier a[i] is the name a[3].

evalP S e = ”[” string(EV e S) ”]”
evalN S(fs s) = s
evalN S(ps (s,eL)) = s (map (evalP S) el)

2.9 Let

We use the let notation let x = e in E to clarify the structure of complicated expressions, preferring,
for example, to spell out

exec(cp’::EL, BL, S ++ (id, res,2))

in simple steps as

let S’ = S ++ (id, res, 2) in
let EL’ = cp’::EL in

exec(EL’, BL, S’)

The advantages are that state changes are reflected textually (EL and R have changed; BLhas
not), and the lets are meaningful in both the functional and imperative programming styles.

3 Semantics of DEMOS

We can define the state of a DEMOS program as the product of the states of all of its constituents,
both active and blocked, and the state of the store containing all of the data viz: class definitions,
resource, bin synchronization states, variable and constant values.

So the program state is represented by a 3-tuple (EL,BL,S) where:

EL is an event list which contains all the active (scheduled) processes, ranked according to the
time of their next scheduled event and their priority . Processes are entered into EL on
creation by Entity, rotated down EL by hold, and deleted from EL when their actions are
exhausted. Within the process description the process that have been acquired through syncs

7

Figure 1: The states of a DEMOS 2000 Entity.

are held, so whilst they are passive they are held either within the store waiting on a getS or
within the process whilst being used, until reactivated with a putS. See figure 1

BL is an event list which contains all the waiting processes, ranked according to their priority .
Processes are entered into BL when any request for resource they make cannot currently be
met, or a condition test fails. They are removed from the blocked list and returned to the
event list when a resource freeing event, putR, putB, putBS, sync or a variable assignment
occurs which causes their blocking condition to become satisfiable.

S is a store in which the free amounts of resources, bins, and syncs are maintained, the values of
variable and constants, as well as the class definitions.

3.1 Event notices

The event notice has the following form, PD(id,pr,Body,Attrs,evt), which can be understood
as follows:

id a name identifying the entity;

pr the current priority of this entity, can be changed with the priority command;

8

Body the list of actions the entity wishes to engage in, the list providing the order over the
actions;

Attrs a store contains three types res, sync and var. The res being the name and amount of
currently held resources. the sync a list of synced processes in the order in which they were
claimed. The var is the values of local variables.

evt the time at which this notice should next be considered active.

3.2 Operational semantics

As each program command is executed the system will change from one state to another

(EL, BL, S) =⇒ (EL’, BL’, S’)

Execution is so framed that the next action to be executed is always the first action in the action
list of the first object in the event list. Thus given the event list pattern-matching

EL = PD(c, pr ,b::Body, Attrs, evt)::...

— the next action must be b and the system time is said to be at the time of this action, evt.
It is now straightforward to give a semantics as a case statement over the structure of DEMOS

commands, as sketched below:

1. an error arises if the event list becomes empty (the system should be shut down with a call
on close).

exec ([], BL, S) =error

2. When a process has exhausted its actions, a check is made to see whether it still owns any
attributes. An error results if it does. If not, all is well. The object is deleted from the event
list. The simulation proceeds from the next action of the new current.

exec (PD(c,pr,[],Attrs,evt)::EL, BL, S)
= if Attrs = empty

then exec(EL, BL, S)
else error

3. The normal case — we focus on PD(c, pr, b::Body, Attrs, evt) the object at the head of
the event list, and execute its next action b. The names Body, Attrs, and evt are directly
accessible in the case clause, as is cp’, the “expected next current process object”. We permit
ourselves to add some global information into the store at this point.

The cases are detailed each to its own subsection as indicated below.

9

exec (PD(c,pr,b::Body,Attrs,evt)::EL, BL, S0)
= let cp’ = PD(c,pr,Body, Attrs, evt)
S= (UPDATE (DEMOS TIME,var,evt) mk av(S0)) → S0 in
(case b of

Class(id, Pl, Body) section 4
| Res (id, e)
| Bin (id, e)
| Entity (id, classId, Pl, dt, ResL, SynL)
| Var (id, e)
| LVar (id, e)
| Sync(id)
| Cons (id, e)

| hold dt section 7
| priority e
| do (ec, acL)
| ido (n, acL)

| putB (id, m) section 5
| putR (id, m)
| putS (id, m)
| putSv(id, eL)
| putBS(id, eL)
| ass(id, e)

| getB (id, m) section 6
| getR (id, m)
| getS (id, m)
| getSv (id, bL, be)
| getBv (id, bL, be)
| Req(acqL)
| Cond(caL)
| while (acqL, aL)

| close section 8
| seed
| trace(s, eL)

| anything else =error
)

4 Declarations

4.1 Class

Put the definition of a class into the store.
Syntax: Class(n,pl,bd) - (parameters):

1. n is the name of the class possibly an array;

10

2. pl is a formal parameter list, a simple string, for later substitution either by value or name;

3. bd is the body of the class.

Semantics:
Class(n,pl,bd)

= (evalN (Attrs⊕S) id,class) ∈ S ⇒ error
| let EL’ = cp’::EL in

let S’ = S++(evalN (Attrs⊕S) id,class,(pl,bd)) in
(EL’, BL, S’)

Interpretation:

1. (evalN id (Attrs⊕S),class) ∈ S: error if the class identifier is not fresh

2. Normal case

(a) let EL’ = cp’::EL: move past this instruction.

(b) let S’ = S++(evalN (Attrs⊕S) id, class, (pl,bd)) enter the new class declaration into
the environment with the parameter list for later instantiation

(c) return the new state (EL’, BL, S’)

4.2 Entity

Puts an entity whose actions are defined by a class into the event list, the entity is enabled at
some point in the future. Further, the class definition has name parameters which are instantiated
throughout its body at this point.
Syntax: Entity(eid,cn,pl,offset,reL,syL) - (parameters):

1. eid an extra identifier for use of the programmer, to distinguish entities from the same class
if necessary;

2. cn the class to instantiate;

3. pl the parameter instantiations for the class;

4. offset the time after the current clock to start executing the entity;

5. reL a resource list [(rn,amt)] of resources claimed from the current entity to be passed to this
new one;

6. syL a sync list [sync] of syncs claimed from the current entity to be passed to this new one,
note [syncA,syncA] will hand over two instances of syncA;

Semantics:

11

Entity(eid,cn,pl,offset,reL,syL)
= (evalN (Attrs⊕S) cn,class) 6∈ S ⇒ error
| let rcn = evalN (Attrs⊕S) cn in

let rid = evalN (Attrs⊕S) eid in
let rL = map evalR (Attrs⊕S) reL in
let sL = map evalN (Attrs⊕S) syL in
let pil = map (evalN S) pl in
let nbd = getBody(rcn,pil,state) in
let (cp”,scL) = removeSL(sl,cp’,[]) in
let act = evt + (EV Attrs⊕Soffset) in
let EL’ = (ENTER PD(rid-rcn,0,nbd,(rL⊕scL), act) removeRL(rL,cp”)::EL) in

(EL’, BL, S)
Interpretation:

1. (evalN cn (Attrs⊕S),class) 6∈ S: error the class identifier does not exist;

2. Normal case

(a) let rcn = evalN (Attrs⊕S) cn: evaluate the class name to be used;

(b) let rid = evalN (Attrs⊕S) eid: evaluate the entities given name, so the programmer
cvan recognise the entity;

(c) let rL = map evalR (Attrs⊕S) reL: evaluate the resource names and amounts that are
being handed to the entity;

(d) let sL = map evalN (Attrs⊕S) syL: evaluate the names of the syncs that are being
passed to the entity;

(e) let pil = map (evalN S) pl : evaluate the name parameters to instantiate the class
parameters into;

(f) let getBody(rcn,pil,state): get the entity body from the class store and perform the
name substitution throughout.

(g) let (cp”,scL) = removeSL(sl,cp’,[]); remove the sync notices from the current entity and
update its store, also return a store of the passed on sync notices;

(h) let act = evt + (EV Attrs⊕Soffset): compute the start time for this entity;

(i) let EL’ = (ENTER PD(rid-rcn,0,nbd,(rL⊕scL), act) removeRL(rL,cp”)::ELmove past
this instruction and add the new event notice at the appropriate point in the event list,
with the store formed from the passed over resources and syncs.

(j) return the new state (EL’, BL, S)

4.3 Res

Define a resource, similar to a multi value semaphore.
Syntax: Res(n,amt) - (parameters):

1. n the name of the resource, possibly an array;

2. amt the amount of this resource, notice this maximum cannot be changed later;

12

Semantics:
Res(id,e)

= (evalN (Attrs⊕S) id, res) ∈ S ⇒ error
| let EL’ = cp’::EL in

let amt=EC S e in
let S’ = S++(evalN (Attrs⊕S) id,res,amt) in

(EL’, BL, S’)
Interpretation:

1. (evalN (Attrs⊕S) id, res) ∈ S: error if the resource identifier is not fresh

2. Normal case

(a) let EL’ = cp’::EL: move past this instruction.

(b) let amt=EC S e how much resource is specified

(c) let S’ = S++(evalN (Attrs⊕S) id, res, amt) enter the new resource declaration into the
store with the currently available amount of that resource;

(d) return the new state (EL’, BL, S’)

4.4 Bin

Define a new bin, similar to a queue or a place in a Petri net
Syntax: Bin(n,amt) - (parameters):

1. n the name of the resource, possibly an array;

2. amt the initial amount in this bin.

Semantics:
Bin(id,e)

= (evalN (Attrs⊕S) id, bin) ∈ S ⇒ error
| let EL’ = cp’::EL in

let amt=EC S e in
let S’ = S++(evalN (Attrs⊕S) id, bin,amt) in

(EL’, BL, S’)
Interpretation:

1. (evalN (Attrs⊕S) id, bin) ∈ S: error if the resource identifier is not fresh

2. Normal case

(a) let EL’ = cp’::EL: move past this instruction.

(b) let amt=EC S e amount of the initial bin contents as specified

(c) let S’ = S++(evalN (Attrs⊕S) id, res, amt) enter the new resource declaration into the
store with the currently available amount of that resource;

(d) return the new state (EL’, BL, S’)

13

4.5 Sync

Place the current process on the sync list indexed by the sync name.
Syntax: Sync(n) - (parameter):

1. n the name of the sync.

Semantics:
Sync(id)

let S’ = ADDPrITEM(evalN (Attrs⊕S) id, sync, [([],[],PD(cn,pr,Body,Attrs,evt))] val3) S in
promote(Sync(evalN (Attrs⊕S)) id, EL, BL, S’)

Interpretation:

1. let let S’ = ADDPrITEM(evalN (Attrs⊕S) id, sync, [([],[],PD(cn,pr,Body,Attrs,evt)) val3])
Sadd this entity to those queuing on the sync name id, if there is none then the name is
created, val3 projects out the third value in a tuple. This is a trivial version of a value sync.
The entity is inserted into those waiting on the sync in priority order followed by arrival order.

2. perform a promotion on the new state (EL, BL, S’) as some other process may now be
unblocked. We need to take note of the new resource which has become available to correctly
unblock processes with potentially multiple requirements.

4.6 SyncV

Place the current process on the sync list indexed by the sync name, with output expressions and
input variable names.
Syntax: SyncV(n, expL, vL) - (parameters):

1. n the name of the sync, possibly an array;

2. expL an expression list of output values, eg [i+j,3];

3. vL a local variable list for return values.

Semantics:
SyncV(id,exL,vL)

let evl = map (EV Attrs⊕S) exL in
let enl = map (evalN Attrs⊕S) vL in
let S’ = ADDPrITEM(evalN (Attrs⊕S) id, sync, [(evl,enl,PD(cn,pr,Body,Attrs,evt))] val3) S in

promote(Sync(evalN (Attrs⊕S)) id, EL, BL, S’)

Interpretation:

1. let evl = map (EV Attrs⊕S) eL: compute tha values bound to the value sync;

2. let enl = map (evalN Attrs⊕S) vL: compute the names of the variables to be bound on return
from the sync;

3. let S’ = ADDPrITEM(evalN (Attrs⊕S) id, sync, [(evl,enl,PD(cn,pr,Body,Attrs,evt)) val3])
Sadd this entity to those queuing on the sync name id, if there is none then the name is
created, val3 projects out the third value in a tuple. As part of the store we keep lists of the
values bound in the sync and the parameter names in which returned values are to be stored.
The entity is inserted into those waitin on the sync in priority order followed by arrival order.

14

4. perform a promotion on the new state (EL, BL, S’) as some other process may now be
unblocked. We need to take note of the new resource which has become available to correctly
unblock processes with potentially multiple requirements.

4.7 Cons

Enter the definition of the constant into the store.
Syntax: Cons(n,e) - (parameters):

1. n the name of the constant, possibly an array;

2. e an expression;

Semantics:
Cons(id,e)

= (evalN (Attrs⊕S) id, cons) ∈ S ⇒ error
| let EL’ = cp’::EL in

let S’ = S++(evalN (Attrs⊕S) id, cons, DisC S(EC Se)) in
(EL’, BL, S’)

Interpretation:

1. (evalN (Attrs⊕S) id, cons) ∈ S: error if the constant identifier is not fresh

2. Normal case

(a) let EL’ = cp’::EL: move past this instruction.

(b) let S’ = S++(evalN (Attrs⊕S) id, cons, DisC S(EC Se)) enter the new constant decla-
ration into the store as a symbolic constant. This permits us to re-evaluate the constant
when used. Hence bindings of the form Cons n=nege(10). Will have the expected effect
of resampling the distribution each time they are used. Constants in Demos2000 are
fixed bindings over a system run, not necessarily fixed values. The function DisC con-
verts the distributions into a triple form of (de,cr,0) with de the distribution expression,
cr the current seed for this distribution, and the 0 representing the number of times it has
been sampled. We use this to establish well seperated seeds for each of our distributions.

(c) return the new state (EL’, BL, S’)

4.8 Var

Enter the definition of the variable into the store.
Syntax: Var(n,e) - (parameters):

1. n the name of the variable, possibly an array;

2. e an expression;

Semantics:
Var(id,e)

= (evalN (Attrs⊕S) id, vars) ∈ S ⇒ error
| let EL’ = cp’::EL in

let S’ = S++(evalN (Attrs⊕S) id, vars, EV (Attrs⊕S) e) in
(EL’, BL, S’)

Interpretation:

15

1. (evalN (Attrs⊕S) id, vars) ∈ S: error if the variable identifier is not fresh;

2. Normal case

(a) let EL’ = cp’::EL: move past this instruction.
(b) let S’ = S++(evalN (Attrs⊕S) id, vars, EV (Attrs⊕S) e) enter the new variable decla-

ration into the store with its current value
(c) return the new state (EL’, BL, S’)

4.9 LVar

Enter the definition of the local variable into the entity attributes.
Syntax: Lvar(n,e) - (parameters):

1. n the name of the local variable, possibly an array;

2. e an expression;

Semantics:
LVar(id,e)

= (evalN (Attrs⊕S) id, vars) ∈ Attrs ⇒ error
| let Attrs’ = Attrs ++ (evalN (Attrs⊕S) id, vars, EV (Attrs⊕S) e in

let EL’ = PD(c,pr,Body,Attrs’,evt)::EL in
(EL’, BL, S)

Interpretation:

1. (evalN (Attrs⊕S) id, vars) ∈ Attrs: error if the variable identifier is not fresh;

2. Normal case

(a) let Attrs’=Attrs++(evalN (Attrs⊕S) id, vars, EV (Attrs⊕S) e: add this variable defi-
nition to the local store with its new value;

(b) let EL’ = PD(c,pr,Body,Attrs’,evt)::EL: move past this instruction.
(c) return the new state (EL’, BL, S)

5 Assignments

5.1 Variables

Change the value of the variable. Syntax: Ass(x,e) - (parameters):

1. x the name of the constant, possibly an array;

2. e an expression;

Semantics:
Ass(x,e)

= (evalN (Attrs⊕S) id, vars) 6∈ S ⇒ error
| let Name=evalN (Attrs⊕S) id in
| let (Attrs’,S’)=Do assign(Name,EV Attrs⊕S e, Attrs,S in

let EL’ = PD(c,pr,Body,Attrs’,evt)::EL in
promote(Ass(Name,EV (Attrs⊕S) e), evt, EL’, BL, S’)

Interpretation:

16

1. (evalN (Attrs⊕S) id, vars) 6∈ S: error if the variable identifier does not exist;

2. Normal case

(a) let Name=evalN (Attrs⊕S) id: evaluate and store the name for future use.

(b) let (Attrs’,S’)=Do assign(Name,EV (Attrs⊕S) e,Attrs,S) enter the new value for the
variable into the correct store, obviously only one of these will be changed;

(c) let EL’ = PD(c,pr,Body,Attrs’,evt)::EL: the local store may have changed so reconstruct
the event list;

(d) use the semantic function promote(Ass(Name,EV (Attrs⊕S) e), evt, EL’, BL, S’) to
enable any entities that may have become unblocked, see section 9.3 for details. Use the
evaluated name and expression to save time, and avoid local name clashes.

5.2 putR

Return an amount of resource.
Syntax: putR(n,e) - (parameters):

1. n the name of the resource, possibly an array;

2. e is the amount to return;

Semantics:
putR(id,e)

= (evalN id (Attrs⊕S), res) 6∈ S⇒ error
| let n = evalN id (Attrs⊕S) in

let v=EV (Attrs⊕S) e in
if pr=-15000 then
let S’ = UPDATE(n, res, v + LOOKUP(n,res) S) S in

promote(putR(n,v), evt, EL, BL, S’)
else
let EL’ = removeR(n, v, cp’)::EL in
in (ENTER PD(cn,-15000,[putR(n,v)],(),evt) EL’,BL,S)

Interpretation:

1. (evalN (Attrs⊕S) id, res) 6∈ S: error if the resource identifier does not exist;

2. Normal case

(a) let n = evalN (Attrs⊕S) id: work out the resource name;

(b) let v=EV (Attrs⊕S) e: and the amount to return;

(c) if pr=-15000: then this is a delayed return so

(d) let S’ = UPDATE(n, res, v + LOOKUP(n,res) S) Sadd the resources back if the
previous function did not fail;

(e) use the semantic function promote(putR(n,v), evt, EL, BL, S’) to enable any entities
that may have become unblocked, see section 9.3 for details. Notice this must be a 1
action entity so it immediately dies.

(f) otherwise

17

(g) let EL’ = removeR(n, v, cp’)::EL: move past this instruction, and remove the resources
deallocated from the entities own store. If they are not held then this will generate the
error, see section 9.5;

(h) (ENTER PD(cn,-15000,[putR(n,v)],(),evt) EL’,BL,S): and enqueue the return at a pri-
ority lower than that which can be assigned to any other entity, to ensure that this is
the last activity (other than other returns) undertaken at this clock instant.

5.3 putB

Add an amount to a bin. Syntax: putB(n,e) - (parameters):

1. n the name of the bin, possibly an array;

2. e is the amount to add;

Semantics:
putB(id,e)

= (evalN (Attrs⊕S) id, bins) 6∈ S⇒ error
| let n = evalN (Attrs,S) id in

let v=EV (Attrs⊕S) e in
if pr=-15000 then
let S’ = UPDATE(n, bins, v + LOOKUP(n,bins) S) S in

promote(putB(n,v), evt, EL’, BL, S’)
else
let EL’ = cp’::EL in
in (ENTER PD(cn,-15000,[putB(n,v)],(),evt) EL’,BL,S)

Interpretation:

1. (evalN id (Attrs⊕S), bins) 6∈ S: error if the bin identifier does not exist;

2. Normal case

(a) let n = evalN (Attrs⊕S)id: work out the bin name;

(b) let v=EV (Attrs⊕S) e: and the amount to return;

(c) if pr=-15000 then: so we actually perform the return

(d) let S’ = UPDATE(n, bins, v + LOOKUP(n, bins) S) Sadd the items to the bin;

(e) use the semantic function promote(putB(n,v), evt, EL, BL, S’) to enable any entities
that may have become unblocked, see section 9.3 for details. Use evaluated forms to
save compute and then the current entity must die.

(f) else

(g) let EL’ = cp’::EL: move past this instruction;

(h) (ENTER PD(cn,-15000,[putB(n,v)],(),evt) EL’,BL,S): put in an entity to do the return
as the last activity at this instant.

18

5.4 putS

Return a number of syncs.
Syntax: putS(id,e) - (parameters):

1. id the name of the sync, possibly an array;

2. e is the number to return;

Semantics:
putS(id,e)

= let n = evalN (Attrs⊕S) id in
let v=EV (Attrs⊕S) e in
let (fp,cp”)=removeS(n,v,cp’) in
let EL’ = cp”::(imap ENTER fp EL) in

(EL’, BL, S)
Interpretation:

1. let n = evalN (Attrs⊕S) id: work out the sync name;

2. let v=EV (Attrs⊕S) e: and the amount to return;

3. let (fp,cp”)=removeS(n,v,cp’): compute the new process descriptor for this process cp” given
by removing v of the entities synced on n from it, if held, returning a list of those freed
processes, see section 9.6; otherwise raise error;

4. let EL’ = cp”::(map ENTER fp EL) use the new process descriptor for this entity and leave
it a the live entity, add the freed entities in the appropriate order into the remainder of the
event list;

5. let S’ = UPDATE(n, res, v + LOOKUP(n,res) S) Sadd the resources back if the previous
function did not fail;

6. return the new state (EL’, BL, S), note unlike other assignments putS cannot cause any other
process to become unblocked. The unblocking causation on getS is the use of a sync to create
a potential slave entity.

5.5 putSv

Return an entity synchronized passing in return values.
Syntax: putSv(id,exL) - (parameters):

1. id the name of the sync, possibly an array;

2. exL is a return value list, e.g [i+k,2,5], which is bound to local variables in the freed entity;

Semantics:
putSv(id,eL)

= let n = evalN (Attrs⊕S) id in
let evL= map (EV (Attrs⊕S)) exL in
let (prp,cp”)=removeSv(n,v,cp’,S) in
let EL’ = cp”::(ENTER prp EL) in

(EL’, BL, S)
Interpretation:

19

1. let n = evalN (Attrs⊕S) id: work out the sync name;

2. let evL= map (EV (Attrs⊕S)) exL : and the values to return;

3. let (fp,cp”)=removeSv(n,evL,cp’,state): compute the new process descriptor for this process
cp” given by removing an entity synced on n from it, if held; otherwise raise error, return
the freed entity, see section 9.6. Note the internal bindings of the variables of the entity may
(should) have been changed by the returning value list;

4. let EL’ = cp”::(ENTER prp EL) use the new process descriptor for this entity and leave it a
the live entity, add the freed entities in the appropriate order into the remainder of the event
list;

5. let S’ = UPDATE(n, res, v + LOOKUP(n,res) S) Sadd the resources back if the previous
function did not fail;

6. return the new state (EL’, BL, S), note unlike other assignments putS cannot cause any other
process to become unblocked. The unblocking causation on getS is the use of a sync to create
a potential slave entity.

5.6 putBS

Similar to syncV but can pass not only values but also resources and syncs. This permits entities to
move bound objects to other entities. Obviously to prevent errors these bindings must be tracked.
For the resource and sync hanover see entity creation.
Syntax: putBS(id,exL,reL,sL) - (parameters):

1. id the name of the bin, possibly an array;

2. exL an expression list evaluated to give values;

3. reL a resource list, see entity creation;

4. sL a sync list, also see entity creation;

Semantics:
putBS(id,exL,reL,sL)

= (evalN (Attrs⊕S) id, bins) 6∈ S⇒ error
| let n = evalN (Attrs⊕S) id in

let vL = map evalN (Attrs⊕S) exL in
let rL = map evalR (Attrs⊕S) reL in
let sL = map evalN (Attrs⊕S) sL in
if pr=-15000 then
let S’ = ADDITEM(n, bins, (vL,rL,syN)) S in

promote(putBS(n,eL,reL,sL), evt, EL, BL, S’)
else
let (cp”,syN) = removeSL(sL,cp’,[]) in
in (ENTER PD(cn,-15000,[putBS(n,vL,rL,syN)],(),evt) removeRL(rl,cp”)::EL, BL, S)

Interpretation:

1. (evalN (Attrs⊕S) id, bins) 6∈ S: error if the bin identifier does not exist;

2. Normal case

20

(a) let n = evalN (Attrs⊕S) id : work out the resource name;

(b) let vL = map evalN (Attrs⊕S) exL: evaluate the expressions passed with the bin item;

(c) let rL = map evalR (Attrs⊕S) reL: evaluate the amounts of each resource passed along
with the bin item;

(d) let sL = map evalN (Attrs⊕S) sL: and work out the ground sync names;

(e) if pr=-15000 then: we are actually doing the put;

i. let S’ = ADDITEM(n, bins, (vL,rL,syN)) Sput the parameterised bin item in the
store, with its associated values, resources and syncs;

ii. use the semantic function promote(putBS(n,eL,reL,sL), evt, EL, BL, S’) to enable
any entities that may have become unblocked, see section 9.3 for details. Since the
evaluated form has been stored in the state, we only use the name and hence have
no state overwrite problems. Note the current entity has only one action and hence
will die.

(f) else

(g) let (cp”,syN) = removeSL(sL,cp’,[]): remove the syncs from the current process notice,
note may lead to an error if we pass on syncs we do not have;

(h) (ENTER PD(cn,-15000,[putBS(n,vL,rL,syN)],(),evt) removeRL(rl,cp”)::EL, BL, S): then
enqueue the actual return as the last activity at this clock instant.

6 Claims

6.1 getR

Attempt to claim an amount of a resource, if that is not available then wait it until it is. Waiting
entities will be satisfied on a priority/FCFS basis:
Syntax: getR(id,v) - (parameters):

1. id the name of the resource, possibly an array;

2. v is the amount to claim;

Semantics:
getR(id,v)

= exec(PD(c,pr,[Cond[([b],Body)]],Attrs,evt)::EL’, BL, S)
Interpretation: we take advantage on the normalization observed in [5], and wrap the request up
into a conditional, and recall the state evaluation function. We must make sure that the name
and value are evaluated now, to fix the current context. If this is blocked then values may change,
leading to an incorrect getR. Note b is the current atomic action.

6.2 getB

Attempt to claim an amount of a bin, if that is not available then wait it until it is. Waiting entities
will be satisfied on a priority/FCFS basis:
Syntax: getB(id,v) - (parameters):

1. id the name of the resource, possibly an array;

2. v is the amount to claim;

21

Semantics:
getB(id,v)

= exec(PD(c,pr,[Cond[([b],Body)]],Attrs,evt)::EL’, BL, S’)
Interpretation: see getR above.

6.3 getS

Attempt to claim an amount of a sync, if that is not available then wait it until it is. Waiting
processes will be satisfied on a priority/FCFS basis:
Syntax: getS(id,v) - (parameters):

1. id the name of the sync, possibly an array;

2. v is the number to claim;

Semantics:
getS(id,v)

= exec(PD(c,pr,[Cond[([b],Body)]],Attrs,evt)::EL’, BL, S)
Interpretation: see getR above.

6.4 getSv

Attempt to claim a sync with values which when bound locally permits a condition (filter) to return
true. If no satisfying sync is available then wait it until it is. Waiting processes will be satisfied on
a priority/FCFS basis:
Syntax: getSv(id,vL,cc) - (parameters):

1. id the name of the sync, possibly an array;

2. vL is a local variable list to bind its output values to;

3. cc is a boolean expression which when evaluated (possibly) using the local variables above
must return true. Obviously getSv(id,vL,true) will take the first sync item and bind the
variables.

Semantics:
getSv(id,vL,cc)

= exec(PD(c,pr,[Cond[([b],Body)]],Attrs,evt)::EL’, BL, S)
Interpretation: see getR above.

6.5 getBv

Attempt to get a parameterised item from a bin such that when the local variables in a binding
list are bound in order to its parameters a condition evaluates true. If there are many items in
the bin move down it until the first one that satisfies is found. In that case the local variables are
now bound to the values observed, otherwise wait until such an item becomes available. Waiting
entities will be satisfied on a priority/FCFS basis. As a side effect any resources or syncs bound to
this bin item will be added to this entity. To disambiguate the values are used to indicate what, if
any, extra resources came with the bin item.
Syntax: getBv(id,bL,be) - (parameters):

1. id the name of the sync, possibly an array;

22

2. bL is a local variable list to bind its output values to;

3. be is a boolean expression which when evaluated (possibly) using the local variables above
must return true. Obviously getBv(id,bL,true) will take the first sync item and bind the
variables.

Semantics:
getBv(id, bl, be)

= exec(PD(c,pr,[Cond[([b],Body)]],Attrs,evt)::EL’, BL, S)
Interpretation: see getR above.

6.6 Req

Only proceed when all of its claims can be meet simultaneously. This is the representation of
the infamous waituntil. Notice we can use single acquisitions, and this permits boolean expressions
as an acquisition type.
Syntax: Req(acqL)- (parameter):

1. acqL is a list of acqusisitions - getR, getB, getS, getSv, getBv, ck.

Semantics:
Req(acqL)

= exec(PD(c,pr,[Cond[([acqL],Body)]],Attrs,evt)::EL’, BL, S)
Interpretation: see getR above.

6.7 Cond

This is similar to a case statement. The condL consists of pairs of claim lists and action lists. We
check each of the claim lists in order until one can be satisfied, we then proceed by executing the
body of that claim in the state resulting from performing all of the claims. If none of the claim
lists can be satisfied then we wait. This is essentially non-determinism with a synchronous process
algebra [8, 12, 9] which is known to be an extremely expressive form [12].
Syntax: Cond(condL)- (parameter):

1. condL is a list of pairs (acqL,bd) - where acqL is an acquisition list (see req) and bd a command
list. Note that the pair ([],bd) will always satisfy and can be used to form non-blocking
tests.

Semantics:
Cond(condL)

= if cBL(Cond(condL),BL,(Attrs,S))
then (EL, BENTER(PD(c,pr,Cond(condL)::Body,Attrs,evt),BL), S)
else let (fire, (Attrs’, S’), fiB)=doCond(evt,c,acqL,(Attrs,S)) in

if fire
then let EL’=PD(c,pr,fiB@Body,Attrs’,evt)::EL in

(EL’,BL,S’)
else let BL’=BENTER(PD(c,pr,Cond(L)::Body,Attrs,evt),Bl) in

(EL,BL’,S)
Interpretation:

1. if cBL(Cond(acqL),BL,S): we can cause starvation by permitting entities in the event list to
have implicit priority over those that are blocked, so if we depend on a claim that something
in the blocked list is waiting on then we must not attempt a claim

23

(a) true: then (EL, BENTER(PD(c,pr,Cond(L)::Body,Attrs,evt),BL), S) add this process
to the blocked list and return the new state;

(b) false: else let (fire, (Attrs’,S’), fiB)=doCond(evt,c,condL,(Attrs, S)): attempt to find a
list of acquisitions within the Cond list that can fire, return that in fire; if fire is true
then S’ is the store after the claims have been evaluated, Attrs’ is the change to the
local attributes (added resources or syncs) and fiB is the action list that should now be
executed. See section 9.2 for a detailed explanation;

(c) if fire: check to see if a condition can be satisfied;

i. true: then let EL’=(PD(c,pr,fiB@Body,Attrs’,evt)::EL and return the state (EL’,BL,S’):
we reconstruct the current process descriptor adding the claimed items to its at-
tribute list (Attrs), putting the action body to be executed in front of the remainder
of the entity, and continuing using the updated store;

ii. false: else let BL’=BENTER(PD(c,pr,Cond(L)::Body,Attrs,evt),BL) and return
(EL,BL’,S): none of the Conds acquisition choices can be satisfied, so block this
process in its current state adding it to the blocked list, and leave the store and the
remainder of the event list unchanged.

Note we can construct non-blocking tests by using the following Cond([([test],[body]),([],[])]). Which
returns true trivially if test fails and then continues.

6.8 While

As long as the claim list can be satisfied immediately then execute a body.
Syntax: While(acqL,wB)- (parameters):

1. acqL is a list of acqusisitions - see req;

2. wB the command list to execute.

Semantics:
While(acqL,wB)

= if cBL(Cond([(acqL,wB)]),BL,(Attrs,S))
then (cp’::EL,BL,S)
else let (fire, (Attrs’, S’), fiB)=doCond(evt,c,[(acqL,wB)],(Attrs, S)) in

if fire
then let EL’=PD(c,pr,fiB@While(acqL,wB)::Body,Attrs’,evt)::EL in

(EL’,BL,S’)
else (cp’::EL,BL,S)

Interpretation:

1. if cBL(Cond(acqL),BL,(Attrs,S)): as Cond we must not give implicit priority to ‘live’ entities:

(a) true: (cp’::EL,BL,S) carry on executing we cannot satisfy the while condition

(b) false: else let (fire, (Attrs’, S’), fiB)=doCond(evt,c,[(acqL,wB)],(Attrs, S)): as for Cond
See section 9.2 for a detailed explanation;

(c) if fire: check to see if a condition can be satisfied;

i. true: then let EL’=(PD(c,pr,fiB@While(acqL,wB)::Body,Attrs’,evt)::EL and return
the state (EL’,BL,S’): see Cond; we reconstruct the process descriptor and continue
with the new store state S’;

24

ii. false: else (cp’::EL,BL,S): ignore the While if it cannot execute its condition.

Note endless repetition is achieved by While([],body).

7 Time and Priority

7.1 HOLD

This entity will wait until the system clock advances by a time. This is considered to be ‘active’
waiting as opposed to passive waiting when the entity is blocked on some claim.
Syntax: HOLD(e)- (parameter):

1. e the time to wait into the future, an offset not absolute.

Semantics:
HOLD(e)

= (ENTER (FUTURE cp’,(EV (Attrs⊕S) e) EL, BL, S)
Interpretation: move the current process descriptor into the future by the current evaluation of e.
Will return an error in e is negative.

7.2 PRIORITY

Set the priority level of the current entity, used in resolving equality in event list, blocked list and
synchronisation lists.
Syntax: PRIORITY(e)- (parameter):

1. e the level to set priority to -10000 to intMax.

Semantics:
PRIORITY(e)

= (PD(c,lim(EV (Attrs⊕S) e), Body, Attrs, evt)::EL, BL, S)
Interpretation: set the process priority to e evaluated in the current state, up to a limit of -10000
imposed by the function lim. We need to create processes with lower priority to delay returns to
the completion of all activity in the current cycle.

7.3 DO

Repeat an action list a fixed number of times, a clearer form of for next loop, no ambiguity over
variable change during loop execution.
Syntax: DO(e, acL)- (parameters):

1. e the number of times to execute the body, evaluated at the start;

2. acl the actions to execute.

Semantics:
DO(e,acL)

= then exec(PD(c,pr,IDO(EV (Attrs⊕S) e,acL)@Body, Attrs, evt)::EL, BL, S)
else exec(cp’::EL, BL, S)

Interpretation: evaluate the number of loops required and use the internal evaluated form.

25

7.4 IDO

Internal form for evaluated version of above.
Syntax: IDO(n, acL)- (parameters):

1. n a number of times to execute the body;

2. acl the actions to execute.

Semantics:
IDO(n,acL)

= if n>0
then exec(PD(c,pr,acL@IDO(n-1,acL)@Body, Attrs, evt)::EL, BL, S)
else exec(cp’::EL, BL, S)

Interpretation:

1. if n>0: number of loops left to execute;

(a) true:exec(PD(c,pr,acL@Do(n-1,acL)@Body, Attrs, evt)::EL, BL, S) carry on executing
the body of the loop acL, then recheck the loop, then perform the rest of the entities
actions;

(b) false: execute the next command.

8 Maintenance

8.1 TRACE

Generate information about the state of the system. This has purely side effect in the form of
output, which is annotated with the current time, the supplied string and any parameters supplied.
Syntax: TRACE(s, eL)- (parameters):

1. s a string with escapes. Currently has escape sequences:

(a) %v print out an expression from an expression list in order;

(b) %n print out current process name;

(c) %s print out current process syncs held;

(d) %r print out current process resources held;

2. el the expressions to evaluate for the %v substitutions in order.

Semantics:
TRACE(s,eL)

= (cp’::EL, BL, S)
Interpretation: do not change the state.

8.2 SEED

Set the main random number seed. Must be at the start, once random samplers are defined they
have the own well seperated seeds generated from this one.
Syntax: SEED(e)- (parameter):

1. e an expression which evaluates to a seed value.

26

Semantics:
SEED(e)

= let sv=EV (Attrs⊕S) e in
| let S’)= UPDATE(seed,var,sv) S in

(EL’, BL, S’)
Interpretation: set the random number seed to this value. Each time a randome number is needed
from the system the following number generator is used

a = 16807.0
m = 2147483647.0
t := (a ∗ seed)

seed := t−m ∗ real(floor(t/m))

With seed having the new random value. By using this mod-congruence psuedo random se-
quence generator and the standard log sample generators for the various supported theoretic dis-
tributions it is possible to completely replicate the behaviour of the reference DEMOS-2000 imple-
mentation in any other. Initially seed defaults to 120. In the section on sampling it is this function
that is called to generate U. Slightly more formally

U S = cr:=LOOKUP (seed,var) S
t:=(a*cr)
nr:=t -m * real(floor(t/m))
UPDATE (seed,var,nr) S
nr

So a call to the random function U (we onit the S for brevity) has the side effect of advancing
the variable seed to the next number in the psuedo-random sequence. This is used to keep the
sequences seperate for each distribution used within demos.

8.3 CLOSE

This simply stops execution elegantly. Formally it is an indication to the wrapper of the exec to
stop. It has no effect on state and no parameters.

9 Auxiliary Semantic functions

To simplify the semantics many of the state maintenance functions were abstracted as they appear
within more than one semantic rule.

9.1 Do assign

This function takes a name an value a local store and a global store if the name is a var in the local
store then it is updated else the global store is. Note an error will be returned if the name is found
in neither.

Do assign(n,v,Attrs,S) = if (n,vars) ∈ Attrs then (UPDATE(n,vars,v) Atrrs,S)
else if (n,vars) ∈ S then (Attrs, UPDATE(n,vars,v) S)
else error Unknown variable

9.2 doCond

We need to check a list of claim lists and action bodies in order to see if the claim can be met in the
current state. If it can then we need to know about resources and syncs that have been allocated

27

to update the state of the calling process, otherwise we reach the end of the list and none of the
current claims can be met.

doCond(evt,pn,[], SP) = (false, SP, [])
doCond(evt,pn,(fc,bd)::t,SP) = if checkL(fc,SP)

then let SP’=getResL(evt, pn, fc, SP)
in (true, SP’, bd)

else doCond(evt,pn,t,SP)
Explanation:

1. doCond(evt,pn,[],S)=(false, SP, []): reached the end of the list, no claim could be met, so
state is unchanged and no resources or syncs were allocated;

2. doCond(evt,pn,(fc,bd)::t,S): the current claim is bound to fc, and if it can be meet then we
should continue execution with bd;

3. if checkL(fc,S): can the current claim be met in the current state;

(a) true: let SP’ =getResL(evt, pn, fc, SP): work out the change to the state of making the
claims, return the new state, return (true, SP’, bd) denoting that firing was successful,
the stores changed to SP’, and the action list to continue execution bd;

(b) false: try the next claim execution pair, doCond(evt,pn,t,SP) the store pair is un-
changed.

checkL([],S) = true
checkL(h::t,S) = if checkReq(h,S) then checkL(t,S)

else false
Explanation: check that each request can be met, if any fail then the whole fails:

Predicate to test if an atomic claim can be met by a particular store state:
checkReq(getR(n,e),(Attrs, S))

= LOOKUP(evalN (Attrs⊕S) n, res) S>=EV (Attrs⊕S) e
checkReq(getB(n,e),(Attrs, S))

= length(LOOKUP(evalN (Attrs⊕S) n,bins) S)>= EV (Attrs⊕S) e
checkReq(getBv(n,vL,cc),(Attrs, S))

= checkBVReq(LOOKUP(evalN(n,(Attrs,S)),bins) S), map (evalN (Attrs⊕S)) vL, cc,(Attrs,S))
checkReq(getSv(n,vL,cc),(Attrs, S))

= checkSVReq(LOOKUP(evalN(n,(Attrs,S)),bins) S), map (evalN (Attrs⊕S)) vL,cc,(Attrs,S))
checkReq(getS(n,e),(Attrs, S))

= length(LOOKUP(evalN (Attrs⊕S) n,syncs) S)>=EV (Attrs⊕S) e
checkReq(be,(Attrs, S))

= BV (Attrs⊕S) be
checkReq(anything else,S)

= error Non acquisition (getR, getB, getS, getBv ck(..) in test
Explanation: for each of the claims use the store to compute if it can be met, in the case of the
parameterised bins, get the current items waiting in the bin, compute the binding names for the
parameters, and use a further predicate to examine whether any of the current entries can match
the request.

Further predicate in the case of parameterised bins, basically see if we can find an item on which
the check condition cc will evaluate true:

checkBVReq([],nvL,cc,(Attrs,S)) = false
checkBVReq((bvl,rL,sL)::t,nvL,cc,(Atts,S)) = if BV bindL((Attrs,S),nvL,bvL) cc then true

else checkBVReq(t,nvL,cc,(Attrs,S));

28

Explanation:

1. checkBVReq([],nvL,cc,(Attrs,S))=false: none of the bin items currently satisfy the predicate;

2. checkBVReq((bvl,sL,vL)::t,nvL,cc,(Attrs,S))=if BV bindL(Attrs⊕S,nvL,bvL) cc: extend
the store with the bindings implied by the bin claim, check the predicate:

3. then true: Ok found a satisfying bin item;

4. else checkBVReq(t,nvL,cc,(Attrs,S)): try the next item;

Extend a store with the bindings implied by the use of a parameterised bin:
bindL(S,[],[]) = S
bindL(S,vn::vt,bv::bt)=bindL(S++(vn,vars,bv),vt,bt)
bindL(S,[],bv::bt) = error
bindL(S,vn::vt,[]) = error

Explanation: construct a new store using the variable and value lists to construct a sequence of
bindings.

Further predicate in the case of parameterised syncs, basically see if we can find an item on
which the check condition cc will evaluate true:

checkSVReq([],nvL,cc,(Attrs,S)) = false
checkSVReq((bvl, ,)::t,nvL,cc,(Atts,S)) = if BV bindL((Attrs,S),nvL,bvL) cc then true

else checkSVReq(t,nvL,cc,(Attrs,S));
Basically identical to checkBVReq except we need to project data out of a triple.

Given we have a condition that can be meet we need to update a store to reflect the changes,
and also keep note of the resources and syncs that have been allocated in making this claim, so
they can be returned correctly at some later point. This semantic function essentially mirrors the
check just performing the state changes:

getResL(evt,pn,[],SP) = SP’
getResL(evt,pn,h::t,SP) = getResL(evt,pn,t,getReq(evt,pn,h,SP))

Explanation: do each of the atomic claims in turn, which cause the store to change, and resources
or syncs to be allocated, accumulate all of the store changes and allocations and return them.

Performing an atomic resource allocation:

29

getReq(evt,pn,getR(n,e),(Attrs,S))
= let evn=evalN (Attrs⊕S) n

let v=EV (Attrs⊕S) e
in (UPDATE(evn,res, LOOKUP(evn,res) Attrs +v) Attrs,

UPDATE(evn,res, LOOKUP(evn,res) S-v) S)
getReq(evt,pn,getB(n,e),(Attrs,S))

= let evn=evalN (Attrs⊕S) n
let v=EV (Attrs⊕S) e
let (bL,S’)=GETITEMS(env,bins,v) S
in (Attrs,S’)

getReq(evt,pn,getBv(n,vL,cc),(Attrs,S))
= val evn=evalN (Attrs⊕S) n

val (aL, bvL, rL, sL, nBi)
=getBVReq(LOOKUP(evn,bins) S, map evalN(Attrs⊕S) vL, cc, S, [])

(Attrs’, S’)=upDateBinV(evn, nBi, aL, rL, sL, (Attrs, S))
in (Attrs’,S”)

getReq(evt,pn,getS(n,e),(Attrs,S))
= let evn=evalN (Attrs⊕S) n

let v=EV (Attrs⊕S) e
let val (syns,S’)=GETITEMS(evn,syncs,v) S
let val Attrs’=ADDITEMS(evn, syncs, v) Attrs
in (Attrs’,S’)

getReq(evt,pn,getSv(n,vL,cc),(Attrs,S))
= val evn=evalN (Attrs⊕S) n

val (syn,aL,nS)
=getSVReq(LOOKUP(evn,syncs) S,map evalN(Attrs⊕S) vL,cc,S,[])
S’ = UPDATE(evn,syncs,nS) S)
(Attrs’, S”)=upDateSinV(evn,syn,nS,aL,(Attrs, S’))
in (Attrs’,S”)

getReq(evt,pn,be,SP)
= SP

getReq(evt,pn,others,SP)
= error Non acquisition (getR, getB, getS, getBv ck(..) in get

Explanation: except for the parameterised gets, we update the store in the obvious fashion. In
the case of the value bins, we use an auxiliary function to return the binding values and the bin
without the element which was captured. Similarly for the parametrised syncs.

Auxiliary function to get the bin bound values:
getBVReq(bi::t,nvL,cc,bvl,Bi)

= if BV bindL((Attrs,S),nvL,bi) cc then (mkal(nvL,bi),Bi@t)
else getBVReq(t,nvL,cc,bvl,Bi@[bi]));

Explanation: Search down the list of parameter bindings associated with the bin. There must be
a satisfying match somewhere, when it is found, return the variables, the bind values and the bin
list with this value set removed, but its order preserved.

Auxiliary function to get the sync bound values:
getSVReq((h,bL,pd)::t,nvL,cc,bvl,S)

= if BV bindL((Attrs,S),nvL,h) cc then ((h,bL,pd),mkal(nvL,h),S@t)
else getSVReq(t,nvL,cc,bvl,S@[(h,bL,pd)]));

Explanation: Search down the list of parameter bindings associated with the sync. There must be

30

a satisfying match somewhere, when it is found, return the descriptor, variables, the bind values
and the sync list with this value set removed, but its order preserved.

Auxiliary function to set the bin bound values:
upDateBinV(bn, nBi,nAL, rL, sL,(Attrs, S))

= let val (Attrs’,S’)=putVarAL(nAL,(Attrs S))
in ((map ADDITEMS sL (map ADDITEMS rL Attrs’)),(UPDATE (bn, nBi, bins) S)) end;

Explanation: Update the local and global state to reflect the changes imposed by the removing of a
value bin, and the bindings that the get requires. In particular add the passed syncs and resources
to the current local attributes.

Auxiliary function to set bound values:
putVarAL([],S) = S
putVarAL((n,v)::t,S) = putVarAL(t,do assign(n,v,S))

Explanation: return the state obtained by performing a sequence of bindings. Auxiliary function
to set the bin bound values:

upDateSinV(sn,syn,nS,nAL,(Attrs, S))
= let val (Attrs’,S’)=putVarAL(nAL,(Attrs S))

in ((UPDATE (sn,nS,syncs) S), UPDATE (sn,syn,SYNCS) Attrs’) end;
Explanation: Update the local and global state to reflect the changes imposed by the removing of
a value bin, and the bindings that the get requires.

9.3 Promote

This is the auxiliary function that detects when a state change permits us to unblock an entity
that is waiting in the blocked list. We need to be careful about how we continue down the list in
the case that a claim still cannot be met. We can easily induce starvation if we do not take care.
The basic point is that a blocked request for multiple resources should block all those for less that
were blocked at a time after it started waiting. In the context of branches with differing requests
we stop if they overlap on any resource.

promote(b,evt,EL,BL,S) = val (PL, WL, S’)=first dep(b,evt,BL,[],S,[])
in (map ENTER PL EL,WL,S’)

Explanation: the sub function first dep, returns a list of entities that have been reactivated PL,
the resultant blocked list WL, and the new store S that has resulted from allowing the claims of
the activated processes.

This function does the work, it scans the blocked list for the first waiting entity that could
be reawakened by the assignment, checks to see if it can be awoken, and then checks if further
exploration of the blocked list is necessary.

31

first dep(b,evt,[],WL,S,PL) = (PL,WL,S)
first dep(b,evt,PD(pn,pr,[],Attrs,et)::Bl,WL,S,PL)

= first dep(b,evt,Bl,WL@[PD(pn,pr,[],Attrs,et)],SP,PL)
first dep(b,evt,PD(pn,pr,Cond(l)::Body,Attrs,et)::Bl,WL,S,PL)

= if depCond(b,Cond(l),(Attrs,S))
then let (fire, (Attrs’,S’), fBody)=doCond(evt,pn,l,(Attrs,S))

in if fire
then first dep(b, evt, Bl, WL, S’,

PL@[PD(pn,pr,fBody@Body,Attrs’,evt)])
else if check(b)

then first dep(b, evt, Bl,
WL@[PD(pn,pr,Cond(l)::Body,Attrs,et)], S,PL)

else (PL,WL@[PD(pn,pr,Cond(l)::Body,Attrs,et)]@Bl,S)
else first dep(b,evt,Bl,

WL@[PD(pn,pr,Cond(l)::Body,Attrs,et)],S,PL)
first dep(b,evt,PD(pn,pr,other::Body,aL,et)::Bl,WL,S,PL)

= error Blocked object has non leading cond action
Explanation:

1. first dep(b,evt,[],WL,S,PL)=(PL,WL,S): reached the end of the blocked list so return the
current promotion list, the remainder of the blocked list and the current store;

2. first dep(b,evt,PD(pn,pr,[],Attrs,et)::Bl,WL,S,PL): somehow an empty process descriptor has
got here, so ignore it by returning first dep(b,evt,Bl,WL@[PD(pn,pr,[],Attrs,et)],S,PL), which
reinserts it at its current position in the blocked list;

3. first dep(b,evt,PD(pn,pr,Cond(l)::Body,Attrs,et)::Bl,WL,S,PL): we have a descriptor to check
with a condition at its head;

4. if depCond(b,Cond(l),(Attrs,S)) does this blocked item depend on the assignment that has
just taken place:

(a) true: let (fire, (Attrs’,S’), fBody)=doCond(evt,pn,l,(Attrs,S)) in if fire: as before we
check if this conditional can fire and what are the consequences if it can

i. true: first dep(b, evt, Bl, WL, S’, PL@[PD(pn,pr,fBody@Body,Attrs,evt)]) continue
checking the blocked list to see if others can be fired, place this at the end of the
enabled processes so we preserve order.

ii. false: else if check(b) we need to block if this was a return of resource, a Sync, or a
normal bin, since a process dependent on that resource could not fire, so we must
wait for enough to accumulate, other wise it was a variable, or a failure of matching
on a bin value so we continue;
A. true: first dep(b, evt, Bl, WL@[PD(pn,pr,Cond(l)::Body,Attrs,et)], S,PL) con-

tinue to attempt unblocking, note this process retains its position in the blocked
list;

B. false: (PL,WL@[PD(pn,pr,Cond(l)::Body,Attrs,et)]@Bl,S) stop checking now
and return the effects so far;

(b) false: first dep(b,evt,Bl, WL@[PD(pn,pr,Cond(l)::Body,aL,et)],S,PL) leave the current
item where it is in the block list and try the next;

32

5. error: normal form demands that blocked items start with a cond, so this cannot be here.

A sequence of predicates that inform as to whether a conditional is dependent of the assignment
that has just taken place.

depCond(b,Cond([]), SP) = false
depCond(b,Cond((reqr,rBd)::t), SP) = map deps b reqr SPorelse depCond(b,Cond(t),SP)
depCond(b,other,s) = error Object has non leading cond action

Explanation: unwrap the claim body pairs so we can check if any of the claims is dependent on
this return.

deps putR(n,v) getR(m,w) SP = (n=evalN SP m)
deps putB(n,v) getB(m,w) SP = (n=evalN SP m)
deps putBS(n,v) getB(m,w) SP = (n=evalN SP m)
deps putBS(n,v) getBv(m,pL,cc) SP = (n=evalN SP m)
deps Sync(n) getS(m,v) SP = (n=evalN SP m)
deps SyncV(n,exL,vL) getSv(m,vL,cc) SP = (n=evalN SP m)
deps ass(v,ee) ck(e) SP = exp dep(e,v,SP)
deps ass(v,ee) getBv(m,pL,cc) SP = exp dep(cc,vSP))
deps ass(v,ee) getSv(m,pL,cc) SP = exp dep(cc,vSP))
deps a1 a2 S = false

Explanation: check out the names, if they are the same, then true, otherwise false. The same
recursion is applied to boolean expressions and expressions, but omitted for brevity as it is standard.
Note, the variable name in the assignment has been resolved to a fixed name before this point is
reached.

9.4 cBL

This is essentially the same as the dependency check immediately above except that instead of being
an assignment we are matching against a claim list. A predicate that examines mutual dependence
between a claim list and the blocked objects.

cBL(gcl,[],s) = false
cBL(gcl,PD(,pr,b:: ,ls,)::t,(st,ilst)) = cdepFC(gcl,b,(st,ilst),(st,ls)) orelse cBL(gcl,t,(st,ilst))
cBL(gcl,h::t,s) = error empty action list inside cond - unreachable

Explanation: check out the leading conditionals of each of the blocked entities in turn, note the
local state may be needed to resolve names.

cdepFC(Cond([]), , SP,SP1) = false
cdepFC(Cond(h::t),Cond(Cl),SP,SP1) = checkCondL(filterConds(h::t),filterConds(Cl),SP,SP1)
cdepFC(,Cl,SP,SP1) = error(”Object has non leading cond action”)

Explanation: if none of the current requirements intersects with this blocked process then we
can continue. Check each in turn until none is left. Normal form demands that this must be a
conditional action. Also a boolean test can never cause starvation by being evaluated so these are
filtered out.

checkCondL([], ,SP,SP1) = true
checkCondL(([],)::t, ,SP,SP1) = false
checkCondL((rql,)::t,cl,SP,SP1) = if checkConds(rql,cl,SP,SP1)

then checkCondL(t,cl,SP,SP1)
else false

Explanation: for each of the claims in the list see if it collides with the blocked list, all of them must
collide with at least one of the competitor for this to block. Basically if their is one free branch
then that may fire, we cannot be starving the competitor if it does not compete with that branch.

33

checkConds(rql,[],SP,SP1) = false
checkConds(rql,(rql1,)::t,SP,SP1) = if csbL(rql,rql1,[],SP,SP1)

then true else checkConds(rql,t,SP,SP1)
Explanation: check that there is at least one branch in the potential competitor for which our
requirements are a strict subset. We can only starve something if we use less than they do!

csbL([],[],[],SP,SP1) = false
csbL([],[],h::t,SP,SP1) = true
csbL(h::t,[], ,SP,SP1) = false
csbL([],h::t, ,SP,SP1) = true
csbL(h::t,h1::t1,L1,SP,SP1) = if c deps(h,h1,SP,SP1)

then csbL(t,L1@t1,[],SP,SP1)
else csbL(h::t,t1,h1::L1,SP,SP1)

If we manage to discharge all of the first requirements as competing against something in the
second, and there are some requirements in the second that are not ’cancelled out’. Then we have
a proper subset with all of the requirements competing.

c deps getR(n,v),getR(m,v1) SP SP1 = (evalN SP n=evalN SP1 m)
c deps getB(n,v),getB(m,v1) SP SP1 = (evalN SP n=evalN SP1 m)
c deps getBv(n,bl,cc),getB(m,v1)SP SP1 = (evalN SP n=evalN SP1 m)
c deps getB(n,v1) getBv(m,bl,cc)SP SP1 = (evalN SP n=evalN SP1 m)
c deps getS(n,v) getS(m,v1) SP SP1 = (evalN SP n=evalN SP1 m)
c deps v be SP SP1 = false
c deps other other1 SP SP1 = false

Explanation: if names match then we are co-dependent, unless its an assignment. Note, that items
from parameter bins and value syncs do not cause dependency. In order to check this we would need
to resolve the side condition and check that it is overlapping. So we take the view that evaluation
carries on, as this will cause incorrect blockage if two entities are waiting on distinct value patterns.

filterConds([]) = []
filterConds((reql,cl)::t) = (filterCond(reql),cl)::filterConds(t)

filterCond([]) = []
filterCond(ck(e)::t)=filterCond(t)
filterCond(a::t)=a::filterCond(t)

Explanation: if a requirement is a conditional then remove it as it cannot be the cause of starvation.

9.5 removeR

Update the store associated with an entity to remove resources.
removeR(n,v,PD(pn,pr,body,attrs,evt))

= if not(MEMBER(n,res) attrs)
then error Process pn does have any resource n
let v1=LOOKUP(n,res) attrs
in if v>v1 then error Process pn does not own v of resource n
PD(pn,pr,body,UPDATE(n,res,v1-v) attrs,evt)

Explanation: find out whether we know about this resource, or have enough to free the amount we
state we can. If either are untrue then raise an error, otherwise update the store and return the
amended process descriptor.

need to evaluate resource lists when we hand them over in bins:

34

evalRL([],(Attrs,S))=[]—
evalRL((n,amt)::t,(Attrs,S))

= (evalN Attrs ⊕Sn, floor(EV Attrs⊕S amt)::evalRL(t,(Attrs,S)
and update the process notice to take account of handed on resources:
removeRL([],cp)=cp—
removeRL((id,v)::t,cp)

= removeRL(t,removeR(id,v,cp))

9.6 removeS

Update the store associated with an entity to remove syncs
removeS(n,v,PD(pn,pr,body,attrs,evt))

= if not(MEMBER(n,syncs) attrs)
then error Process pn does have any sync n
let v1=length(LOOKUP(n,syncs) attrs)
in if v>v1 then error Process pn does not own v of sync n
let (fp,attrs’)=GETITEMS(n,syncs,v) attrs
in (map (makeTime evt) (map val3 fp),PD(pn,pr,body,attrs’,evt))

Explanation: find out whether we know about this sync, or have enough to free the amount we
state we can. If either are untrue then raise an error, otherwise update the store and return the
freed entities and the amended process descriptor. As the sync descriptors are triples we must
project out the process descriptor part.

Update the store associated with an entity to remove value syncs
removeSv(n,vals,PD(pn,pr,body,attrs,evt))

= if not(MEMBER(n,syncs) attrs)
let val ([(vL,bL,prd)], attrs’)=GETITEMS(1,syncs,v) attrs in
let val prd’=putAttrs(putVarAL(mkal(bL,vals)) getAttrs prd)
in (makeTime prd’ evt,PD(pn,pr,body,attrs’,evt))

Explanation: get the sync record and update the attributes in the current entity. Update the local
variables in the deslaved entity to reflect the binding implied by the return values. Finally, make
the current time of the promoted process the current event time, and return a pair consisting of
the deslaved entity, and the current entity but with this sync element removed.

We may need to do a list of these when we hand a synced process on within a bin.
removeSL([],cp,sl)=(cp,sL)—
removeSL(nm::t,cp,sl)

= val ((rL,idL,sp),cp’)=remBSL(nm,cp)
in removeSL(t,cp’,addSync(nm,rL,idL,sp,sl))

removing the body of a sync from a process notice:
remBSL(n,PD(pn,pr,body(rL,sL,LV),evt))

= val (syn,sL’)=DremBSL(pn,n,sL)
in (syn,PD(pn,pr,body,(rL,sL’,LV),evt))

and finally getting the sync from the sync list:
DremBSL(pn,n,[]))=error ”pn doesn’t own any n”
DremBSL(pn,n,(n1,pl)::t))

= if n=n1
then if length(pl)¡1 error ”pn does not own enough n”
else val rs::ral=pl in (rs,(n,ral)::t)
else val (rs,rl)=DremBSL(pn,n,t) in (rs,(n1,pl)::rl)

35

9.7 getBody

Basically this takes a class name, a list of parameter instantiations and a store. The idea is to
get the formal parameter list from the class definition in the store and then replace the formal
parameter name throughout.

getBody(cn,pil,S) = let (pl,bd)=LOOKUP(cn,class) S
in doSuB(bd,pl,pil,cn)
end;

Explanation: get the parameter list and class body from the store form a substitution list of pairs,
of names and replacements and then apply it throughout the body of the entity.

doSub(bd,[],[],cn) = bd
doSub(bd,[],h:: ,cn) = error too few parameters in use of cn
doSub(bd,h:: ,[],cn) = error too many parameters in use of cn
doSub(bd,pn::pt,(fs ”s”)::pit,cn) = doSub(SubA(bd,pn,s,cn),pt,pit,cn)
doSub(bd,pn::pt,(fixe vl)::pit,cn) = doSub(SubV(bd,pn,v,cn),pt,pit,cn)
doSub(bd,pn::pt,(ps)::pit,cn) = error unevaluated paramter in cn (shouldn’t get here)

Explanation: take a parameter name and a replacement string and substitute the replacement for
the parameter throughout the body of a class defintion. We can define the effect of substitution
over the syntax of the DEMOS language as follows:

36

subA(Class(nm,pl,bd),p,s) = Class(sub eN(nm,p,s),subsL(pl,p,s),subAL(bd,p,s))
subA(Entity(enm,cnm,pl,det,rL,sL),p,s)

= Entity(sub eN(p,s) enm ,sub eN(p,s) cnm,
map sub eN(p,s) pl,sub e(p,s) det, map sub R(p,s) rL,
map sub eN sL)

subA(Res(N,e),p,s) = Res(sub eN(p,s) N,sub e(p,s) e)
subA(Bin(N,e),p,s) = Bin(sub eN(p,s) N,sub e (p,s) e)
subA(Sync(N),p,s) = Sync(sub eN(p,s) N)
subA(Var(N,ee),p,s) = Var(sub eN(p,s) N,sub e (p,s) ee)
subA(LVar(N,ee),p,s) = LVar(N,sub eN(p,s) ee)
subA(Cons(N,ee),p,s) = Cons(sub eN(p,s) N,sub e(p,s) ee)
subA(HOLD(dt),p,s) = HOLD(sub e(dt,p,s))
subA(TRACE(s,eL),p,s) = TRACE(s,sub eL(eL,p,s))
subA(PRIORITY(ee),p,s) = PRIORITY(sub eN(p,s) ee)
subA(CLOSE,p,s) = CLOSE
subA(DO(e,L),p,s) = DO(sub eN(p,s) e,subAL(L,p,s))
subA(DO(n,L),p,s) = DO(n,subAL(L,p,s))
subA(While(L1,L2),p,s) = While(subAL(L1,p,s),subAL(L2,p,s))
subA(getR(R,e),p,s) = getR(sub eN(p,s) R,sub e(p,s) e)
subA(putR(R,e),p,s) = putR(sub eN(p,s) R,sub e(p,s) e)
subA(getB(R,e),p,s) = getB(sub eN(p,s) R,sub e(p,s) e)
subA(putB(R,e),p,s) = putB(sub eN(p,s) R,sub e(p,s) e)
subA(getS(R,e),p,s) = getS(sub eN(p,s) R,sub e(p,s) e)
subA(putS(R,e),p,s) = putS(sub eN(p,s) R,sub e(p,s) e)
subA(getBv(R,idL,be),p,s) = getBv(sub eN(p,s) R,map sub eN(p,s) idL,sb b(be,p,s))
subA(getSv(R,idL,be),p,s) = getSv(sub eN(p,s) R,map sub eN(p,s) idL,sb b(be,p,s))
subA(putBS(R,eeL,rL,sL),p,s) = putBS(sub eN(p,s) R, map sub e(p,s) eeL,

map sub R(p,s) rL, map sub eN(p,s) sL)
subA(putSv(R,eeL),p,s) = putSv(sub eN(p,s) R,map sub e(p,s) eeL)
subA(be,p,s) = sb b(p,s) be
subA(ass(V,e),p,s) = ass(sub eN(V,p,s),sub e(p,s) e)
subA(Req(L),p,s) = Req(subAL(L,p,s))
subA(Cond(L),p,s) = Cond(subCAL(L,p,s))
subAL([],p,s) = []
subAL(h::t,p,s) = subA(h,p,s)::subAL(t,p,s)
subCAL([],p,s) = []
subCAL((c,bdy)::t,p,s) = (subAL(c,p,s),subAL(body,p,s))::subCAL(t,p,s)

and defining substitution within names as follows:
sub eN(p,s1) (fs s) = if p=s then fs s1 else fs s
sub eN(p,s1) (ps (s,pl)) = if p=s then ps (s1 , map sub e (p,s) pl)

and in resource pairs sub R(p,s) (rn,ramt) = (sub eN(p,s) rn,sub e(p,s) ramt)
for brevity we allow ourselves to use op to range over arbitrary operators in both the boolean

and the expression syntax. We use variables starting with e and b to distinguish expressions and
boolean terms repsectively. Hence we can define the substitution functions with respect to just
those parts of the syntax dependant on variable names , distinguished by a Vi in the case of
expressions and Boi for booleans denoting an expression type:

37

sub e(p,s1) Vi(en) = Vi(sub eN (p,s1) en)
sub e(p,s1) op(e1,e2) = op(sub e(p,s1) e1,sub e(p,s1) e2)
sub b(p,s1) op(e1) = op(sub e(p,s1) e1)
sub b(p,s1) op(e1,e2) = op(sub e(p,s1) e1,sub e(p,s1) e2)
sub b(p,s1) op(b1) = op(sub b(p,s1) b1)
sub b(p,s1) op(b1,b2) = op(sub b(p,s1) b1,sub b(p,s1) b2)

Explanation: we recurse down the syntax until we hit an id, which is either a fixed string or a string
with parameters, if the string matches a string in the substitution list it is replaced otherwise it is
left unchanged.
Explanation: take a parameter name and a replacement value and substitute the replacement for
the parameter throughout the body of a class defintion. Notice this is only valid as replacement for
a parameter in an expression, not in a name. So it must raise an error if the substitution occurs in
an illegal position.

We can define the effect of substitution over the syntax of the DEMOS language as follows:

38

subV(Class(nm,pl,bd),p,s) = Class(sub eVN(nm,p,s),subsL(pl,p,s),subVL(bd,p,s))
subV(Entity(enm,cnm,pl,det),p,s)

= Entity(sub eVN(p,s) enm ,sub eVN(p,s) cnm, map sub eVN(p,s) pl,
sub ve(p,s) det, map sub vR(p,s) rL,
map sub eVN(p,s) sL)

subV(Res(N,e),p,s) = Res(sub eVN(p,s) N,sub ve(p,s) e)
subV(Bin(N,e),p,s) = Bin(sub eVN(p,s) N,sub ve(p,s) e)
subV(Sync(N),p,s) = Sync(sub eVN(p,s) N)
subV(Var(N,ee),p,s) = Var(sub eVN(p,s) N,sub ve(p,s) ee)
subV(LVar(N,ee),p,s) = LVar(N,sub eVN(p,s) ee)
subV(Cons(N,ee),p,s) = Cons(sub eVN(p,s) N,sub ve(p,s) ee)
subV(HOLD(dt),p,s) = HOLD(sub e(dt,p,s))
subV(TRACE(s,eL),p,s) = TRACE(s,sub eL(eL,p,s))
subV(PRIORITY(ee),p,s) = PRIORITY(sub eVN(p,s) ee)
subV(CLOSE,p,s) = CLOSE
subV(DO(e,L),p,s) = DO(sub eVN(p,s) e,subVL(L,p,s))
subV(DO(n,L),p,s) = DO(n,subVL(L,p,s))
subV(While(L1,L2),p,s) = While(subVL(L1,p,s),subVL(L2,p,s))
subV(getR(R,e),p,s) = getR(sub eVN(p,s) R,sub ve(p,s) e)
subV(putR(R,e),p,s) = putR(sub eVN(p,s) R,sub ve(p,s) e)
subV(getB(R,e),p,s) = getB(sub eVN(p,s) R,sub ve(p,s) e)
subV(putB(R,e),p,s) = putB(sub eVN(p,s) R,sub ve(p,s) e)
subV(getS(R,e),p,s) = getS(sub eVN(p,s) R,sub ve(p,s) e)
subV(putS(R,e),p,s) = putS(sub eVN(p,s) R,sub ve(p,s) e)
subV(getBv(R,idL,be),p,s) = getBv(sub eVN(p,s) R,map sub eVN(p,s) idL,sb vb(be,p,s))
subV(getSv(R,idL,be),p,s) = getSv(sub eVN(p,s) R,map sub eVN(p,s) idL,sb vb(be,p,s))
subV(putBS(R,eeL,rl,sL),p,s) = putBS(sub eVN(p,s) R, map sub ve(p,s) eeL,

map sub vR(p,s) rL, map sub eVN(p,s) sL)
subV(putSv(R,eeL),p,s) = putSv(sub eVN(p,s) R,map sub ve(p,s) eeL)
subV(be,p,s) = sb b(p,s) be
subV(ass(V,e),p,s) = ass(sub eVN(V,p,s),sub ve(p,s) e)
subV(Req(L),p,s) = Req(subVL(L,p,s))
subV(Cond(L),p,s) = Cond(subCVL(L,p,s))
subVL([],p,s) = []
subVL(h::t,p,s) = subV(h,p,s)::subVL(t,p,s)
subCVL([],p,s) = []
subCVL((c,bdy)::t,p,s) = (subVL(c,p,s),subVL(body,p,s))::subCVL(t,p,s)

Check substitution in most names, can only change expressions, not names.
sub eVN(p,s1) (fs s) = error trying to substitute expression for name s
sub eVN(p,s1) (ps (s,pl)) = if p=s then error trying to substitute expression for name s

else ps (s , map sub ve (p,s) pl)
sub eVN(p,s1) (fixe e) = fixe(sub ve (p,s) e)

and in resource pairs
sub vR(p,s) (rn,ramt) = (sub eVN(p,s) rn,sub ve(p,s) ramt)

For brevity we allow ourselves to use op to range over arbitrary operators in both the boolean
and the expression syntax. We use variables starting with e and b to distinguish expressions and
boolean terms repsectively. Hence we can define the substitution functions with respect to just
those parts of the syntax dependant on variable names , distinguished by a Vi in the case of

39

expressions and Boi for booleans denoting an expression type:
sub ve(p,s1) Vi(en) = if sub veN(p,s1) en then s1 else sub eVN(p,s1) en
sub ve(p,s1) op(e1,e2) = op(sub ve(p,s1) e1,sub ve(p,s1) e2)
sub vb(p,s1) op(e1) = op(sub ve(p,s1) e1)
sub vb(p,s1) op(e1,e2) = op(sub ve(p,s1) e1,sub ve(p,s1) e2)
sub vb(p,s1) op(b1) = op(sub vb(p,s1) b1)
sub vb(p,s1) op(b1,b2) = op(sub vb(p,s1) b1,sub vb(p,s1) b2)

Explanation: we recurse down the syntax until we hit an id, which is either a fixed string or a
string with parameters. If we match the string in a variable name we can replace it by the given
expression, otherwise we continue checking the parameters if the name term is of that form.

10 DisC

This function constructs the seperate seed for each distribution so that they are well seperated:
DisC S (geo(e)) = DisPtr(DisAdd S (geo(e)))
DisC S (nege(e)) = DisPtr(DisAdd S (nege(e)))
DisC S (Poisson(e)) = DisPtr(DisAdd S (Poisson(e)))
DisC S (bin(e1,e2)) = DisPtr(DisAdd S (bin(e1,e2)))
DisC S (Normal(e1,e2)) = DisPtr(DisAdd S (Normal(e1,e2)))
DisC S (wei(e1,e2)) = DisPtr(DisAdd S (wei(e1,e2)))
DisC S (Erl(e1,e2)) = DisPtr(DisAdd S (Erl(e1,e2)))
DisC S (Uni(e1,e2)) = DisPtr(DisAdd S (Uni(e1,e2)))
DisC S (Puni(e1,e2)) = DisPtr(DisAdd S (Puni(e1,e2)))
DisC S (Pud(l)) = DisPtr(DisAdd S (Pud(l)))
DisC S (Cud(l)) = DisPtr(DisAdd S (Cud(l)))
DisC S (fix(n)) = fix(n)
DisC S (rfix(n)) = rfix(n)
DisC S (rnd(e)) = rnd(DisC S (e))
DisC S (plus(e1,e2)) = plus(DisC S (e1),DisC S (e2))
DisC S (times(e1,e2)) = times(DisC S (e1),DisC S (e2))
DisC S (minus(e1,e2)) = minus(DisC S (e1),DisC S (e2))
DisC S (divide(e1,e2)) = divide(DisC S (e1),DisC S (e2))
DisC S (Vi(n)) = Vi(DisNC S (n))
DisC S (DisPtr(e)) = error (”distribution abstraction name” e)

This function puts in a pointer to the distribution into the expression, this allows us to store
the distrbution with its appropriate seed and sample count whilst still having standard expressions.
Notice we use the issue number of the distribution as its reference name.

DisAdd S e = dn=LOOKUP (disNum,var) S
do 10000 U
UPDATE (dn,dist,(e,LOOKUP (seed,var) S ,0)) S
UPDATE (disNum,var,dn+1) S
dn

Create a triple in the store of the distribution expression, its assigned random seed and the fact
it has not been sampled yet.

DisNC S (fs s) = fs s
DisNC S (ps (s,pl)) = ps(s, map DisC S pl)
DisNC S (fixp e) = fixp (DisC S e)

Convert parameters in the obvious fashion.

40

11 Probability distributions

The function sample(dis(p̃)) simple redirects the evaluation to one of the probability distribution
functions detailed below. These are all standard from the literature [7] but for completeness we
present the algorithms here. All of them a based on a uniform psuedo random sample U ∈ [0, 1]

Geometric Distribution

The following computes a geometric sample from a U .
Geo(mean) = floor(log(U)/log(1-1/mean))

Negative Exponential Distribution

The following computes a negative exponential sample from a U .
nege(mean) = -mean*log(U)

Erlang Distribution

The following computes an Erlang using an internal function.
Erli(0,mean,k) = 0
Erli(k,mean,t) = nege(mean/t)+Erl(k-1,mean,t)
Erl(k,mean) = Erli(k,mean,k)

Normal Distribution

The following computes a normal from U via an internal function. It is slightly less efficient than
it may be, but avoids imperative features.

nbs() = let val (V1,V2)=(2U-1,2U-1)
let val S=V12 + V22

in if S>1 then nbs() else (V1,S)
and we can generate a normal sample using the above.
normal(mean,sigma) = let val (V,S)=nbs()

let val X=V(-2*log(s)/s)1/2

in sigma*X + mu

Poisson Distribution

The following computes a poisson using the negative exponential:
poisi(itr,total,mu) = let val nt=total+nexp(1/mu)

in if nt≥ 1 then itr-1 else poisi(itr+1,nt,mu)
poisson(mu) = poisi(0,0,mu)

Binomial Distribution

The following computes a binomial distribution:
bern(p) = if U≤p then 1 else 0
bin(n,p) = bern(p) + bin(n-1,p)

41

Weibull Distribution

The following computes a geometric from a U .
Wei(a,b) = b*log(1-U)(1/a)

Point user distribution

A distribution over distinct values supplied as a list of (prob,data) pairs:
dis samp(r,[]) = error underspecified distribution
dis samp(r,(prob,data)::t) = if r≤0 then data

if r≤prob then data
else dis samp(r-prob,t)

Puni(dis) = dis samp(U,dis)

Continuous user distribution

A distribution over distinct values supplied as a hull of (prob,data) pairs, where prob is the cum-
mulative probability up to point data:

cdis samp(r,pp,pprob,[]) = error underspecified distribution
cdis samp(r,pp,pprob(prob,data)::t) = if r≤0 then pp

if r≤prob then pp +(r-pprob)*(data-pp)/(prob-pprob)
else cdis samp(r,data,prob,t)

Cuni(dis) = cdis samp(U,0,0,dis)

12 Comments on Notation

A more conventional presentation of an operational semantics is the use of a natural deduction
style presentation as in Plotkin’s SOS [11]. Semantics would be presented as follows:

< C, σ >→ σ′ < C ′, σ′ >→ σ′′

< C;C ′, σ >→ σ′′

with < C, σ > being our semantic function. In the presence of conditions this form of presentation
requires that we present a rule for each possible outcome hence we would have to render our
semantics for While as follows:

cBL(Cond[(acqL,wB)],BL,S)
C(PD(cn, pr,While(acqL,wB) :: Body, attrs, evt) :: EL,BL,S)→ (PD(cn, pr,Body, attrs, evt) :: EL,BL,S)

not(cBL(Cond[(acqL,wB)],BL,S) doCond(evt, c, [(acqL,wB)],S)→ (true,S′, asR, asP)
C(PD(cn, pr,While(acqL,wB) :: Body, attrs, evt) :: EL,BL,S)→
(PD(cn, pr, wB@Body, atAdd(asR, asP, attrs), evt) :: EL,BL,S′)

not(cBL(Cond[(acqL,wB)],BL,S) doCond(evt, c, [(acqL,wB)],S)→ (false, , ,)
C(PD(cn, pr,While(acqL,wB) :: Body, attrs, evt) :: EL,BL,S)→
(PD(cn, pr,Body, atAdd(asR, asP, attrs), evt) :: EL,BL,S)

So in this presentation each of the three clauses in the conditional is expressed as a separate
rule, as would be the clauses in the initial switch within our presentation. Since this presentation
is substantially hard to read than our more functional style we retain it. We leave it as an exercise
to the determined logician to map our semantic functions into this style.

42

13 Conclusions

An operational semantics has two major uses:

1. to precisely specify the behavior of the system, and hence disambiguate its response for any
particular user;

2. provides a template against which any implementor of the system can validate their imple-
mentation for correctness.

To validate a particular implementation we should proceed as follows:

1. we have a representation of the system state within our implementation, given by a tuple
(s1, s2, . . . , sn)

2. we provide and invertible function Φ which maps from the tuples to the operational states of
the demos system Φ(s1, s2, . . . , sn) =(EL,BL,S);

3. for each state change within the implementation (s1, s2, . . . , sn) ⇒ (s′1, s
′
2, . . . , s

′
n) we observe

(EL,BL,S) ⇒ (EL’,BL’,S’) and demonstrate that (s′1, s
′
2, . . . , s

′
n) = Φ−1(EL’,BL’,S’).

The above methodology allows us to move from inefficient but clear representations of data,
and system state to efficient ones whilst maintaining the correctness of the implementation. Hence
the reason that we have not expended great effort in specifying efficient representations of store,
blocked processes or live processes within the semantic presentation of DEMOS.

We have also defined how random numbers are to be generated. Hence, despite the apparent
presence of randomness, it is possible not merely to have an execution in an alternate implementa-
tion that is simple, but is in fact identical. This is of great importance when qualifying simulators
whose results can have major economic implications.

References

[1] G. Birtwistle, O-J Dahl, B. Myhrhaug and K. Nygaard, Simula Begin, 2nd Edition, Studentlit-
eratur, Lund, Sweden, 1979.

[2] G. Birtwistle, DEMOS — discrete event modelling on Simula. Macmillen, 1979.

[3] G. Birtwistle and C. Tofts, An Operational Semantics of Process-Orientated Simulation Lan-
guages: Part I πDemos, Transactions of the Society for Computer Simulation, 10(4):299-333.

[4] G. Birtwistle and C. Tofts, An Operational Semantics of Process-Orientated Simulation Lan-
guages: Part II µDemos. Transactions of the Society for Computer Simulation, 11(4), 303-336.

[5] G. Birtwistle and C. Tofts, A Denotational Semantics for a Process-Based Simulation Lan-
guage, ACM ToMaCS, 281 - 305:8(3), 1998.

[6] G. Birtwistle and C. Tofts, Relating operational and denotational descriptions of πDemos,
Simulation Practice and Theory, 5:1-33 (1997).

[7] R. Jain, The Art of Computer Systems Performance Analysis Techniques for Experimental
Design, Measurement, Simulation, and Modeling John Wiley & Sons, 1991.

43

[8] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science 25(3), pp
267-310, 1983.

[9] R. Milner, Communication and Concurrency, Prentice Hall, 1990.

[10] R. Milner, M, Tofte, D. MacQueen & R. Harper. Definition of Standard ML. The MIT press,
1997.

[11] G. D. Plotkin. A Structural Approach to Operational Semantics. Research Report DAIMI
FN–19, Computer Science Department, Aarhus University, Denmark, 1981.

[12] R. de Simone Higher-level synchronising devices in Meije- SCCS. Transactions in Computer
Science 37, 245-267 (1985).

14 Summary of Semantic functions

We present the domain and range of each of the semantic functions to help in understanding the
semantics:

Storage

Function Domain Range
∈ (name,type) ×store bool
LOOKUP (name,type) ×store val:type
DELETE (name,type) ×store store
UPDATE (name,type,val) ×store store
ADDITEMS (name,type, val list) ×store store
GETITEMS (name,type) ×store (val:type list) ×store
⊕ store ×store store
ADDPrITEM (name,type, val list) ×projF ×store store
mk av store store
→ store * store store

Event notices and lists

Function Domain Range
evTime evNote time
pPri evNote priority
pName evNote name
future evNote ×time evNote
ENTER evNote ×(evNote list) evNote list
BENTER projF evNote ×(evNote list) evNote list
getAttrs evNote store
setAttrs evNote ×store evNote
removeR name ×val ×evNote evNote
removeRL (name, int) list ×evNote evNote
removeS name ×val ×evNote (evNote list) ×evNote
removeSL name list ×evNote (evNote list) ×evNote
removeSv name ×(val list) ×evNote evNote ×evNote

44

Expression Evaluation

Function Domain Range
EV store →expression val
EC store →expression val
BV store →bool expression bool
evalN store →name string

Conditional Evaluation

The functions that decide whether an acquisition request can be met:
Function Domain Range
doCond time ×evNote ×(cond list) ×store bool ×store ×(action list)
cBL action ×(evNote list) ×store bool
checkL action list ×store bool
checkReq action ×store bool
getResL action list ×store store
getReq action ×store store
cdepFC action ×(evNote list) ×store ×store bool
checkCondL (action list ×evNote list) list

×(action list ×evNote list) list×store ×store bool
checkConds action list ×(action list ×evNote list) list

×store ×store bool
csbl action list ×action list ×action list ×store ×store bool
c deps action →action ×store ×store bool
filterConds action list action list

Promotion

The functions that decide whether a promotion has taken place:
Function Domain Range
promote action ×time ×(evNote list) ×(evNote list) ×store (evNote list) ×(evNote list) ×store
first dep action ×time ×(evNote list) (evNote list) ×(evNote list) ×store

×(evNote list) ×store ×(evNote list)
depCond action ×action ×store bool
deps action →action →store bool

Distribution abstraction

The functions creat the well seperated seeds for each distribution:
Function Domain Range
DisC store → expression expression
DisNC store → name name
DisAdd expression DisId

Class Parameter Substitution

The functions that substitute parameters in class declarations:

45

Function Domain Range
getBody name ×(param list) ×store (action list)
doSub (action list) ×(string list) ×(param list) ×name action list
SubA (action list) ×string ×string ×name action list
SubV (action list) ×string ×expression ×name action list
sub e (string ×string) →expression expression
sub b (string ×string) →bool expression bool expression
sub eN (string ×string) →name name
sub eVN (string ×expression) →name name
sub R (string ×expression) →(name, expression) (name, expression)
sub veN (string ×expression) ra name bool
sub ve (string ×expression) →expression expression
sub vb (string ×expression) →bool expression bool expression
sub vR (string ×expression) →(name, expression) (name, expression)

Command Evaluation

The top semantic function:
Function Domain Range
=⇒ (evNote list) ×(evNote list) ×store (evNote list) ×(evNote list) ×store

46

