
© Copyright 2005 Hewlett-Packard Development Company, L.P. Approved for External Publication

Monitoring and execution for contract compliance

Martin Sailer1 and Michal Morciniec
E-Service Markets Department
HP Laboratories Bristol
HPL-2001-261 (R.1)
10th October, 2005∗

electronic commerce;
e-contract; business
processes

Real world interactions between businesses are governed by contracts
that define rights and obligations of parties. Electronic contract
structures the information contained in textual contract so that it can be
used to automate certain aspects of contracting process.
In this report we focus on the contract fulfilment stage of this process.
A simple electronic contract structure expressed as an XML document
is introduced that allows one to define obligations on contract parties to
perform actions. The contract actions are implemented as public
collaboration patterns that in turn are implemented by each of the party
as business processes that lead to message based interactions.
We describe a system that can process an electronic contract and when
an obligation becomes due determines the relevant collaboration
pattern and a corresponding business process. It then monitors the
execution of the process and messages transmitted to a business
partner. The information collected by the system can later be used in
contract compliance decision-making, i.e. determining whether an
obligation has been carried out successfully.

1 Martin Sailer, Institut für Informatik, Technische Universität München, München, Germany
∗ Internal Accession Date Only

I Introduction 2
2 E-Contract and Collaborations 2

21 E-Contract Lifec)Cle 3
22 E-Contraet 3
23 Collaboration 6

2.3.1 Collaboration implementation with bwiness processes 7
2.3.2 E-Comract considerations/or collaboration implememations 9

3 Requirements _ _ _ 10
4 Design of Contract Execution Framework 11

4.1 Creation of Adaptors 12
4.2 Creation of Bindings 12
43 Execution of Statement 13

5 Use of Process Manager..•.............. _ 14
5.1 Main Concepts _ 14
52 Java API 16
53 Design of the Adaptor 18
5.4 Monitoring 19

5.4.1 Process Monitoring 19
5.4.2 Activity Monitoring 20

5.5 Simulation of Process execution 21
5.6 Visualization of Contract Execution 23
5.7 Recommendation and Desired Features 24

6 References 25

1 Introduction
TIle work described in this paper was done on a 3-month industrial placement
sponsored by HP Labs Bristol.. It has been real ized by cooperation between the chair
afthe Technical University of Munich for network and systems management arxl. HP
Labs Bristol

The placement was conducted at the HP Labs Bristol in context ofa practical
work (Systementwicklungsprojekt). which is part of the Haupldip/om (equivalent to

Master orScience).

2 E-Contract and CoUaborations
Recently there has been renewed interest in modelling of business contractS in

the academic computer science comrnWlity [Milosevlc 2001] as well as in the industry
[lbbotson J., Sachs M.. 1999). This is motivated by the fact that enterprises
increasingly use the Internet for comnllmication with their partnerS and would like to
leverage this technology in order to gain efficiercy in conll'aCling processes.

ConO'aets are important in the context ofloosely coupled struat.lreS [Marshall,
1m] like supply chains that involve independent entities. Because there is no central
authority that coordinates activities ofentities making up a supply chain, each entity is
responsible to anange a contract \Vim their parmer defining the collabonuion in which
they will engage.

In real life, contracts define rights and obligations of panies as well as
conditions under which they arise and become discharged. The rigtus and obligations
concern either states ofthe affairs or actions that should be canied out. Often
contJaCtS also specifY secondary (reparation) obligations that come into force when a
party does not cany out an obligation. The essence of contracts is the definition of
commitment slates thai is imposed on contracting parties. These states come into
force and become discharged as a result ofactions that the parties carry out or as a
result of an occurrence ofan external event such as expiration ofa deadline.

During the contract fulfilment, parties collaborate by exchanging infonnation
and carrying out actions that have been agreed. The collaboration only occurs because
of the commitments defined within the contract. In nonnal circumstances parties aim
10 fulfil their responsibilities but it is perfectly admissible thai a party will refuse to
carry out an agreed action or refuse to maintain agreed state ofaffairs activating a
secondary (reparation) obligation. This situation typically occurs ifan unforeseen
event rakes place (e.g., impon restrictions) forcing one to de-<:ommit from the
obligation.

So far, contracts have usually been treated merely as te>.1 documents. However,
enriching contracts with well-.struetured infoonatioo such as conditions under which a
commitment becomes dl.£ or conditions under which il is deemed to be fulfilled
allows for automation ofcertain aspects of the contracting process. Thus, the resulting
e-contraet can provide a high degree ofconsistency in contract perl'ormance and lead
10 improvement in contract management

2

2 J E-Colltracl Lifecycle
Conceprua1ly, the Iifecycle can be split into the three stages ofcontract drafting,
formation, and execution [ECS 2000]. Figure I illustrates the cootraetlifecycle.

COn/ract drafting phase: Given the contrnct template model, the drafter role
constnJCtS an instance of the template. In this phase the contractual roles, abstract
business internctions and conuaetual. situaIions are specified. The lemplaIe typically
has a number of free variables that are agreed upon in the next phase.

COn/ract formation phase: Participants assume contract roles and negotiate the
details oftheir responsibilities. The negotiable variables ofthe contract (deadlines,
order ofactions) become fixed and concrete business interactions are bound to the
abstract ones defined in the template. The relationships between contrnct parties are
created and caprured in contrnet statements. The statements contain policy
expressions that imply obligations and rights cf parties.

COn/ract execution phase: Actual delivery ofcontract consider.uion takes place.
Typically, this phase constitutes service or goods delivery, invoicing, bill calculation,
presennnent and payment. The interactions between the parties are monitored for their
compliance to the tenns agreed on in the contrnct.

Drafting) Contract Fonnarion) Contract Execution
Phase Template Phase Phase

c c

F~ure 1- Contracllifcq'c1e

22 E-Colliraci
An electronic contract (e-contraet) is a fonnalization of real life contraCTS (infonnal
contract or contract without machine-readable format) expressed in natural language
and typically structured into a set ofclauses. General requirements for an e-contrnct
model can be derived from a study of infonnal contraCtS. Our model is based on the
on-going analysis and sudy of the INCOTERMS1 international contract of sale
[Ramberg 2000]. Our modelling approach in based on the sn'/ (see to it that)
statements that [Daskalopulu 20001 can be expressed more fonnally as modal logic.
This role-based model allows for a specification of1he commitments ofdifferent
types as well as expression of delegation [Norman 2000] of these commionents,

The e-comrnet is a declarative specification captured in XML. Its synta~ can be
valida1ed with a corresponding XML Schema This specifiC3loo can then be loaded

I lncoterms are international rules for the interpretation of the most ccwnmonly used terms in
international trade

3

into a oontraet plarfonn that provides contract management capabilities as well as
means ofcontract fulfilment Below a subset oftile mcxlel that is relevant to the
subject ofthis report is presented.

TIle property that is immediate)' apparent from studying contracts is that it is
parameterised by contract roles. In !NeOTERMS, the roles are Buyer and Seller.
When the contraa is signed, the entities assume the specific roles and obligations that
correspond to them. Funhennore, each signed contract tms a globally Wlique
reference that can be used in contractual conummieation. This can be capwred by the
following XML and Schema fragment (Figwe 2).

<co::u:a.ct c:onUaetI<!-<~223~=lr.s-"'http, II."Y<f.t.p.=t=t::aCl~
=1ns: act-'''http://_y. ~.p.o::m/a<;tion~ =1r.s'xs~-"bttp, I t-<f. \/3 .orgl2000/:0/)'Y"....5d".e:-... ­
l:uta:'lOe~ xs~: sc:=ae:r.al.ocatiOOK~h.tt?:11_...hp. ca:;.I=t::aet
c: \Cootraet \smtest\Co:".t"...et _xs::~>

"-"'~
<prea=~le>:..te~tlc<-"l sale of Goods ~.tract</p~~le>

<role ..-"B'.>yer~/>

<role,...~5elJ.er"I>
<party:~to role~f-·seller~>r~lett-?ac~::d</pa~y:nfO>

<party:~fo ::ole'\<i::.e;lef-~31,:~,,·>Br1ti,h 1.1brary</partyinfo>
</he.aCer>l_l

</ootltraet>

...

Figure 2 -reference to contract roles

The <partylnfo> element is inserted when the entities (Hewlett-Packard and British
Library) sign the contract and it refers to a specific contract role. The pany
infonnation contains further details such as data necessary for the electronic
communication (e.g.• e-mail address, mst or IP address and port, etc.) but is not
shown here.

The INCOTERMS contain statements ofobligations that mostly concern actions that a
role should carry out. One ofthe important obligations of the Seller is that he has to

give sufficient advance notice ofthe delivery that the Buyer paid for. This is so that
Buyer can arrange for means to unload the goods and transport them to his premises.
In the f>COfltraet the normative states are defined in the <Sd;:e::.e::t> elements enclosed
within the statement group_ The model for a statement described detailed a condition
upon which the nonnative state will be activated (here on the 2 July 2001). The type

of the nonnative state is indicated by the <deo....tiCOpe"ator> element The allowed
types are obligation, pennission and prohibition. The statements has t\....o role
elements <cbjectJlole> aOO <st:bjecrRole>, specifying that the holder ofthe obligarion
is the Seller and the beneficiary of it is Buyer. The <Ci!ac.li:IV aOO <lIar..etio::> elementS
are optional and specify the dt2dline by which the nonnative state must be discharged
and the secondary obligation that will be activated in case of no perfocming.

4

<stat~tG~,p>

<s-..a:e=.er.: sta:e:.:.::t!ci--M1 M>
<hea::ir.q>;,c..,ii.-.ce Kot-ioe<lhead.1:Jg>
<eeootiCOpera:or ty;>e""O·/>
<Objec:Kole rol~~f··seller·l>

<saoject~le rol~~~f--3uyer·l>

<cooCiti~ ~-o~I02/01/2001)·/>

<actioD r~Wlo1Idv'~ti_·p6d:~·SallIar">

~""'n:t """"'''NI:>~~t·
~_.S!>ipper'~t.iJQIlo~~1>

<1-
<Ceadl~~ exp-Mr.o-I>
~~io", s:st~~~t:d--2·1>

</SUlte::2::t>
<5tatB:i!:;t "'tiite::En::Id-'"2->_

l-J
</state:.er.tGrQI,lp>

llolcmcntGt'oup

......
de'uiption

______________ .1

Figun: 3- statt'mcnt ofobligation

Finally, this normative state definition requires the Seller to perfonn contract action
GiveAdvanceNotice. Furthennore, because the parties will communicate through the
Internet, the contJacl action ofgiving advance notice will be carried ot.n according to
an agreed collaboration panemNotifyOfAdvancedShipment. The entire stalement
defined above can be read as the following:

"On 2 July 2001 the Seller shall be obliged 10 the Buyer 10 see to it that Seller carries
OUlaetion GiveAdvanceNolice according to colJaborarioo
NotifyOfAdvancedShipment".

The e-comract represented by the XML document is loaded into the contract platfonn
and processed. As a resull ofthis processing a nwnber ofobjects is created that are

5

pertinent to contract execution and monitoring. The obligation object registers with
the calendar and \vill become pending on 2 July. The enterprise entity (human or
atnomatic procedure) playing the Seller role will then decide whether to fulfil the
obligation or not. Ifit agrees the collaboration pattemNorifyOjAdvancedShipment
will be realised by an exchange ofelectronic messages.

The Execution and Monitoring framework is resp:msible for realizing this
collaboration, monitoring it and notifYing other components about its state so that
when the collaboration completes the nonnative state ofobligation can be discharged.

2.3 Collaboration
In the previous section, the idea ofan electronic contract containing statements that
define commitment states concerned with action performance has been introduced. It
was mentioned that contracts are parnmeterised with roles allowing panies to bind to
them at run-time. In a similar fashion, actions that fonn a part of the commitment
stale definition are parameterised by collaborations (recall the <er:::xxiirr.ent> element).

In order for an enterprise to effectively collaborate with any other entity there must
exist a shared set ofcollaboration templates. Furthennore, ifcollaborations are to be
carried over the Internet, they must be mapped onto the underlying IT infrastructure
resulting in standard message based protocols. A number of f}.seMce initiatives in the
industry such as RosettaNet [Rosetta] or ebXML [ebXML] aim to address this issue.
These initiatives define public repositories that contain descriptions ofcollaborations
caprured in a specification language. Typically the specification language is a fonn of
a colJaboration diagram that details the roles taking part in the collaboration, the
names of the activities" the sequencing constraints as well as the data (often
represented as an XML document conforming to a given schema) passed between the
activities. We have found that most of the INCOTERMS contract actions can be
realized with the RosenaNet collaborntions. Going back to the example from the
previous section contrncl action GiveAdvanceNorice can be implemented \vith the
collaboration NorifyOjAdvancedShipment (the actual name for this collaboration
according to RosenaNet classification is PIP3B2).

Shipper

NotifyOfAdvaJlcedShipmel/t

(PlP3B2)
Consignee

-

,,,,...---.---.--f=s:q;"'"'=-_--
""",,,,,,,"pm'-~"'" ~

•.Qj_ -i .---

Figure 4 - Rnscttai\"el PIP382

6

The collaboration specification visualized infonnally above has a fonnal description
lhat can be serialized into XML. At the moment there is no industry wide standard for
collaboration descriptions and there are competing proposals from open consoltia
such as RosettaNet or ebXML business process working group as well as IT vendors.

2.3. J Collaboratioll implemell1Qtioll with busilless processes

The collaboration specification needs to be mapped onto a suitable implementation
system. Workflow systems are a natural choice because the worlllow description
allows for role based task allocation and sequencing. Consequently, the collaboration
specification can easily be transformed into process descriptions that can be enacted
by the "''Ofkflow system. Soch automated transfonnation has been proposed for the
HP Process Manager [Piccinelli 1999].

The result ofsoch transformation is a set ofprocess descriptions (one process for each
collaixlration role). The process implements a swim-lane of the collalxxa1ion
specification as long as it meets the following criteria:

• It has work nodes that correspond to the activities in the collaboration
specification;

• The work node has an attachment containing the docwnent thai. is valid
according to the required schema;

• The work node has a resourre rule that will route the work the item to the
work list served by the program that interfaces with the messaging system.

The work node in the process description meeting the above criteria can be called a
public work node because it corresponds to the activity in the shared collaixlration
description.
When the task associated with the public work node is progressed relevant dam is
passed into the messaging application that fonnats a message and sends it to the
collabaating party.

",x."""". ,-,.D" -"~no 'O" ,, • .-< ',' '·'1··

'.

FIgUre 5 -Enmple lransromution

An example set of processes that meet the transfonnation criteria is shown aixlve.
Notice that the process implementation of the collaboration specification can have
work-nodes thaI do not correspond to activities in the collaboration description and
are priVate to the enterprise. Alternatively, the process entirely consisting of public
work-nodes and be executed as a ~process. The containing process still meets the

7

transfonnation criteria Le., it can be considered an implementation of the relevant pan
of the coIlaborntion.

When the e-Contrnct is negotiated and a specific coIlaborntion (such as
NOlifyOfAdvancedShipmen~ is proposed.. contract parties detennine the collaoorairn
roles they want to play and make an <e""Xd':p'lt> entry in the XML representation of
contrael Assuming that the collaboration messaging protocol is Sla1ldard each pany
has to make sure that:

• they produce coUaboration implementations for specific adaplors.
• the implementatioos are deployed into their IT sysrems.

These two steps can be acromplished using preferred vendor tools, bUl in the
prototype, the tools for the HP ProcessManager are used. After collaboration
implementation, a set ofbindings between the col1aborarion for agiven coIlaboralive
role and the COI'T"eSJX>I1ding collabornrion implementation is produced. This is shown
below as an XML file and a corresponding schema.

<?x::ll. versio:l·-l.O· er.cod!::<;-....-:-F-,,-?>
~ior.Bi~~s x::ll.ns'xsi.~ttp:llvJW.w3.o~/2000/10~~~-1r.sta~·

xsi ,s~:..ocatie:l--http, I /v-.-.:. !'.p.carI~
C:'COnt~\5rc\te5t~lo~L'lrli~.xsd->

<bir.dinc; r.a..-s-'"f'ot:'fyOfA...~anClldShi""~:ItBi:>di:u;-type--?roceSs:-'.,i:lager->
<acr.ion :Ia.'U!~-SOtifyO~·'vim::...~....~i;:m:.ent~ per:-or::'J.:lgRol_"Co:lSi9n~">

"P~ssI!::ple::>e..,t ..ticn processGroup--Shipper­
proc:eS3.~-~tifyO:-A..."";mcedShitne::t.Co:lSi9~-I>

</act:!.o:»
</bindi:U;>
<!)ir.ding r.o.7e--SOtit-,<lfACvancedSh:'[%A!:'lt3i:'\Cin.. - type"-?rocess.V.a:'lager->

<acr.io.'1 rlio<:""--K:ltifyOfAdv=cedSh!~:'lt· per!or.:UrI9Ro1e-- Shipper->
<proce5sIrr~1~..,t..t!cn processGroup-MShipperM

PlOOOssKa.'t8'"M).Iot ifyOfA...~anceas::'i;:r..er.t. ShiPPf'r M I>
</actio."!>

</bindirl9>
</aetionBindinqs>

FIgUR 6- process bindings Cllplu~ in X,\tL

The <bindinq> element contains the binding name and indicates the type ofthe adaptor

thaI will enact implementation ofthe collaboration. Because implementations in the
prototype are processes, the type is Process Manager. The entry <actio:"> specifies the
collaboration part name and <p..."'OCess::::;>!e::....-.tiitio.-:> contains the details ofthe
collaboration implementation thaI the adaptor requires.

We have designed contract execution framework to be general and we left out a
possibility for coIlaboralioo implementations and adaptors other than business process
and the Process manager. Such implementations would have an adequate entry in the
bming as indicated by the <:liivii':::;>l~."!t<lt!C">.

8

When a contraa is setup for execution the XML Binding file is read. bindings
relevant to the contract are loaded and the corresponding Binding object is made
persistent When the adaptor receives a request to execute a pan of the collaboration.
it uses the Binding object to identity caresponding implementation.

1.3.2 E-Colltrac/ cOllsidero/iollsfor col/abora/ioll implemelltatiolls

In business, any collaborative internaion takes place within the context of the
contract. For commodity goods, usually one contract is signed that is parameterised
with respect to good type and -in conjW'lCtion with a trade confinnation document-is
vaJid fer collaboration ooncemed with many goods inslances. Contracts for complex
goods such as services are parameterised by service instances and therefore are valid
for collaborations coocemed with specific service instance. In 0lK" prototype, we focus
on the second type of contracts.

----------- CcntractID 223..... Stateo.eJ\tI) 1

PI,,"'......... ,.-t:• ..
Rl:>le seller

""". 5e:ld

Corr. i'tlXe,sAdvanced
ACtivity Shippr..ntl'otice

Fir;ure 7 -case packct orWork Node

As a given enterprise will typically have a nwnber ofcontracts wim the business
partners wimin its IT infrastructure, mere will re a nwnber of instances of
collaborations running. Therefore, some sort ofcontract context has to be passed into
the collaboration instance so that me data received from the parmers can be routed
inlO appropriate instance, In our prototype, we implemented col1aoorations with
business processes and therefore we pass the contract comext (contractiD,
statementiD and contraa role that is fulfilled by the party) into process instances.

The contract context is available within each public work node ofthe process that
implements the collaboration as shown in the figure above. Furthennore, we consider
that each public work node (as defined in section 2.3.1) has a case packet variable
mode that indic:ares whether the node is sending or receiving and a pointer
correspondingActiviry that referenced corresponding collaborative activity,

The resource rule associated with this node routes the task to a Wotklist that is served
by the ~ning program upon its progression. The comraCT. cont~1 allows
messaging application 10 extract data. from the work item, It lhen queries contract
repository to obtain the electrmic address ofthe contract party. Finally, it fOnnalS an
appropriate message and sends it using an agreed protocol soch as Microsoft SOAP.

9

3 Requirements
The ideas described in previous chapters are crucial 10 the design afthe contract
execution framework. Consequently, required features originating from those ideas
arise. Since the work carried out in the placement covers certain parts of tile
fiamewofk, only the requirements and desired fearures belonging to that part are
shovt'Tl below:

Collaboration:
As mentioned in me previous section, the collaborntion specification needs to be
mapped onto an implementaIion system. Fwthermore, certain actions such as sending
and receiving OOcwnents between entities require to be handled by the
implementation system.. Since the HP Process Manager is the implementation system
ofchoice for the prouxype, means to enable collaboration between insmnces of it had
to be found. Corresponding solutioIl'> are described in seaion 5.5.

COn/ract Compliance:
Contract execution can be considered as complying with the contract, ifit meets the
collaboration specification. In order to perfonn compliance cleek. each entity requires
a monitoring component that collects appropriate data for the rules and tests that
detennine ifan obligation has been fulfilled or IlOl While evaluation ofthe collected
data leading 10 decisions is IlQ{ carried out by the monitor, its task is crucial 10 the
core part ofthe fiamework that deals with decision making and scheduling on a
contract level. Issues related to monitoring are covered in section 5.4.

Visualization:
Having in mind that the prototype sOOuld allm.... visualizing the underlying ideas of
execution fiamework a graphical user interface has been proposed 10 address this
issue. After emering their party name, entities should be able to view their rights and
obligations as well as infonnalion according to monitoring and execution (section
5.6).

10

4 Design of Contract Execution Framework

./,
--,

/
./

"

Figure 8 - rramework o\'l:rview

Conceptually the contract frameworks consists of following blocks:
• Fonnation ofcontrnet
• Core functionality dealing wim decision making and scheduling on me

contract level (the core block maintains state ofcomminnents and decides if
they need to be fulfilled)

• Fulfilment dealing with fulfilling comracrual obligations
The main idea is that the contractStatemenlcan be associated with a Binding. The
association is done by theAdaplOr, which is described detailed in Chapter 5.3.
Bindingsand Adaplors are specific to !he InternctionControl1er they interopemte. As
HP ProcessManager is used for the prototype, ProcessAdaptor and ProcessBinding
come to pla~

The work described in this paper concelTl') the execution and monitoring ofa
contract, performed by the fulfilment part (shown in box I in Figure 8).
The fulfilmenl block (shown in Figure 9) current poinl of integration is the Scheduler
lhat invokes a execute method on the ExecutiollManager when a Slatement is to be
executed Ackl.itionally the Scheduler exposes a notify method that can be called when
the Binding associated with the Statemenlcompletes its execution.

The following sections descnbe briefly, how a Slatement is associated and execUled
within the fulfilment part.

II

_ ...c_""""_IIII·.....
-~

."~:SIm;I ->40""......."_.·..-.=-<OAll....,.,...... Fco......----
-u<I~...O_

~·Os:a.,. "'_'='*0_--£<0""....·_10 _:10'0 [00,_000;0< "-,~",,,plI;II-
.,_._~--

~-"_E-.~ '-=-OSlluo.~
._~-

'"ocS:;Q(s-..li ~q)."""
.~~- ? ?·,OW.JIII"I'I;loIO._ .

~•
, •_.ar.4nl;l._

•___11......

•- _nsH.."""" --___...··.{JI-'O:llu< .
.~~-

•_~n.._~

'CJ.4~1l" -_..............--....... "IIOll.M(l._"

~-"Il_" . .~~)

Flgu~9- fulfilment package dau diagl'2m

4.1 Creation ofAdaptors
The ExeCU1ionManager calls the configure method that creates instances ofAdaptors.
It also sets a reference to itselfso that later on theAdaplors can l1Olif)t it of Binding
completion.

Ex@ctJtionM2InMer

ExecutionManager

ProcessAtiaolor

ProcessAdaplor

~gUreo:voili
I setManaller(Execulion anager):void

I I

~aPlor(AdaPloJvold
I I
I I
I I
I I
I I

Figure 10 -creation ofAdltptor

1be Adaptors are added to the hash-table that can be referenced by the adaptor type
(which is the class name ofa specific Adaptor).

4.2 Creation ofBindings
1lle Binding to a contraernal Statement can be created after Adaptors have been
inslaJltiated. Therefore, abstract Actions as specified in the contract have 10 be
mapped onto concrete Actions. Each Adaplorcan be queried for a list ofjX)SSible

12

Bindings and perfonns the mapping. In case ofProcessAdaptor, Bindings are
idenlified by ProcessName and ProcessGroup. The Adaptor carries out the task of
resolving the action description into the action embcxiiment When the contract is
loaded and a contract object mcx:lel is constructed each statemem in the contract can
be queried for the action declarations. These are passed 10 the Adaplorthat resolves
them into concrete embodiments represented by Bindings. ProcessAdaptor can
resolve complex actions into processes and simple actions into tasks. This activity
occurs during the preparation ofcontract for execution. When the Binding is created
by the Adaptor, its state is set to "\Inbound" and when the association is made il
becomes~ and ready for execution".

4.3 Execution ofStatement

r==l ...--.. n=l r=l
~ EnelllionManager Bindir!OReposllDrY ~ ~

tutule(StalemeRO_ dre:ne¥eBindirlg(Sta:llmeRO:Bind na I I
ge~plotO:.M'pto·

exeeul.f{Blndlng)~id I

n~lnVl:«l1d

updateBindlng(StaUlment"llil'ldloW.wld

relrieveSlatemenl(9lndln :Statemenl

n ~tt(Stalemeno.VDld

Figure 11 - Creation of Bindings for Contract in the sct-up phase

Execution ofa contract Statement is detennined by the Scheduler component of the
core. When the Statement is to be executed, the ExeclltionManager is contaeled and
queries the BindingRepository for the Binding associated with the S,atemen(. It then
executes the Binding that its tum calls an appropriate Adaptor that executes it
Because the execution ofcontractual obligations is typically long running the
notific:atianabout complelion ofthe Binding tathe ExeclJtionManager is
asynchronous. 1be ExeclltionManager updates the state of the Binding in the
Repository and notifies the Scheduler.

When the bearer ofcommibllent expressed by a Statement intends to fulfil it he will
call the execute method on the ExecutionManager who will retrieve the appropriate
Binding and pass it to the Adaptor for e."ecution The Binding knows about the
Adaptor that can execute it and can delegate to it the execute method.

13

!
\'

5 Use of Process Manager

As mentioned earlier Hewlett-Packard ProcessManager was chosen as
ImeractionConttoller for validation ofcontract fiamework design. 1llerefore Monitor.
ProcessAdaplorand ACliviryMonilOrhave to be able to perform interaction with the
Process Manager. Process Manager provides three ways for programming-b't=l
access: Perl package, COM API, Java API. Since Java is the language ofchoice for
the contract framework communication is done through Java API.
The Process Manager lacks func:tionalities that enable collaboration between multiple
panies. Hence, ways had to be foord to simulate collaboouion as discussed in section
2. Section 5.5 shoW'S how collaboration is achieved.

5.1 Main Concepts
This section describes briefly the required steps to create and run a process with the
Hewlett-Packard Process Manager.

The awl.ication Process Definer offers functionaJities for creation ofProcess
Definitions. It provides a graIXtical representation ofthe process as a flow diagram,
which consists of four different types ofnodes:

Start Node
• Required to initiate the process
• Initiator (a person or an application) feeds some data into the

process

Work Node

• Represents a specific item ofwork
• A service is specified that will be called to carry out the work,

and the data will be pass toIfrom this service

Route Node

• Decision Point within the process
• AND/ORINOT logic can be used
• Expressed as IF statement

14

Complete Node

• Used to show where a process comes to a logicaJ end
• When the flow ofthe process reaches a complete node. it SlOps

Changengine
Server

Work Nodes carry out tasks that are detennined by service descriptions. Services as
used in the Process Manager require specification ofinpUl and output data items as
well as Resource Rules. Actually, tasks are carried out by the Resource Rule, through
whom an abstraction ofexecutor is achieved. More concretely, Resource Rules
specify ObjeclS that are resolved into concrete person or application (e.g., through
database loo"'Up). Data items can contain basic variable typeS like String. Integer,
Float, Boolean as well as complex typeS (e.g, word document) embodied by
anachments. In addition, data items are detennined by their scope, which is either
global meaning accessibility within the whole process or local with respect to a
specific node.
Data items can be defined in the graphical user interface ofProcess Definer, whereas
Resource Rules require specification in a proprietary script language.
After creation, the process definition needs to be checked in the process repository.
Thereby the process is slored in the repository wtder re\ision control. From then on,
the process is available in the Process Manager and can be deployed in order to make
it nmnable. Figure 12 shows these steps.

Process
Definer

(00 your PC)

[~.o>o" ~I Proms
....~ Repository

.cepp File (-lfeiJOsitory)

I'------'C"h::~"'k"'<"'___+~
(XML) ~

TI\;io pt'~ d~flflillOn Process
i'iono",lnd~r~vlsb'l Engine

COl'Wol

Deploy ~------,--,-",-,L-J

Fi:ure 12-dxck-i1l and d~'meul of process

15

5.2 Java API

Clients can communicate with the Process Manager in two different ways. The first
way is to connect to the web server via TePIIP (usually on pan 80), which forwards
requests to the Worklist Server through CGI. The disadvanlage afthis approach
results from the dependency on the speed of tile web server. Since standard access for
clients to a "\feb server is "connectionless" - meaning that the client establishes and re­
establishes the connection with the server on each request- it is na: suitable for
bandwidth~ applications.
The second way ofcommllllicarion uses the API Server that is part of the Worklist
Server. It keeps the HTrP connection (pon 9123) open so communication is nol

c:onstantly slov.'ed by reconnection times. Figure 13 iIIUSU'aIes these two connection
schemes.

CGI

eGI
2

'!"ork:lsI A
Som..... API Hnp;c~AP p Apl~~lllon

'&,'Ier • • I(Port ~123}

Web
Server

Hnp.:C8AP A
III • P Ajlpllc.Joon

.Poet SOl I
L..&..._.....

Figure 13- API communication schemes

The Worklist Server maintains several Work Lists, which contain Work Items. Work
Lists represent Resource Rules in a way that Work Nodes specified in the process can
result in Work Items being dispatched between Work Lists. For instance, tasks that
the Admin has to cany out appear in his Work List as shown in Figure 14.

Work Items Work Lists
0 _

I~AdmmJ0 __ .-.
Work1istLSh;pp« J .-. Server

L A.oo J .-.

F".guN 1-1- Proct§S :\laDz:;er ardlit«tu~

16

TIle Stn.JCtUre of the Java API classes reflects the architecrure of the Process Manager
in maintaining the dependency between Work Lists and Work Items. Firstly, a session
has to be eslablished in order provide the conteJI.1 for the current logon. Afier that,
Work Lists can be accessed and Work Items contained in them modified. Data Items
of Work Items are treated as fields within Work Items. Only complex data items,
encap51lla!ed in Attachments, are represented in the Process Manager class model,
which is shown in Figure 15.

Session

1

*
WorkList

1

*
Workltem

1

*
Atlachment

Figure 15- J:I.\'a API o\w\'iew

From a functional]XIint of viC\.... Java API provides following features:
• Start Process
• Pass Data to Work Item
• Read Data from the Work Item

But Components of the framework that interact with the Process Manager require
certain that cannot be accomplished with the Java API:

• History of execution
• Process Completion
• Temporallnfurmation

Nevertheless, solutions have been found to achieve the desired functionality without
using Java API. These solutions are detailed in chapter 5.4.

17

5.3 Design oflite Adaptor

The ProcessAdaptor carries out the~ ofenabling imeraction beI:Ween the
fiame\\'OC'k and the Process M~oer. Thus., it is in control ofall conb'aCt related data
on the level of process instancesfnameslgroups. This property led to the idea of
integrating pans of the monitoring -concretely process monitoring- in the
ProcessAdaptor. As a result, Monitor has only to deal with Binding and retrieves its
aetuaI stale through interrogation ofProcessAdaptor thaI maintains the process level
data. Concepts related to monitoring are discussed in section 5.4. An UML class
ciagram representation of the ProcessAdaptoris shcMn in Figure 16.
At initialisaJion, ProcessAdaptoreslablishes a session with the Process Manager,
which is held open wtil desuuaion of~daptorobject As described in chap.er
43, when ExecutionManager intends to execute Statement it resolves the
corresponding Binding and invokes the execute method oftile appropriate AdaplOr. In
case of ProcessAdaptor, the Binding is ca'il to ProcessBinding, which contains
process specific il.fonnarion like process groupIname. This allows ProcessAdaptor to

invoke the startProcess(processGroup,processName) method, which internally uses
methods supplied by the Java API to start the process and to determine process
instance ID. Furthennore, ProcessAdaptorpasses contract context information to the
process (i.e., Contract ID) thaI is stored in global variables and therefore available
within the whole process. The process instance 10 is stored in the appropriate
ProcessBinding and later on required to perform process monitoring.

-mwsesS'ctrSeSSlon

-OlicIIConnecoon:Conn.coon

#ni!Wline:SlIinF'\n"
·"":World!llm
-w1.World..tSI

.p10Cesslnsta nceID:S!IinlF""

·rsel:ResuttSe1

·SlmtStiltemenl

-Cicn.:ProcessCicne

.ProcessAdaptorO

•make8ind in~(i:Ac~Cn.p:Pirtylnfo):C 0111c~on

• exacute (bjn din,r8inding):<I.lid

.BSlab~sh5BssiDn(IJsemim.:5tringJliSSWOld.sa-

• disconnectS esslonO.voId

·Sl.irtProcess(ploclssGloup:strln~.P«lcenNatnl

.monill.K6indinll(binding:8inCling):ShJg

-Jdl>tCanneC/Ocvaid

·nanli!.....1&cellUn(•.W1~elltion):vald

•
Figure 16- P~d:aptorcb.s.sdi:.;agram

In addition, Adaptorcarries out the task ofmapping the action description on10 the
action embodiment When the contract is loaded and a contract object model is
construe1ed each statement in the contract can be queried for the action declatations.
These are passed to the Adaptor that resolves them intO concrete embodimerns
represented by Bindings. More concretely, Procf!SsAdaptor resolves complex actions
into processes and simple actions into tasks. This activity occurs during the
prepanuion ofconlraCt for execution.

18

The resolution ofan action depends 00 the rontraet party and so in addition to Action
declaration the Panylnformation is passed as argument 10 the makeBinding method.

5.4 Monitoring
The contract defines stales ofobligation that are agreed between panies and should be
adhered 10. These states ofobligation will be discharged when prescribed rorxlitions
hold. As rollaborating panies are only in charge ofcontract fulfilment with respect to

a party based projection of the romrna, they desire to perform validation against
cootraet interaction description. Therefore, each party requires to have monitor
COO1ponert that provides data for the rules and tests that delennine if an obligation has
been fulfilled or I10l (recall requirement cOn/ract compliance). Components such as
Decision Maker that aetually evaluate data provided by the Monitor are located in the
core ran of the contract frnmework. In order to feed these romponenlS with
appropriate data Monitor needs to observe:

• Stale of process. which can be started, slOpped, suspended or completed
• Tasks (Activities) and data items., especially when they have been sent out,

-received

Although the web-based user interface oflbe Process Manager allows having a look
at the current process state as well as temporal information about tasks. rol'l'eSJXKlding
functionalities are not obtainable through the existing Java API. Therefore, custom
ways had to be fOlDld 10 realize process and activity monitoring.

5.4.1 Process Monitoring
Process monitoring is based on the Process Manager's intemal directly realisation of
process logging. More concretely, process relevant data is obtained from an Oracle
database in which the Process Manager stores logging information. Investigations of
how the web-based graphical user interface builds pages containing process
information have revealed the tables holding the required data.

Process ManagerSinolllg
R'PCfllCry

Iloops

Monitor

Proces
inding

I
Process
Adaptor

deleg:ucs

JDBC

<: Ouer, >
~ ~ ~ Lo,,'og

Eo,aol~
OB

Figurt 17 -pftH'CSS moniloriog

As mentioned in the previous section, we interaction with the Process Manager is
delegated toProcessAdapror. The Moniior queries BindingReposirory seeking
Bindings which state equals 'hecuting"'. All matching Bindings are passed to

19

ProcessAdaptor, which retrieves process information (i.e., process instance 10) from
ProcessBinding (typecast required) allowing it to consrruct appropriale queries againsl:
database. This monitoring routine i; restarted regularly and is iIIustrnled in Figure 17.
Methods required for communicating wim the Oracle Database are delivered by the
Oracle JOBe driver.
If Binding completes, Monitor updates information in the Repository, where data is
filed according to the conlraCt conte'Xt Consequently, the completed Binding is not
included in the nexI run of monilOr thread

5.4.2 ActiVity Monitoring
Ideally, the Monitor shouJd be canying otn p;lSSive monitoring (i.e., the controller
passes rele vam infonnarion 10 the monitor according to a mooitoring description) btn:
due to the limitations ofthe cwrent Process Manager, active monilOring (by polling
relevant work·lisrs in the Work-lisr. Server) is used. While passive moniloring allows
regislering to certain events (i.e., Activity Y completed) that Interaclion Controller
fires, aaive monitoring requires knowledge about imeraction description 10 detennine
Work Lists to poll. Figure 18 shows active monitoring with the Process Manager.

i,
./

;

,,
.! '
! .. /

,

i
f

I 1.1"".",1

rlgure 18 -aclr..-e moniloring Ol·tr...ic....

In order to be able to perform activity (task) level monitoring we route !he tasks that
we want to monitor to the AulO work·list that is obsetved by the ACfivityMonilor
component After gathering the monitoring infonnation for the activity, the monitor
progresses the task 10 allow process progression. Thus. access 10 data ilems is granted
as well as exact temporal information. Furthermore, data items relevant to discharge
of the Slate ofObligation can be filed in a repository, which can be ofuse for
components that detennine if an obligation has been fulfilled or not. Figure 19 depicts
aaive monitoring in context ofthe Process Manager.

20

,,,, '-.. ~,
•

.-

Fi;::ure 19 -acm'c monitoringith AulO Workljst

5.5 Simulation ofProcess execution
Components being introduced in previous sections are shown in context of process
execution. In order (0 simulate business interaction with the Process Manager,
Interaction description expressing the collaborative workflow needs 10 be translated in
process descriptions (recall requirement collaboration).

Figure 20 shows the process descriptions involving participants shipper (left side) and
consignee.

",..,UN;.•", rl>J,rr ... ~"fl'

~----o;n
OJ, .,', '''''' ••• ' ""1-. ~"" .,........ , ".~•.• '"U <0

441-·--,'El

F"i:;ul'e 20 -prottSS representation orcollaboration

As described in Figure 20, collaborative workflow contains documems send be[\.\,een
parties. For ilstance, Shipper needs 10 give Advanced Shipment NOl:ice seven days
before actual shipment takes place. Ideally, the Process Managers ofeach party would
handle communication among each other, but due to limitations ofcurrent version we
had to find custom way_ Seeing that setting up comnnmication between different
iIlSlances cflhe Process Manager is time consuming and would require technologies
likeJavQ Messaging Service, a single inslallation is used to achieve coUalxlfation.
Similar to me scheme illlrodL.Ced by active monitoring, !aSks are routed to theAuto

2\

Work List AClivityMonitoris in control of Work Items in the Auto Work List,
consequently we added methods to it that simulate the interaction. Behaviour of
AClivityMonitor is subject to role it has rem assigned. therefore two AClivityMonitors
are required in the scenario.
Figure 21 shows workflow ofan ActivityMonitor playing role shipper in flow diagram
noIalion. Firstly, it evaluates case packets ofa Send Work hems appearing in the Auto
Work List: (recall section 232). If ContrnetlD, StatementlD, and Role match with the
vaJuesAClivityMonitor has been initialised, it entersSend Mode and tries to find the
correspooding Receive Work Item (belongs to Consignee process) indicated by the
correspondingAclivity case packet variable. Ifdescribed conditions are hold the
Allachmemrontaining AdvancedShipmenlNolice is set in the Receive Work Item and
the Send Work Items is progressed This leads the ActivityMonitor to switch to
Receive Mode awaiting the Receive Work Item belonging 10 the Shipper process to
appear. Only if the Receive Work Item contains the appropriate Allachment
(AdvancedShipmemNoriceAck) and case packet variables (ConrractlD, StatemenllD.
and Role) it is progressed and in so doing the puce:ss finished. The ActivilyMonilor
playing role Consignee operates in a similar way, following description ofme
Consignee process. Consequently, Receive Mode is progressed previous to Send
Mode.
As the result correct execution ofcollaborative process is guaranteed, ahhough
undergoing less flexibility.

,,"'----

True Enler Send Mode

False

&der Receive

""'"
T~ corresponc!il"lgActivit

is in Workmt ?

Figurr 21-1'l-orkf)o1'l" oraetilit)- monitor Shipper

22

5.6 Visualization of Contract Execution
In chapter 3, it has been mentioned that the prototype shouki allow visualisation cf
contract framework ideas. Therefore., we created a graphical user interface that allows
visualizing simulation ofprocess execution. Figure 22 shows ascreenshOl: of the
running GUf.

E ~

~--,.Q:.......l.ooo, 0'__

C-.e-_ ue e- ~~e
(~ __..,..Io.........,_.... n.

'O~~~.... ~l.....~....
....__...... 0001I ..__

o,..·.:=.<.-.-.-._-_..~_.._.- ~ol..,l. ____·.....-....-....... ...-..----
• .
L~_ ~<. 0--_ ~.~li<!

01_~...
r-~-'"

....._.....-

eo._ ue -
0_.,."),",,

............. _--

~ :.da.oiJ" ••:"'.._".... lit:;..... ~.r ,.!!i:::J~~"IDO,C .. ,,,..
Figure 22- screenshot ofgraphical user inlerfllCt

For simulating execution ofcontraet the GUl is started by each pany, in our Scenario
namely Hewlett-Packard and British-Library. A file chooser allows user to select the
electronic contract expressed as an XML file he wants to execute. The Contract is
loaded by the ConlraclLoader and object model associated with it is constructed.
Based on the party infonnatioo, windows are populated and Slalements are executed.
Functiooalil)' ofdifferern windows arxi information they provide is shown below.

My Contracts
All loaded Contracts are shown in a tree view, where contract nodes contain
statements associated with as sub nodes.

My Obligations
When user selects contrac:l: in My Contracts Window obligations ofthe actual party
resuhing from the oontraet are displayed.

23

My Rights
When user selects contract in My Conlracts Window rights ofthe actual party

resulting from the contract are displayed.

Statement
To:tual representation afthe statement as specified in the contract is given when user
selects statement node in the j\/y Conlracls window.

Process Binding
Infonnation about a ProcessBinding, associated with the statement that is selected in
the My Conlracls window, is given Information rontains Process Group. process
name and current state ofProcessBinding. Additimally, by clicking the Track
Process button an Internet page that shO\vs current progression of process is opened in
browser. The page is supplied by the Process Manager and shows actual progress of
process execution by displaying completed Work Nodes in a different colour.

5.7 Recommendation and Desired Features
From the work with the HP Process Manager, we discovered desired features meeting
needs of execution framework:

Dynamic processes deployment:
As mentioned in chapter 2.3.1, generation ofprocesses implementing collaooration
can be achieved by transfonnation tools. Given that, one would like 10 deploy the
generated processes programmatically. Combining these two methods, an agreed
collaboration could be automatically progressed to set of ProcessBindings.

Programmalic process management:
It is described in chapter 5.4.2 that passive monitoring is the preferred method but is
llOt supponed by current version of Process Manager. This could be realized by
adding API methods that allow receiving events related to process/activity/case packet
and variables lifecycle.

Imra Process Manager communication:
Execution ofContract involve; actions like sending and receiving docwnents. This
results in data exchange among Process Manager instances of pan.icipating entities.
Ideally, Process Manager would provide a proprietaJy protOCOl handling
communication. Because exchange is most likely carried over the Internet, secure
communication needs to be supponed

24

6 References

[ECS 2000] Boulmakoul A.., Bartolini c., Morciniec M.. 2000, ""Electronic Contract
SpecifiC31ion", HP Labs Bristol
[Ibbotson J., Sachs M.. 1999] Ibbotson J.. Sachs M.., 1999, '-Electronic Trading
Partner Agreement for E-Commen:::e". IBM Corjx)rarion.
[Marshal~ 1999] Marshall C, "Enlerprise Modelling wilh UML", Acklison Wesley
1999.
[ebXML] Electronic Business XML initiative, hnp:llwww.ebXML.orgI
[RosenaNet] RosenaNet Consortiwn., hnp:ll\vww.rosenanet.org
[DaskaJopulu 2fXXlJ, DaskakJpulu~ 2(0), ""Modelling LegalContraets as
Processes", Legal Information Systems Applications, 11th International Conference
and Workshop on Database and Expert Systems Applications, IEEE C. S. Press, pp.
1074-10J9
[Nonnan 2000] Noonan T.. Reed c.. "'Delegation and responsibilitY', in Proceedings
ofthe Seventh International Workshop on Agent Theories. Architectures and
Languages.
[Ramberg 2000] Ramberg J., 2000, "'ICC Guide to IflCO(enns 2000", International
Chamber ofCommerce.
[piccinelli 1999] Piccinelli G., 1999, ""A process decomposition technique for
distributed workflow management" in Proceedings of the t,KJ IFI P WO 6.1
International Working Conference on DistnOuled Applications and Interoperable
Systems (DAIS).
[SOAP 2000] World Wide Web Consortiwn, 2000, "SOAP Version 1.2",

hnp:/lwwvv.w3.org!TRl200 lIWD-soap12·200107001

25

