[

Monitoring and execution for contract compliance

Martin Sailer* and Michal Morciniec
E-Service Markets Department

HP Laboratories Bristol
HPL-2001-261 (R.1)
10" October, 2005*

electronic commerce;
e-contract; business
processes

Real world interactions between businesses are governed by contracts
that define rights and obligations of parties. Electronic contract
structures the information contained in textual contract so that it can be
used to automate certain aspects of contracting process.

In this report we focus on the contract fulfilment stage of this process.
A simple electronic contract structure expressed as an XML document
is introduced that allows one to define obligations on contract parties to
perform actions. The contract actions are implemented as public
collaboration patterns that in turn are implemented by each of the party
as business processes that lead to message based interactions.

We describe a system that can process an electronic contract and when
an obligation becomes due determines the relevant collaboration
pattern and a corresponding business process. It then monitors the
execution of the process and messages transmitted to a business
partner. The information collected by the system can later be used in
contract compliance decision-making, i.e. determining whether an
obligation has been carried out successfully.

! Martin Sailer, Institut fiir Informatik, Technische Universitat Miinchen, Miinchen, Germany

* Internal Accession Date Only

© Copyright 2005 Hewlett-Packard Development Company, L.P. Approved for External Publication

1 Introduction ’ A R A S 2
2 E-Contract and Collaborations..... 2
21 E-Contract LifecyCleccooeveenrannrennns 3
22 E-Contract = s e Y 3
23 Collaboralion. .. oo 6
231 Collaboration implementation with business processescoou...... ¢ |
2.3.2 E-Contract considerations for collaboration implementations............. 9

i A O 10
4 Design of Contract Execution Framework... ST 11
4.1 Creation of Adaplors. ...c..cammmscessssanssis s 12
42 Creation of Bindings..........ccccoreruiscrnsororenes el eiein 12
43 Execution of SEIRHICHE waammiaiieai s ettt 13

5 Use of Process Manager. N B R I 14
5.1 MaIN CONCEPLSeeeeeeeneeeereraeerseseesmesessesassessesessesassessssensmasassenessessassssesnsssns 14
52 . e e e L e D e e 16
53 DESon O the AT ..o i il 18
54 MORRORIRD o SRR 19
54.1 Process Monitoring 19
542 ACUVITY MIONIIOFINE: v cosiniostnsio b e sado s e A i s i 20

55 Simulation of Process execution T 21
5.6 Visualization of Contract EXECULION.cccceevereereserseiesessassessnessenssssesasssas 23
57 Recommendation and Desired FEafures...........coceverveereecenenesmnssessssessnsenenns 24

B REEPHEEE. s e e T T, 25

1 Introduction

The work described in this paper was done on a 3-month industrial placement
sponsored by HP Labs Bristol. It has been realized by cooperation between the chair
of the Technical University of Munich for network and systems management and HP
Labs Bristol

The placement was conducted at the HP Labs Bristol in context of a practical
work (Systementwicklungsprojekt), which is part of the Hauptdiplom (equivalent to
Master Of Science).

2 E-Contract and Collaborations

Recently there has been renewed interest in modelling of business contracts in
the academic computer science community [Milosevic 2001] as well as in the industry
[Ibbotson J., Sachs M., 1999]. This is motivated by the fact that enterprises
increasingly use the Intemet for communication with their partners and would like to
leverage this technology in order to gain efficiency in contracting processes.

Contracts are important in the context of loosely coupled structures [Marshall,
1999] like supply chains that involve independent entities. Because there is no cenral
authority that coordinates activities of entities making up a supply chain, each entity is
responsible to arrange a contract with their partner defining the collaboration in which
they will engage.

In real life, contracts define rights and obligations of parties as well as
conditions under which they arise and become discharged. The rights and obligations
concem either states of the affairs or actions that should be carried out. Often
contracts also specify secondary (reparation) obligations that come into force when a
party does not carry out an obligation. The essence of contracts is the definition of
commitment szates that is imposed on contracting parties. These states come into
force and become discharged as a result of actions that the parties carry out or as a
result of an occurrence of an external event such as expiration of a deadline.

During the contract fulfilment, parties collaborate by exchanging information
and carrying out actions that have been agreed. The collaboration only occurs because
of the commitments defined within the contract. In normal circumstances parties aim
to fulfil their responsibilities but it is perfectly admissible that a party will refuse to
carry out an agreed action or refuse to maintain agreed state of affairs activating a
secondary (reparation) obligation. This situation typically occurs if an unforeseen
event takes place (e.g., import restrictions) forcing one to de-commit from the
obligation.

So far, contracts have usually been treated merely as text documents. However,
enriching contracts with welkstructured information such as conditions under which a
commitment becomes due or conditions under which it is deemed to be fulfilled
allows for automation of certain aspects of the contracting process. Thus, the resulting
e-contract can provide a high degree of consistency in contract performance and lead
to improvement in confract management.

8]

2.1 E-Contract Lifecycle

Conceptually, the lifecycle can be split into the three stages of contract drafting,
formation, and execution [ECS 2000]. Figure 1 illustrates the contract lifecycle.

Contract drafting phase: Given the contract template model, the drafier role
constructs an instance of the template. In this phase the contractual roles, abstract
business interactions and contractual situations are specified. The template typically
has a number of free variables that are agreed upon in the next phase.

Contract formation phase: Participants assume contract roles and negotiate the
details of their responsibilities. The negotiable variables of the contract (deadlines,
order of actions) become fixed and concrete business interactions are bound to the
abstract ones defined in the template. The relationships between contract parties are
created and captured in contract statements. The statements contain policy

expressions that imply obligations and rights o parties.

Contract execution phase: Actual delivery of contract consideration takes place.
Typically, this phase constitutes service or goods delivery, invoicing, bill calculation,
presentment and payment. The interactions between the parties are monitored for their
compliance to the terms agreed on in the contract.

Contract Execution
Phase

Figure 1 - Contract lifecycle

2.2 E-Contract

An electronic contract (e-contract) is a formalization of real life contracts (informal
contract or contract without machine-readable format) expressed in natural language
and typically structured into a set of clauses. General requirements for an e-contract
model can be derived from a study of informal contracts. Our model is based on the
on-going analysis and sudy of the /NCOTERMS' intemational contract of sale
[Ramberg 2000]. Our modelling approach in based on the s#if (see 1o it that)
statements that [Daskalopulu 2000] can be expressed more formally as modal logic.
This role-based model allows for a specification of the commitments of different
types as well as expression of delegation [Norman 2000] of these commitments.

The e-contract is a declarative specification captured in XML. Its syntax can be
validated with a corresponding XML Schema. This specification can then be loaded

! Incoterms are international rules for the interpretation of the most commonly used terms in
intemational trade

into a contract platform that provides contract management capabilities as well as
means of contract fulfilment. Below a subset of the model that is relevant to the

subject of this report is presented.

The property that is immediatey apparent from studying contracts is that it is
parameterised by contract roles. In INCOTERMS, the roles are Buyer and Seller.
When the contract is signed, the entities assume the specific roles and obligations that
correspond to them. Furthermore, each signed contract has a globally unique
reference that can be used in contractual communication. This can be captured by the
following XML and Schema fragment (Figure 2).

<contract contractId="223" xmins—"htip://wwa.hp.com/contzact”

amlns:act="http://vwww.hp.com/acrion™ xmlns:xsi="http://wwe.w3.org/2000/10/ 0L Schems—
instance™ xsi:schemalocatica="nttp://www. hp.com/contract
C:\Contract\src\test \Contract . xsa™>

<header>

<preazble>Internaticonai Sale of Goods Contract</preamble>
<role name="Buyer"/>
<role name="Sellex" />
<partyInfo roleN=meRef="Seller">Hewlett-Packard</partylinioc>
<partylnfo roleNameRef="Buyer®>British Library</partylnio>
</neader>[_]
</contract>

Figure 2 —reference to contract roles

The <partyinfo> element is inserted when the entities (Hewlett-Packard and British
Library) sign the contract and it refers to a specific contract role. The party
information contains further details such as data necessary for the electronic
communication (e.g., e-mail address, host or IP address and port, etc.) but is not
shown here.

The INCOTERMS contain statements of obligations that mostly concem actions that a
role should carry out. One of the important obligations of the Seller is that he has 10
give sufficient advance notice of the delivery that the Buyer paid for. This is so that
Buyer can arrange for means to unload the goods and transport them to his premises.
In the e-contract the normative states are defined in the <szazemenc> elements enclosed
within the statement group. The model for a statement described detailed a condition
upon which the normative state will be activated (here on the 2 July 2001). The type
of the normative state is indicated by the <secat:coperator> element. The allowed

types are obligation, permission and prohibition. The statements has two role

elements <cbjeccrole> and <subseccacle>, Specifying that the holder of the obligation

is the Seller and the beneficiary of it is Buyer. The <ceaciine> and <sarction> elements
are optional and specify the deadline by which the normative state must be discharged
and the secondary obligation that will be activated in case of no performing.

<statementGroup>
<statement stacementlia="1">
<heading>Advance Notice</hezding
<deonticOperator type="0"/>
<gbjectRole roleNameRef="Seller"/>
<subjectRole roleNameRef="Buyer™/>

v

<condition exc="on{G2/07/2001}"/>
<action name="GiveldvanceNotice" performingRole="Seller">
<embodiment name="NotifyOfAdvancedShipment"
</action>
<dead]line exp="no"/>
<sanction statementIc="2"/>
</statement>

<statement sistementId=—"2">.

L
</statementCroup>

e &

Eiilii

g
|

!

Figure 3 — statement of obligation

Finally, this normative state definition requires the Se//er to perform contract action
GiveAdvanceNotice. Furthermore, because the parties will communicate through the
Internet, the contract action of giving advance notice will be carried out according to

an agreed collaboration pattern Nozify OfAdvancedShipment. The entire statement
defined above can be read as the following:

"On 2 July 2001 the Seller shall be obliged to the Buyer to see to it that Seller carries
out action GiveAdvanceNotice according to collaboration
NotifyOfAdvancedShipment.

The e-contract represented by the XML document is loaded into the contract platform
and processed. As a result of this processing a number of objects is created that are

Notify
ASN

pertinent to contract execution and monitoring. The obligation object registers with
the calendar and will become pending on 2 July. The enterprise entity (human or
automatic procedure) playing the Seller role will then decide whether to fulfil the
obligation or not. If it agrees the collaboration pattern Notify OfddvancedShipment
will be realised by an exchange of electronic messages.

The Execution and Monitoring framework is responsible for realizing this
collaboration, monitoring it and notifying other components about its state so that
when the collaboration completes the normative state of obligation can be discharged.

2.3 Collaboration

In the previous section, the idea of an electronic contract containing statements that
define commitment states concerned with action performance has been introduced. It
was mentioned that contracts are parameterised with roles allowing parties to bind to
them at run-time. In a similar fashion, actions that form a part of the commitment
state definition are parameterised by collaborations (recall the <erbodiment> element).

In order for an enterprise to effectively collaborate with any other entity there must
exist a shared set of collaboration templates. Furthermore, if collaborations are to be
carried over the Internet, they must be mapped onto the underlying IT infrastructure
resulting in standard message based protocols. A number of e-service initiatives in the
industry such as RosettaNet [Rosetta] or ebXML [ebXML] aim to address this issue.
These initiatives define public repositories that contain descriptions of collaborations
captured in a specification language. Typically the specification language is a form of
a collaboration diagram that details the roles taking part in the collaboration, the

names of the activities, the sequencing constraints as well as the data (often
represented as an XML document conforming to a given schema) passed between the
activities. We have found that most of the INCOTERMS contract actions can be
realized with the RosettaNet collaborations. Going back to the example from the
previous section contract action GiveddvanceNotice can be implemented with the
collaboration NotifyOfddvancedShipment (the actual name for this collaboration
according to RosettaNet classification is PIP3B2).

NotifyOfAdvancedShipment

: (PIP3B2)
Shipper Consignee

vancedShipmentNotice xsd
3 Process
AdvanoedShipmentNotiqudgxsd
. Acknowledge
A
S 2

 atatatatatat tatat Sl

Figure 4 —RosettaNet PIP3B2

The collaboration specification visualized informally above has a formal description
that can be serialized into XML. At the moment there is no industry wide standard for
collaboration descriptions and there are competing proposals from open consortia

such as RosettaNet or ebXML business process working group as well as IT vendors.

2.3.1 Collaboration implementation with business processes

The collaboration specification needs to be mapped onto a suitable implementation
system. Workflow systems are a natural choice because the workflow description
allows for role based task allocation and sequencing. Conseguently, the collaboration
specification can easily be transformed into process descriptions that can be enacted
by the workflow system. Such automated transformation has been proposed for the
HP Process Manager [Piccinelli 1999].

The result of such transformation is a set of process descriptions (one process for each
collaboration role). The process implements a swim-lane of the collaboration
specification as long as it meets the following criteria:
e It has work nodes that correspond to the activities in the collaboration
specification;
e The work node has an attachment containing the document that is valid
according to the required schema;
e The work node has a resource rule that will route the work the item to the
work list served by the program that interfaces with the messaging system.
The work node in the process description meeting the above criteria can be called a
public work node because it corresponds to the activity in the shared collaboration
description.
When the task associated with the public work node is progressed relevant data is
passed into the messaging application that formats a message and sends it to the
collaborating party.

Figure 5 — Example transformation

An example set of processes that meet the transformation criteria is shown above.
Notice that the process implementation of the collaboration specification can have
work-nodes that do not correspond to activities in the collaboration description and
are private to the enterprise. Alternatively, the process entirely consisting of public
work-nodes and be executed as a sub-process. The containing process still meets the

transformation criteria i.c., it can be considered an implementation of the relevant part
of the collaboration.

When the e-Contract is negotiated and a specific collaboration (such as
NotifyOfAdvancedShipment) is proposed, contract parties determine the collaboraion
roles they want to play and make an <excsizesz> entry in the XML representation of
contract. Assuming that the collaboration messaging protocol is standard each party
has to make sure that:

¢ they produce collaboration implementations for specific adaptors.

e the implementations are deployed into their IT systems.
These two steps can be accomplished using preferred vendor tools, but in the
prototype, the tools for the HP ProcessManager are used. After collaboration
implementation, a set of bindings between the collaboration for a given collaborative
role and the comesponding collaboration implementation is produced. This is shown
below as an XML file and a corresponding schema.

<Zxmul wversion="1.0" encoding=—"GrF-8"7>
<actionBindings sxmlns:xsi="nttp://www.w3.0rg/2000/10/0MLSchera-instance™
xsi:schemalocaticn="http://www.hp.can/zb
C:\Contract \src\test \ActionBinding .xsd™>
<binding name="NotifyOfadvancedShipment3inding” type="ProcessMznager™>
<action name="NotifyOfAdvancedShipment" performingRole="Consignee">
<processImplementation processGroup="Shigper"
processName="Noti fyOfidvancedShipment . Consignee"/>
</action>
</binding>
<binding name="NotifyOfAdvancedShirmentBSinding” type="ProcessManager™>
<action name="NotifyOfAdvancedShipment” performingRole="Shipger">
<processImplementaticn processGroup="Shipper"
processName="NotifyOfadvancedShipment.Shipper"/>
</action>
</binding>
</actionBindings>

Figure 6— process bindings captured in XML

The <oincing> element contains the binding name and indicates the type of the adaptor
that will enact implementation of the collaboration. Because implementations in the
prototype are processes, the type is Process Manager. The entry <action> specifies the
collaboration part name and <srocessimplerencarion> contains the details of the
collaboration implementation that the adaptor requires.

We have designed contract execution framework to be general and we left out a
possibility for collaboration implementations and adaptors other than business process
and the Process manager. Such implementations would have an adequate entry in the
bind'mgas mdmtedbyﬂle <javalmplessntation>.

When a contract is setup for execution the XML Binding file is read, bindings
relevant 1o the contract are loaded and the comresponding Binding object is made
persistent. When the adaptor receives a request to execute a part of the collaboration,
it uses the Binding object to identify comresponding implementation.

2.3.2 E-Confract considerations for collaboration implementations

In business, any collaborative interaction takes place within the context of the
contract. For commodity goods, usually one contract is signed that is parameterised
with respect to good type and -in conjunction with a trade confirmation document- is
valid for collaboration concerned with many goods instances. Contracts for complex
goods such as services are parameterised by service instances and therefore are valid
for collaborations concerned with specific service instance. In our prototype, we focus
on the second type of contracts.

Case Packet

ContractlD 223

StatementID 1

Role Seller
e Mode Send
S
x Corr. ProcessAdvanced
™| Activity ShippemntNotice

Figure 7 —case packet of Work Node

As a given enterprise will typically have a number of contracts with the business
partners within its IT infrastructure, there will be a number of instances of
collaborations running. Therefore, some sort of contract context has to be passed into
the collaboration instance so that the data received from the partners can be routed
into appropriate instance. In our prototype, we implemented collaborations with
business processes and therefore we pass the contract context (contractID,
statementID and contract role that is fulfilled by the party) into process instances.

The contract context is available within each public work node of the process that
implements the collaboration as shown in the figure above. Furthermore, we consider
that each public work node (as defined in section 2.3.1) has a case packet variable
mode that indicates whether the node is sending or receiving and a pointer
correspondingActivity that referenced corresponding collaborative activity.

The resource rule associated with this node routes the task to a Worklist that is served
by the messaging program upon its progression. The contract context allows
messaging application to extract data from the work item. It then queries contract
repository to obtain the electronic address of the contract party. Finally, it formats an
appropriate message and sends it using an agreed protocol such as Mic rosoft SOAP.

3 Requirements

The ideas described in previous chapters are crucial to the design of the contract
execution framework. Consequently, required features originating from those ideas
arise. Since the work carried out in the placement covers certain parts of the
framework, only the requirements and desired features belonging to that part are
shown below:

Collaboration:

As mentioned in the previous section, the collaboration specification needs to be
mapped onto an implementation system. Furthermore, certain actions such as sending
and receiving documents between entities require to be handled by the
implementation system. Since the HP Process Manager is the implementation system
of choice for the prototype, means to enable collaboration between instances of it had
to be found. Corresponding solutions are described in section 5.5.

Contract Compliance:

Contract execution can be considered as complying with the contract, if it meets the
collaboration specification. In order to perform compliance cleck. each entity requires
a monitoring component that collects appropriate data for the rules and tests that
determine if an obligation has been fulfilled or not. While evaluation of the collected
data leading to decisions is not carried out by the monitor, its task is crucial to the
core part of the framework that deals with decision making and scheduling on a
contract level. Issues related to monitoring are covered in section 5.4.

Visualization:

Having in mind that the prototype should allow visualizing the underlying ideas of
execution framework a graphical user interface has been proposed to address this
issue. After entering their party name, entities should be able to view their rights and
obligations as well as information according to monitoring and execution (section
5.6).

10

4 Design of Contract Execution Framework

Figure 8 — framework overview

Conceptually the contract frameworks consists of following blocks:
« Formation of contract
o Core functionality dealing with decision making and scheduling on the
contract level (the core block maintains state of commitments and decides if
they need to be fulfilled)
e Fulfilment dealing with fulfilling contractual obligations
The main idea is that the contract Statementcan be associated with a Binding. The
association is done by the Adapror, which is described detailed in Chapter 5.3.
Bindingsand Adaptors are specific to the InteractionController they interoperate. As
HP ProcessManager is used for the prototype, ProcessAdaptor and ProcessBinding
come to play
The work described in this paper concerns the execution and monitoring of a
contract, performed by the fulfilment part (shown in box 1 in Figure 8).
The fulfilment block (shown in Figure 9) current point of integration is the Scheduler
that invokes a execute method on the ExecutionManager when a Statement is to be
executed. Additionally the Scheduler exposes a notify method that can be called when
the Binding associated with the Srarement completes its execution.

The following sections describe briefly, how a Starement is associated and executed
within the fulfilment part.

11

. ExcostonManager @ |
= Adaplor
% 5 = .atapmTyee Smng ~adagnrAgapor
| -acaptors Hasrtaole Lonta F
-manager Sevubondanager -gtatesing 00000000 |
-BICACISE 3 AT3D0 = ~ieOiSeg:Bookan
~corfigured vaia ok - geazaone) Acagtur
~Exee 0 nolty +getfdagtixTne) Snng
~petACaiartype SN Agapinr +getianagen) Sxgculondanager .;:;—.m = plcr)vos
+sEndanagenimansger SEatons - 5 Smng
=eaeula(3 Stnemeny v sl - seSmtaists SYag voL
=not(d Bmcing)vaic al
~griAcaptorTypes(Varer J ? ?
v | orocessasapier | | Jomasatdagtor |
—_m'.— ~ereuisl Brdngivoid ~zmstgalt Enang v s
-Brdngs feve Lt Hasriacis Frocessfndng
wn:uﬂmr: :m:usﬂaum E——
-soreBnorgsTSuEmer s B +seProtessiamalprocessilame.
sipdaesBnerg(stSihament b Ba +gePrcessGroup] Stnag
Be ~130fned bosRan
«isRuUnnNg® Sandng) Sooiran i ~gaProtessNamald Stnng

Figure 9— fulfilment package class diagram

4.1 Creation of Adaptors

The ExecutionManager calls the configure method that creates instances of Adaptors.
It also sets a reference to itself so that later on the Adaptors can notify it of Binding

completion.
ExecutionManager | Processidaptor |
ExecutionManager ProcessAdaptor

|
|
configure(:void |
} setManager(Execulinn%anager)nraid
|

DjE:l |
| admamor(mamar)fvoid

I

|

|

|

l
l
[
I

Figure 10 —creation of Adaptor

The Adaptors are added to the hash-table that can be referenced by the adaptor type

(which is the class name of a specific Adaptor).

4.2 Creation of Bindings

The Binding to a contractual Statement can be created afier Adaptors have been
instantiated. Therefore, abstract Actions as specified in the contract have to be
mapped onto concrete Actions. Each Adapror can be queried for a list of possible

Bindings and performs the mapping. In case of ProcessAdaptor, Bindings are
identified by ProcessName and ProcessGroup. The Adaptor carries out the task of
resolving the action description into the action embodiment. When the contract is
loaded and a contract object model is constructed each statement in the contract can
be queried for the action declarations. These are passed to the Adapror that resolves
them into concrete embodiments represented by Bindings. ProcessAdaptor can
resolve complex actions into processes and simple actions into tasks. This activity
occurs during the preparation of contract for execution. When the Binding is created
by the Adaptor, its state is set 1o “unbound”™ and when the association is made it
becomes “bound and ready for execution™.

4.3 Execution of Statement

Scheduler ExecutionManager BindingRepository Binding Adaptor

| . é‘ |] |
execute(Statemenvoid . . 2 N
1 = lmmﬁmmmuﬂﬂglﬂ;m " " | |

] mtuletalnding)midl
notify(Binding)void ! \

™ |_ L[

—

updateBinding(Statement Binding).void

retrieveStatement{Binding) . Statement

i :

|
|
|
| |
| |
| |
| |
[|

Figure 11 - Creation of Bindings for Contract in the set-up phase

Execution of a contract Statement is determined by the Scheduler component of the
core. When the Statement is to be executed, the ExecutionManager is contacted and
queries the BindingRepository for the Binding associated with the Statement. It then
executes the Binding that its turn calls an appropriate Adaptor that executes it.

Because the execution of contractual obligations is typically long running the

notification about completion of the Binding to the ExecutionManager is
asynchronous. The ExecutionManager updates the state of the Binding in the
Repository and notifies the Scheduler.

When the bearer of commitment expressed by a Sratement intends to fulfil it he will
call the execute method on the ExecutionManager who will retrieve the appropriate
Binding and pass it to the Adaptor for execution. The Binding knows about the
Adaptor that can execute it and can delegate to it the execute method.

13

5 Use of Process Manager

As mentioned earlier Hewlett-Packard ProcessManager was chosen as
InteractionController for validation of contract framework design. Therefore Monitor.
ProcessAdaptorand ActivityMonitor have to be able to perform interaction with the
Process Manager. Process Manager provides three ways for programming-level
access: Perl package, COM API, Java API. Since Java is the language of choice for
the contract framework communication is done through Java APL

The Process Manager lacks functionalities that enable collaboration between multiple
parties. Hence, ways had to be found to simulate collaboration as discussed in section
2. Section 5.5 shows how collaboration is achieved.

5.1 Main Concepts

This section describes briefly the required steps to create and run a process with the
Hewlett-Packard Process Manager.

The application Process Definer offers functionalities for creation of Process
Definitions. It provides a graphical representation of the process as a flow diagram,
which consists of four different types of nodes:

Start Node
e Required to initiate the process
b— e [nitiator (a person or an application) feeds some data into the
process
Work Node

Represents a specific item of work

Ii ® A service is specified that will be called to carry out the work,

and the data will be pass to/from this service

Route Node
e Decision Point within the process
e AND/OR/NOT logic can be used
-

Expressed as [F statement

14

Complete Node

e Used to show where a process comes to a logical end
When the flow of the process reaches a complete node, it stops

Work Nodes carry out tasks that are determined by service descriptions. Services as
used in the Process Manager require specification of input and output data items as
well as Resource Rules. Actually, tasks are carried out by the Resource Rule, through
whom an abstraction of executor is achieved. More concretely, Resource Rules
specify Objects that are resolved into concrete person or application (e.g., through
database lookup). Data items can contain basic variable types like String, Integer,
Float, Boolean as well 2s complex types (e.g, word document) embodied by
attachments. [n addition, data items are determined by their scope, which is either
global meaning accessibility within the whole process or local with respect to a

specific node.

Data items can be defined in the graphical user interface of Process Definer, whereas
Resource Rules require specification in a proprietary script language.

After creation, the process definition needs to be checked in the process repository.
Thereby the process is stored in the repository under revision control. From then on,

the process is available in the Process Manager and can be deployed in order to make
it unnable. Figure 12 shows these steps.

Process "
Definer Changengine
(on your PC) Server
[
» [
s 0\ Process
£ Repository
cepp File {~repasitory}
I Check-in . POL
{XML)
The process definition Process
5 now under ravision
control Engine
Deploy
The process can
nowy be run!

Figure 12— check-in and deployment of process

5.2 Java API

Clients can communicate with the Process Manager in two different ways. The first
way is to connect to the web server via TCP/IP (usually on port 80), which forwards
requests to the Worklist Server through CGI. The disadvantage of this approach
results from the dependency on the speed of the web server. Since standard access for
clients to a web server is "connectionless" - meaning that the client establishes and re-
establishes the connection with the server on each request— it is not suitable for

The second way of communication uses the API Server that is part of the Worklist
Server. It keeps the HT TP connection (port 9123) open so communication is not
constantly slowed by reconnection times. Figure 13 illustrates these two connection
schemes.

HTTPICaAP |A
—»

P Application
(Port 80 |
work Lists /
- (2]
%u workist | ©©! A
Server [APL | HTTF/CeAP _ P Applieation
v 1 (Port 9123) ‘

Figure 13— API communication schemes

The Worklist Server maintains several Work Lists, which contain Work Items. Work
Lists represent Resource Rules in a way that Work Nodes specified in the process can
result in Work Items being dispatched between Work Lists. For instance, tasks that
the Admin has to carry out appear in his Work List as shown in Figure 14.

Work Items Work Lists

Admin <>

Worklist
- S]ﬁ_p]gr “—> Server

A <>

Figure 14— Process Manager architecture

16

The structure of the Java API classes reflects the architecture of the Process Manager
in maintaining the dependency between Work Lists and Work Items. Firstly, a session
has to be established in order provide the context for the current logon. After that,

Work Lists can be accessed and Work Items contained in them modified. Data Items
of Work Items are treated as fields within Work Items. Only complex data items,
encapsulated in Attachments, are represented in the Process Manager class model,
which is shown in Figure 15.

Session

1

x

WorkList

1

x

Workltem

1

*

Attachment

Figure 15— Java API overview

From a functional point of view Java API provides following features:
s Start Process
e Pass Data to Work [tem
e Read Data from the Work Item

But Components of the framework that interact with the Process Manager require
certain that cannot be accomplished with the Java API:

e History of execution

e Process Completion

» Temporal Information

Nevertheless, solutions have been found to achieve the desired functionality without
using Java API. These solutions are detailed in chapter 5.4.

5.3 Design of the Adaptor

The ProcessAdaptor carries out the task of enabling interaction between the
framework and the Process Manager. Thus, it is in control of all contract related data
on the level of process instances/names/groups. This property led to the idea of
integrating parts of the monitoring -concretely process monitoring- in the
ProcessAdaptor. As a result, Monitor has only to deal with Binding and retrieves its
actual state through interrogation of ProcessAdaptor that maintains the process level
data. Concepts related to monitoring are discussed in section 5.4. An UML class

da gram representation of the ProcessAdaptor is shown in Figure 16.

At initialisation, ProcessAdapior establishes a session with the Process Manager,
which is held open until destruction of ProcessAdaptor object. As described in chapter
4.3, when ExecutionManager intends to execute Statement it resolves the
comesponding Binding and invokes the execute method of the appropriate Adaptor. In
case of ProcessAdaptor, the Binding is cast to ProcessBinding, which contains
process specific information like process group/name. This allows ProcessAdaptor ©
invoke the startProcess{processGroup, processName) method, which intemally uses
methods supplied by the Java API to start the process and to determine process
instance ID. Furthermore, ProcessAdaptor passes contract context information to the
process (i.e., Contract ID) that is stored in global variables and therefore available
within the whole process. The process instance ID is stored in the appropriate
ProcessBinding and later on required to perform process monitoring.

Processidaptor
-mySession:Session
-oracleConnecton:Connection
#newline:String="n"
-wi¥¥orkitem
-wiWorkList
-processinstancelD:Sinng="
-rsetResultSet
-stmtStatement
-cacheProcessCache

+ProcessAdaptor(
+makeBinding{aAction,p:Partylnfo) Collection
+execute(binding Binding) void
-establishSession{username:String, password Str
+disconnectSession{void
+startProcess(processGroup String,processNami
+monitorBinding(binding Binding):String
-jdbeCannect(-void

-handleWlException(e WIExcegtion) void

2|
Figure 16— ProcessAdaptor class diagram

In addition, Adaptor carries out the task of mapping the action description onto the
action embodiment. When the contract is loaded and a contract object model is
constructed each statement in the contract can be queried for the action declarations.
These are passed to the Adaptor that resolves them into concrete embodiments
represented by Bindings. More concretely, ProcessAdaptor resolves complex actions
into processes and simple actions info tasks. This activity occurs during the

preparation of contract for execution.

18

The resolution of an action depends on the contract party and so in addition to Action
declaration the PartyInformation is passed as argument to the make Binding method.

5.4 Monitoring

The contract defines states of obligation that are agreed between parties and should be
adhered to. These states of obligation will be discharged when prescribed conditions
hold. As collaborating parties are only in charge of contract fulfilment with respect to
a party based projection of the contract, they desire to perform validation against
contract interaction description. Therefore, each party requires to have monitor
componert that provides data for the rules and tests that determine if an obligation has
been fulfilled or not (recall requirement contract compliance). Components such as

Decision Maker that actually evaluate data provided by the Monitor are located in the

core part of the contract framework. In order to feed these components with
appropriate data Monitor needs to observe:

» State of process, which can be started, stopped, suspended or completed
¢ Tasks (Activities) and data items, especially when they have been sent out,
-received

Although the web-based user interface of the Process Manager allows having a look
at the current process state as well as temporal information about tasks, corresponding
functionalities are not obtainable through the existing Java API. Therefore, custom
ways had to be found to realize process and activity monitoring.

5.41 Process Monitoring

Process monitoring is based on the Process Manager’s internal directly realisation of
process logging. More concretely, process relevant data is obtained from an Oracle
database in which the Process Manager stores logging information. Investigations of

how the web-based graphical user interface builds pages containing process
information have revealed the tables holding the required data.

Binding
Repository

E

Process Manager

1]} oo

Monitor

delegates
Figure 17 —process monitoring
As mentioned in the previous section, we interaction with the Process Manager is
delegated to ProcessAdapior. The Monitor queries BindingRepository seeking
Bindings which state equals “executing”. All matching Bindings are passed to

19

ProcessAdaptor, which retrieves process information (i.e., process instance ID) from
ProcessBinding (typecast required) allowing it to construct appropriate queries against
database. This monitoring routine & restarted regularly and is illustrated in Figure 17.
Methods required for communicating with the Oracle Database are delivered by the
Oracle JDBC driver.

If Binding completes, Monitor updates information in the Repository, where data is
filed according to the contract context. Consequently, the completed Binding is not
included in the next run of monitor thread.

5.4.2 Activity Monitoring

Ideally, the Monitor should be carrying out passive monitoring (i.e., the controller
passes rele vant information to the monitor according to 2 monitoring description) but
due to the limitations of the current Process Manager, active monitoring (by polling
relevant work-lists in the Worklist Server) is used. While passive monitoring allows
registering to certain events (i.e., Activity Y completed) that Interaction Controller
fires, active monitoring requires knowledge about interaction description to determine
Work Lists to poll. Figure 18 shows active monitoring with the Pracess Manager.

Figure 18 —active monitoring overview

In order to be able to perform activity (task) level monitoring we route the tasks that
we want to monitor to the Auto work-list that is observed by the ActivityMonitor
component. After gathering the monitoring information for the activity, the monitor
progresses the task to allow process progression. Thus, access to data items is granted
as well as exact temporal information. Furthermore, data items relevant 1o discharge
of the state of Obligation can be filed in a repository, which can be of use for
components that determine if an obligation has been fulfilled or not. Figure 19 depicts
active monitoring in context of the Process Manager.

Figure 19 —active monitoring with Auto Worklist

5.5 Simulation of Process execution

Components being introduced in previous sections are shown in context of process
execution. In order to simulate business interaction with the Process Manager,
Interaction description expressing the collaborative workflow needs to be translated in
process descriptions (recall requirement collaboration).

Figure 20 shows the process descriptions involving participants shipper (left side) and
consignee.

lzfylehcvan: esSnipment Shippe HettrDiAdiarjcadShmmant Skt tyUndadeanc e hipimesd Canbgras Fron e e

Figure 20 —process representation of collaboration

As described in Figure 20, collaborative workflow contains documents send between
parties. For nstance, Shipper needs to give Advanced Shipment Notice seven days
before actual shipment takes place. Ideally, the Process Managers of each party would
handle communication among each other, but due to limitations of current version we
had to find custom way. Seeing that setting up communication between different
instances of the Process Manager is time consuming and would require technologies
like Java Messaging Service, a single installation is used to achieve collaboration.
Similar to the scheme introduced by active monitoring, tasks are routed to the Auro

Work List. ActivityMonitoris in control of Work Items in the Auro Work List,
consequently we added methods to it that simulate the interaction. Behaviour of
ActivityMonitor is subject to role it has been assigned, therefore two ActivityMonitors
are required in the scenario.

Figure 21 shows workflow of an ActivityMonitor playing role shipper in flow diagram
notation. Firstly, it evaluates case packets of a Send Work Items appearing in the Aufo
Work List (recall section 2.3.2). If ContractID, StatementID, and Role match with the
values ActivityMonitor has been initialised, it enters Send Mode and tries 1o find the
corresponding Receive Work Item (belongs to Consignee process) indicated by the
correspondingActivity case packet variable. If described conditions are hold the
Antachmentcontzaining AdvancedShipmentNotice is set in the Receive Work Item and
the Send Work Items is progressed. This leads the ActivityMonitor to switch to
Receive Mode awaiting the Receive Work Item belonging to the Shipper process to
appear. Only if the Receive Work ltem contains the appropriate Attachment
(AdvancedShipmentNoticeAck) and case packet variables (ContractID, StatementID,
and Role) it is progressed and in so doing the process finished. The ActivityMonitor
playing role Consignee operates in a similar way, following description of the

Consignee process. Consequently, Receive Mode is progressed previous to Send

Mode.

As the result correct execution of collaborative process is guaranteed, although

undergoing less flexibility.

m"p for » gethext Node Role==myRole? True -»{ Enter Send Mode
False getNext
False

Figure 21— workflow of activity monitor Shipper

5.6 Visualization of Contract Execution

In chapter 3, it has been mentioned that the prototype should allow visualisation of
contract framework ideas. Therefore, we created a graphical user interface that allows
visualizing simulation of process execution. Figure 22 shows a screenshot of the
running GUL

: 8
F-ﬁ-dg—lshm-huuunlh
malbes aedme

e hent il = centinmily with S
wdﬂv-lq:n-ﬂ-tdm
The

(@ Frranitn at Grigrs

Ao 10 B D 0 *) Bovvensemiint [[Sas Yl AT Sello. (e
Figure 22— screenshot of graphical user interface

For simulating execution of contract the GUI is started by each party, in our Scenario
namely Hewlett-Packard and British-Library. A file chooser allows user to select the

electronic contract expressed as an XML file he wants to execute. The Contract is
loaded by the ContractLoader and object model associated with it is constructed.

Based on the party information, windows are populated and statements are executed.
Functionality of different windows and information they provide is shown below.

My Contracts
All loaded Contracts are shown in a tree view, where contract nodes contain
statements associated with as sub nodes.

My Obligations
When user selects contract in My Contracts Window obligations of the actual party
resulting from the contract are displayed.

My Rights
When user selects contract in My Contracts Window rights of the actual party

resulting from the contract are displayed.

Statement
Textual representation of the statement as specified in the contract is given when user
selects statement node in the My Contracts window.

Process Binding

Information about a ProcessBinding, associated with the statement that is selected in
the My Contracts window, is given. Information contains Process Group, process
name and current state of ProcessBinding. Additionally, by clicking the Track
Process button an Internet page that shows current progression of process is opened in
browser. The page is supplied by the Process Manager and shows actual progress of
process execution by displaying completed Work Nodes in a different colour.

5.7 Recommendation and Desired Features

From the work with the HP Process Manager, we discovered desired features meeting
needs of execution framework:

Dynamic processes deployment:

As mentioned in chapter 2.3.1, generation of processes implementing collaboration
can be achieved by transformation tools. Given that, one would like to deploy the
generated processes programmatically. Combining these two methods, an agreed
collaboration could be automatically progressed to set of ProcessBindings.

Programmatic process management:

It is described in chapter 5.4.2 that passive monitoring is the preferred method but is
not supported by current version of Process Manager. This could be realized by

adding API methods that allow receiving events related to process/activity/case packet
and variables lifecycle.

Intra Process Manager communication:

Execution of Contract involves actions like sending and receiving documents. This
results in data exchange among Process Manager instances of participating entities.
Ideally, Process Manager would provide a proprietary protocol handling
communication. Because exchange is most likely carried over the Internet, secure
communication needs to be supported.

6 References

[ECS 2000] Boulmakoul A, Bartolini C., Morciniec M., 2000, “Electronic Contract

Specification™, HP Labs Bristol

[Ibbotson J., Sachs M., 1999] Ibbotson J. Sachs M. 1999, “Electronic Trading

Partner Agreement for E-Commerce”, IBM Corporation.

[Marshall, 1999] Marshall C.. “Enterprise Modelling with UML", Addison Wesley

1999.

[ebXML] Electronic Business XML initiative, http//www.ebXML.org/

[RosettaNet] RosettaNet Consortium, http://www.rosettanet.org

[Daskalopulu 2000], Daskalopulu A_, 2000, “Modelling LegalContracts as

Processes™, Legal Information Systems Applications, 11th Intemational Conference

and Workshop on Database and Expert Systems Applications, IEEE C. S. Press, pp.

1074-107

[Norman 2000] Norman T., Reed C., “Delegation and responsibility”, in Proceedings

of the Seventh Intemational Workshop on Agent Theories, Architectures and

Languages.

[Ramberg 2000] Ramberg J., 2000, “ICC Guide to Incoterms 2000”, International

Chamber of Commerce.

[Piccinelli 1999] Piccinelli G., 1999, “A process decomposition technique for

distributed workflow management” in Proceedings of the 2 IFIP WG 6.1

International Working Conference on Distributed Applications and Interoperable

Systems (DAIS).

[SOAP 2000] World Wide Web Consortium, 2000, “SOAP Version 1.2,
http://www.w3.0rg/TR/2001/WD-soap12-20010709/

7

