
 1

DELI: A DElivery context LIbrary for CC/PP and
UAProf
Mark H. Butler
marbut@hplb.hpl.hp.com
External Technical Report HPL-2001-260
25/09/2001

Abstract
Different web-enabled devices have different input, output, hardware, software,
network and browser capabilities. In order for a web server or web-based application
to provide optimized content to different clients it requires a description of the
capabilities of the client known as the delivery context. Recently two new compatible
standards have been created for describing delivery context: Composite Capabilities /
Preferences Profile (CC/PP) created by the W3C and User Agent Profile (UAProf)
created by the WAP Forum. DELI is an open-source library developed at HP Labs
that allows Java servlets to resolve HTTP requests containing delivery context
information from CC/PP or UAProf capable devices and query the resolved profile. It
also provides support for legacy devices so that the proprietary delivery context
descriptions currently used by applications can be replaced by standardised CC/PP
descriptions.

Keywords
Device Independence, Composite Capabilities / Preferences Profile (CC/PP),
Resource Description Framework (RDF), Wireless Access Protocol (WAP), User
Agent Profile (UAProf)

 2

1 Introduction
Different web-enabled devices have different input, output, hardware, software,
network and browser capabilities. In order for a web server or web-based application
to provide optimized content to different clients it requires a description of the client
capabilities. Recently two new compatible standards have been created for describing
delivery context based on the Resource Description Framework (RDF)1: Composite
Capabilities / Preferences Profile (CC/PP) 2 created by the W3C and User Agent
Profile (UAProf) created by the WAP Forum3.

One of the design aims of these standards was the efficient delivery of delivery
context to the server even via low bandwidth wireless networks. This is achieved by
the use of profile references and profile differences that work as follows: instead of
sending an entire profile with every request a client only sends a reference to a profile,
stored on a third device known as a profile repository, along with a list of overrides
specific to this particular client. The process of interpreting the profile references and
differences is known as profile resolution .

DELI is an open-source library developed at HP Labs that allows Java servlets to
resolve HTTP requests containing CC/PP or UAProf information and query the
resolved profile. This report describes how programmers can create delivery context-
aware servlets using DELI. It also details some observations made during
implemention and discusses their implications for CC/PP. The DELI library and
accompanying test-harnesses discussed here are available open-source. To obtain a
copy of the DELI source code, please refer to the DELI web-site4.

2 RDF, CC/PP and UAProf

2.1 RDF
The Resource Description Framework (RDF) is the W3C foundation for processing
metadata i.e. information about information. It aims to provide interoperability
between applications that exchange machine-understandable information on the Web.
RDF is currently described in two documents: the RDF Model and Syntax
Specification5 and RDF Schema Specification 1.06.

Essentially RDF models consist of a collection of statements about resources. A
resource is anything named by a URI plus an optional anchor ID e.g. in
http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#HardwarePlatform
the URI is everying before the hash and the anchor ID is everying after the hash. An
RDF statement comprises of a specific resource together with a named property plus
the value of that property for that resource. These three individual parts of a statement
are called, respectively, the subject, the predicate, and the object. The object of a
statement can be another resource or it can be a literal i.e. a simple string or other
primitive datatype defined by XML. An RDF statement is shown in Figure 1.

Subject Object

predicate

Figure 1 - A Statement in RDF

 3

RDF can be serialized using XML; CC/PP and UAProf profiles are normally written
in this form. However viewing profiles in serialized form is deceptive as the
underlying RDF model has a tree structure. In order to better understand this, it is
suggested that the reader investigates the W3C RDF Validation Service7. For example
try taking the profile in the UAProf specification (DELI_ROOT\profiles\test01.rdf in
the DELI distribution) and process it using the W3C Validation service.

It is important to note there are many possible serialisations of a single RDF model.
This means that parsing RDF models written in the XML serialisation requires
additional processing beyond that provided by an XML parser. Fortunately there are a
number of RDF frameworks now available that automatically take XML serialisations
of RDF and construct an RDF model. DELI currently uses Jena8, an RDF Framework
developed at HP Labs. For more details of using Jena to process RDF see Brian
McBride’s paper on Jena9 and the HP Labs Semantic Web activity homepage10.

2.2 CC/PP
A CC/PP profile is a description of device capabilities and user preferences that can
be used to guide the adaptation of content presented to that device. CC/PP is
described in three documents: CC/PP Structure and Vocabularies11, CC/PP
Requirements and Architecture12 and CC/PP Terminology and Abbreviations13. A
proposed (and largely deprecated) protocol for CC/PP is described in two documents:
CC/PP exchange protocol using HTTP extension framework14 and Content
Negotiation Header in HTTP Scenarios15. The protocol work has been deprecated
because the CC/PP Working Group was not chartered by the W3C to do protocol
work. However these documents formed the basis for the UAProf protocol work to be
discussed in the next section.

A CC/PP profile is broadly constructed as a two level hierarchy: a profile has a
number of components and each component has a number of attributes. The attributes
of a component may be included directly in a profile document, or may be specified
by reference to a default profile that may be stored separately and accessed via a
URL. CC/PP distinguishes between default and non-default values attributes such that
non-default values always takes precedence.

Although a CC/PP profile is a two level hierarchy, it is commonly represented using
an XML serialisation of an RDF model. Crucially the underlying RDF model
describing a profile is more complicated than a two level hierarchy. This can be
demonstrated by processing a profile using the W3C RDF validation service
referenced in the previous section. Some examples of these complexities are as
follows: Firstly simply giving a component a standard name (e.g. HardwarePlatform)
is not sufficient to distinguish it as a particular component. In addition it must have an
rdf:type property that indicates it is an instance of a particular component type in a
particular namespace as shown in Figure 2.

online:
#MyDeviceProfile

online:
#Hardware

prf:
#Hardw arePlatform

rdf:type

prf:component

Figure 2 - Using rdf:type to identify components

 4

Secondly default values are represented by a component containing a second
component referenced via a ccpp:Defaults property as shown in Figure 3. Note this
Figure shows a profile with multiple values for the same attribute. Using the
resolution rules, SoundOutputCapable will be resolved to No.

Thirdly complex (multiple-value) attributes are represented by an RDF construct
known as an anonymous node. The anonymous node has an associated rdf:type
property that indicates whether it is an unordered (Bag) list or an ordered (Seq) list. It
also possesses several numbered properties that point to the multiple attribute values
as shown in Figure 4.

online:
#Software

online:
#MyDeviceProfile

uaprof
#SoftwarePlatform

EN FR

uaprof:component

uaprof:CcppAccept-Language

ES

rdf:type

rdf:Seq
rdf:type

rdf:_1 rdf:_2 rdf:_3

Figure 4 -Using anonymous nodes in containers

online:
#Hardware

online:
#HardwareDefault

online:
#MyDeviceProfile

online:
#Hardware2

uaprof
#HardwarePlatform

Yes

No

uaprof:component uaprof:component

uaprof:default rdf:type

uaprof:SoundOutputCapable

uaprof:SoundOutputCapable

rdf:type

rdf:type

Figure 3 - using defaults and components

 5

As an approved protocol does not yet exist for CC/PP, it has not been possible to
implement a CC/PP protocol in DELI. However the DELI architecture has been
designed so that it will be easy to add such a protocol in the future. In addition DELI
was designed specifically so it can process many different CC/PP vocabularies. This
is essential as CC/PP does not propose any vocabularies for describing device
capabilities instead only providing an underlying structure for such vocabularies.

2.3 UAProf
The UAProf specification16 is based on the CC/PP specification. Like CC/PP, a
UAProf profile is a two level hierarchy composed of components and attributes.
Unlike CC/PP, the UAProf specification also proposes a vocabulary – a specific set of
components and attributes – to describe the next generation of WAP phones.

The specification also describes two protocols for transmitting the profile from the
client to the server. Currently DELI only supports one of the UAProf protocols. This
is because the other UAProf protocol, based on HTTPex and WSP, is intended to be
used for client to gateway communication rather than client to server communication.
DELI attempts to provide server rather than gateway support so this protocol is
beyond the scope of the current implementation. In addition UAProf can also be used
when documents are “pushed” from the server to the client without the client issuing a
request. DELI does not support the push environment at present. Finally the UAProf
specification describes a binary encoding of UAProf profiles. Binary encoding and
decoding of profiles is typically performed by the gateway so this is also beyond the
scope of DELI.

2.3.1 UAProf Profiles
Currently profiles using the UAProf vocabulary consist of six components:
HardwarePlatform, SoftwarePlatform, NetworkCharacteristics, BrowserUA,
WapCharacteristics and PushCharacteristics. These components contain attributes.
In DELI each attribute has a distinct name and has an associated collection type,
attribute type and resolution rule. In UAProf there are three collection types:

• Simple contains a single value e.g. ColorCapable in HardwarePlatform. Note
the UAProf specification does not give a name to single value attributes so the
term Simple has been adopted from the CC/PP specification.

• Bag contains multiple unordered values e.g. BluetoothProfile in the
HardwarePlatform component.

• Seq contains multiple ordered values e.g. Ccpp-AcceptLanguage in the
SoftwarePlatform component.

In addition attributes can have one of four attribute types:

• String e.g. BrowserName in BrowserUA.
• Boolean e.g. ColorCapable in HardwarePlatform.
• Number is a positive integer e.g. BitsPerPixel in HardwarePlatform.
• Dimension is a pair of positive integers e.g. ScreenSize in HardwarePlatform.

Finally attributes are associated with a resolution rule:

• Locked indicates the final value of an attribute is the first occurrence of the
attribute outside the default description block.

 6

• Override indicates the final value of an attribute is the last occurrence of the
attribute outside the default description block.

• Append indicates the final value of the attribute is the list of all occurrences of
the attribute outside the default description block.

In DELI the UAProf vocabulary is described using the file uaprofspec.xml found in
the config directory. This describes the attribute name, component, collectionType,
attributeType and resolution rule of each component. The vocabulary description file
has the following format:

<?xml version="1.0"?>
<vocabspec>
 <attribute>
 <name>CcppAccept</name>
 <component>SoftwarePlatform</component>
 <collectionType>Bag</collectionType>
 <attributeType>Literal</attributeType>
 <resolution>Append</resolution>
 </attribute>
 …
</vocabspec>

2.3.2 UAProf W-HTTP Protocol
As mentioned previously DELI only implements one of the UAProf protocols:
transport via W-HTTP (Wireless profiled HTTP). An example W-HTTP request using
this protocol is shown below:

GET /ccpp/html/ HTTP/1.1
Host: localhost
x-wap-profile:"http://127.0.0.1:8080/ccpp/profiles/test09defaults.rdf",

"1-Rb0sq/nuUFQU75vAjKyiHw=="
x-wap-profile-diff:1;<?xml version="1.0"?>
 <RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">
 <rdf:Description ID="MyDeviceProfile">
 <prf:component>
 <rdf:Description ID="HardwarePlatform">
 <rdf:type
 resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20010426#HardwarePlatform"/>
 <prf:BitsPerPixel>16</prf:BitsPerPixel>

</rdf:Description>
 </prf:component>
 </rdf:Description>
 </RDF>

The first two lines of this request are standard HTTP and describe the resource that is
being requested by the client, http://localhost/ccpp/html, and the method being
used to make the request, GET, and the protocol being used HTTP/1.1. The remaining
lines of the request describe the device delivery context. This is specified using a
profile reference and a profile-diff. The profile is referenced via the x-wap-profile
line and has the URI

http://127.0.0.1:8080/ccpp/profiles/test09defaults.rdf.

After the profile reference, there is a value 1-Rb0sq/nuUFQU75vAjKyiHw== known as a
profile-diff digest. The first part of the profile-diff-digest, 1-, is the profile-diff

 7

sequence number. This is used to indic ate the order of the profile-diffs and to indicate
which profile-diff the profile-diff digest refers to. The remainder of the profile -diff
digest is generated by applying the MD5 message digest algorithm17 and Base64
algorithm18 to the corresponding profile -diff. The MD5 algorithm takes as input a
message of arbitary length and produces as output a 128-bit “fingerprint” or
“message-digest” of the input. The Base64 algorithm takes as input arbitary binary
data and produces as output printable encoding data.

After the profile -diff digest, the next line contains the x-wap-profile-diff. This
request header field also has a profile-diff sequence number which indicates the
processing order and that this profile-diff corresponds to the previous profile-diff-
digest. The profile-diff itself consists of the XML fragment which spans the
remainder of the request. Multi-line request header fields are permitted by the
HTTP/1.1 specification19 as long as each subsequent line starts with either a tab
character or a whitespace. Note not all servlet engines, for example early versions of
Tomcat, fully support the HTTP/1.1 specification so may not allow multi-line request
header fields.

In addition to x-wap-profile and x-wap-profile-diff W-HTTP protocol adds a third
extension header primarily used in responses. This header, x-wap-profile-warning
indicates whether the server has used the UAProf information when generating the
response. This can take five possible values: not applied, content selection
applied, content generation applied, transformation applied and not supported.

2.3.3 Profile Resolution
When the server receives a HTTP request with UAProf request headers, it has to
perform profile resolution i.e. retrieve the referenced profile(s) and any further
profiles referenced via default blocks. It then has to merge these profiles and the
profile-diffs while applying the UAProf resolution rules.

DELI performs profile resolution by processing all profiles and profile-diffs in the
following order: firstly it processes all referenced profiles in the order they are present
in the x-wap-profile request header. If a referenced profile references an external
default profile then that is included where it is referenced. It then processes all the
profile-diffs. This profile processing operation involves building an RDF model for
each profile or profile-diff and then extracting a list of attributes from the model. Each
attribute is associated with an attribute name, an attribute type, a collection type, a
resolution rule and either one or more default values or one or more non-default
values. These attributes are then appended together in the order indicated.

After DELI has produced the vector of profile attributes, profile merging is performed
which involves taking each attribute in order from the list and placing it at a specific
position in an array determined by the attribute name. If a collision occurs i.e. an
attribute is already present in the array then the two attribute values are merged using
the following rules:

• If the colliding attribute contains one or more default values it is ignored, as
non-defaults always override defaults and a default takes the value of the first
default value (or set of default values) encountered.

 8

• If the colliding attribute contains one or more non-default values and the
original attribute only contains one or more default values, then the colliding
attribute overrides the original attribute.

• If the colliding attribute and the original attribute both contain non-default
values, then the resolution rules are used. If the attribute resolution rule is
Locked then non-default values cannot be subsequently overridden. If the
attribute resolution rule is Override then non-default values can be
subsequently overridden. If the attribute resolution rule is Append then all the
non-default values are appended together.

Note that this algorithm does not perform merging in the RDF domain, rather it
performs merging after the attributes have been retrieved from the RDF domain. A
discussion of why this approach was adopted can be found in the section entitled
“Observations”.

2.4 Content Selection, Generation and Transformation
Neither the UAProf nor the CC/PP specifications consider how the profile should
select, generate or transform content based on the resolved profile. An extensive
discussion of this topic is beyond the scope of this report so the reader is instead
referred to previous technical reports by the author discussing content transformation
by XML / XSLT publishing frameworks20, content generation using constraint
optimisation and content negotiation21.

DELI also currently provides no support for content selection, generation or
transformation. Instead it is proposed that DELI should be integrated with existing
applications that transform content for clients based on the user agent string. For
example DELI could be incorporated in the Apache Cocoon Framework22 in a number
of ways: either the sitemap could be extended to make use of conditionals that
reference profile attributes or the XSLT processor could make attributes available via
parameters to XSLT stylesheets. DELI also provides support for legacy devices as it
provides a database that can translate user-agent strings to profile references. This
could be used to replace the proprietary device capability database used in Cocoon
with a database based on UAProf or CC/PP. Other frameworks such as Apache
Jetspeed23 or Apache Struts24 could be adapted in a similar way. Future work will
investigate how DELI can be used to support device independence.

3 Installing DELI
In order to install DELI and run the test servlets, you will need a Java installation
along with a Java Servlet engine that can accept WAR files such as Apache Tomcat
425 or Mortbay Jetty26. In addition if you wish to do any development or customising
of DELI you will need Apache ANT27. By default DELI supports the Nokia WAP
Toolkit 2.1 (and higher) and Microsoft Internet Explorer as legacy devices so it may
be helpful to have access to one of these.

Installation of the DELI test servlet is easy. Once you have confirmed your Java
Servlet engine is working correctly, unzip the DELI distribution file to the directory
DELI_ROOT. Copy the file DELI_ROOT\warfiles\ccpp.war into the webapps directory of
the Servlet engine. For example if you installed Tomcat in c:\apps32\tomcat then you
need to copy ccpp.war to c:\apps32\tomcat\webapps\ccpp.war. Start the servlet

 9

engine and use Internet Explorer to check the DELI installation is working. If you
type the following address into MSIE

http://localhost:8080/ccpp/html/

then the browser should display the contents of the profile profiles\msie.rdf in the
DELI distribution. In addition by default DELI will output debugging information to
the Servlet engine console. Alternatively if you start the Nokia WAP toolkit, select
the Nokia concept phone, and then try to retrieve the following address

http://localhost:8080/ccpp/wml/

then the browser should display the contents of the profile profiles\test01.rdf in the
DELI distribution (note this may not be a profile for a Nokia phone). Alternatively
you can try sending some real UAProf requests to the server. To do this, you need to
add various files to your classpath. Edit the file setpath.bat in the DELI_ROOT
directory and make sure the DELI and TOMCAT environment variables are set correctly.
Then run setpath.bat at the command line (note setpath.bat is Microsoft specific –
for UNIX machines you may have to adapt this file). Then type

java TestCCPPClient http://127.0.0.1:8080/ccpp/profiles/test09defaults.rdf
profiles/test09.rdf output.html

which sends a HTTP request to the server with a profile reference
http://127.0.0.1:8080/ccpp/profiles/test09defaults.rdf and uses the file
profiles/test09.rdf as a profile-diff. When it receives a response from the server it
stores it in output.html. To view the server response open output.html in a web
browser. For more details of running and testing DELI, see the Section 9.

3.1 Configuring Legacy Devices
It is easy to configure DELI to recognise legacy devices via user-agent strings. User-
agent strings are used by web clients to identify themselves when they send requests
to web servers. This is done primarily for statistical purposes and the tracing of
protocol violations but does support the automated recognition of user agents. For
example early Netscape products generate user-agent strings that look like this:

User-agent: Mozilla/4.04 (X11; I; SunOS 5.4 sun4m)

Where the user agent string has the following syntax:

Browser / version(platform ; security-level; OS-or-CPU description)

The legacy device configuration file maps user-agent strings on to profile references
on a profile repository. In the test applications this is done by the
DELI_ROOT\config\legacyDevice.xml file, although it is possible to select a different
file via the DELI configuration. The legacy device configuration file has the
following format:

 10

<?xml version="1.0"?>
<devices>
 <legacyDevice>
 <useragentstring>MSIE 5.01</useragentstring>

 <profileref>http://localhost:8080/ccpp/profiles/msie.rdf</profileref>
 </legacyDevice>
</devices>

Where useragentstring is a device unique string found in the user-agent string of the
device and profileref is a URL for the appropriate profile on a profile repository.
Note typically part of the user-agent string is used rather than the entire string. This is
done to avoid problems due to cloaking and browser customisation.

Cloaking is when a device or browser (e.g. Microsoft Internet Explorer) claims to be
another browser (e.g. Mozilla) in order to ensure web servers will send it the correct
content. Browser customisation is when the device manufacturer or the owner can
change the user-agent string to add the company name. This means identical browsers
may not have the same user agent string. In order to avoid confusion caused by
cloaking and customisation it is necessary to think carefully about how much of the
user-agent string to use and the order of legacy devices in the legacy device file. For
example when creating a legacy device file it is a good idea to have an Internet
Explorer legacy device before a Netscape legacy device as they both contain the user
agent string Mozilla, but Internet Explorer will also contain the user agent string
MSIE so it is possible to identify IE first.

3.2 Rebuilding DELI
If you change any of the files e.g. configuration files or need to alter any of the source
files it is necessary to rebuild the DELI web archive (WAR) file. In order to do this,
just change to the DELI_ROOT directory. Edit the file build.xml and ensure that the
parameter servletjar points to the file servlet.jar in your servlet engine
installation. Then to build the web archive, type ant at the command line. This takes
the file build.xml which builds the WAR file. Then to redeploy DELI you need to
stop your Servlet engine, delete the ccpp directory in the webapps directory then copy
the new ccpp.war file to the webapps directory. Now restart the Servlet engine.

4 Workspaces
DELI uses the concept of workspaces that are configured to interpret profiles that use
a certain vocabulary, a certain set of resolution rules and requests that use a certain
variant of HTTP. In addition the workspace contains a cache of referenced profiles,
information about the vocabulary in use and the legacy device database. A workspace
is created using a configuration file such as DELI_ROOT\config\deliConfig.xml or
DELI_ROOT\config\deliServletConfig.xml. The file is written in XML in the
following format:

<?xml version="1.0"?>
<deli>
 <legacyDeviceFile>webapps/ccpp/config/legacyDevice.xml</legacyDeviceFile>
 <vocabularyFile>webapps/ccpp/config/uaprofspec.xml</vocabularyFile>
</deli>

This file can contain caching, debugging, legacy device, protocol and vocabulary
configuration directives as detailed in the subsequent sections.

 11

4.1 Caching options
The caching options control the way the workspace caches referenced profiles. DELI
caches referenced profiles but not profile-diffs. This is because referenced profiles are
associated with a unique identifier (the referenced profile URL) but profile-diffs are
not. DELI can either cache profiles indefinitely or update stale profiles after a set
interval. It is also possible to configure the maximum size of the profile cache.

Element Name Default Value Description
maxCachedProfileLifetime 24 hours The maximum lifetime of a

cached profile in hours.
maxCacheSize 100 The maximum number of

profiles in the profile cache.
refreshStaleProfiles false Do we refresh cached profiles

after the maximum lifetime has
expired?

4.2 Debugging options
The debugging options are used to control the information that DELI prints to the
Servlet engine console.

Element Name Default Value Description
debug true Is the automatic debug log

information turned on?
printDefaults true Print both default and override

values of attributes for
debugging purposes?

printProfileBeforeMerge false Print the profile before
merging for debugging
purposes?

4.3 Legacy device options
As already mentioned DELI can support legacy devices by recognising the user-agent
string supplied by a client and mapping it on to a profile. In order to use this facility it
is necessary to supply an XML file that contains information about legacy device
user-agent strings and the corresponding profile URLs.

Element Name Default Value Description
supportLegacyDevices true Is the legacy device database

turned on?
legacyDeviceFile config/legacyDevice.xml The file containing the

legacy device database.

4.4 Protocol options
DELI has a number of protocol options. Firstly it is possible to switch on whitespace
normalisation in profile-diffs prior to calculating the profile -diff-digest in order to
accommodate a modification to the UAProf protocol that has been proposed by IBM.
When a server receives the request, it recalculates the profile-diff-digest. If additional
whitespaces have been added to the request header by a proxy then there is a danger

 12

the two profile -diff digests will differ so the profile-diff will be rejected. Therefore
IBM have proposed the following normalisation procedure prior to profile-diff digest
calculation: all leading and trailing white spaces are eliminated (white space as
defined in RFC 2616 section 2.2). Then all non-trailing or non-leading linear white
space contained in the profile description, including line folding of multiple HTTP
header lines, is replaced with one single space (SP) character. This implies that
property values, represented as XML attributes or XML element character data,
MUST be adhering to white space compression as mandated in RFC 2616 section 2.2.

Secondly there are two options that determine the type of objects returned by three
Workspace factory methods. ccppReaderType is used to select the object returned by
the processProfileFactory() method and protocol is used to select the object
returned by the processHttpFactory() method and the profileAttributeFactory()
method. These options are provided so it will be easy to integrate other RDF
processors and other protocols in the future. At present the default values are the only
available options.

Element Name Default Value Description
normaliseWhitespaceInProf
ileDiff

true Is whitespace normalisation of
the profile-diff prior to
calculating the profile-diff-
digest turned on?

ccppReaderType jena The CC/PP reader to use for
processing profiles.

protocol UAProf The protocol used for profile
transmission.

4.5 Vocabulary options
DELI has a number of vocabulary options. Firstly it is possible to configure the
vocabulary using an XML file. This contains information about a specific CC/PP
vocabulary e.g. the attribute names, the components they belong to, the collection
type, the attribute type and the resolution rule used. Secondly it is possible to specify
the URI to be used for the RDF namespace and the CC/PP or UAProf namespace.
This is important because as the specifications are revised they adopt new
namespaces. Thirdly it is possible to set the string used to represent components and
defaults in the vocabulary. This is important because the two standards currently use
different cases for the first letter of default elements (CC/PP uses “default” whereas
UAProf uses “Default”).

Element Name Default Value Description
vocabularyFile config/uaprofspec

.xml
The file containing the
vocabulary specification.

ccppUri http://www.wapfor
um.org/profiles/U
APROF/ccppschema-
20010430#

The namespace used for
CC/PP constructs such as
component.

rdfUri http://www.w3.org
/1999/02/22-rdf-
syntax-ns#

The namespace used for RDF
constructs.

componentProperty component The name for components.
defaultProperty Default The name for defaults

 13

5 Creating a DELI servlet
In order to get understand how to construct servlets with DELI, the reader is
encouraged to examine the example servlets in the DELI distribution:

DELI_ROOT\src\servlets\TestCCPPServlet.java
DELI_ROOT\src\servlets\TestCCPPServletWML.java

In order to create a Java servlet that uses the DELI library it is necessary to include
the DELI package, e.g.

import com.hp.hpl.deli.*;

and to include a workspace as a class data member e.g.

Workspace workspace;

Then create the workspace when the servlet is initialized e.g.

public void init(ServletConfig config) throws ServletException
{
 super.init(config);
 workspace = new Workspace("webapps/ccpp/config/deliServletConfig.xml");
}

Note the path of the configuration file used when the workspace is created will
depend on your servlet. Once the workspace is initialized, profile resolution is
achieved by creating a new profile using the Workspace and a HttpServletRequest e.g.

public void doGet(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
{
 Profile myprofile = new Profile(workspace, req);

Then the addWarningHeader() is used to add an x-wap-profile-warning to the
response header e.g.

 res = UAProfCreateHttpResponse.addWarningHeader(res,
UAProfCreateHttpResponse.CONTENT_GENERATION_APPLIED);
}

The profile can be manipulated by using the standard Vector methods which will
retrieve profile attributes e.g.

for (int i = 0; i < myProfile.size(); i++)
{
 ProfileAttribute p = (ProfileAttribute)myProfile.get(i);
 out.println("<TD>"+p.get()+"</TD></TR>");
}

Or by directly retrieving a profile attribute e.g.

System.out.println(myprofile.getAttribute("BrowserName").toString());

In addition it is possible to query profile attributes using the get(), getAttribute(),
getCollectionType(), getComponent(), getDefaultValue(), getResolution(),
getType() and getValue() methods. Full details of the DELI API are contained in the

 14

Javadoc in the DELI_ROOT\javadoc\user directory which describes the classes and
methods exported by the DELI package.

6 Expanding DELI
As well as providing an implementation of UAProf, DELI has been designed for
extensibility so that it can be used to experiment with different possible
implementations of UAProf and CC/PP. This is achieved by the use of three abstract
classes that allow DELI to be extended so it can cope with new vocabularies or
protocols. This section will describe these abstract classes but developers are also
referred to the Javadoc at DELI_ROOT\javadoc\developer directory that details all the
internal classes and methods used by DELI.

Figure 5 - UML Diagram of DELI architecture

 15

6.1 ProcessProfile
The ProcessProfile abstract class defines a class with three methods that convert a
profile from the XML serialised form of RDF to a vector of profile attributes. This
class has been provided to support experimentation with different RDF processors.
Currently the Jena framework is used to process the profile, but it may be useful to
implement profile processing using other RDF parsers to test efficiency. Alternatively
this class could be used to test the relative efficiency of profiles serialized directly in
XML rather than profiles serialized in XML via RDF.

An outline for an implementaiton of this abstract class is shown below. The methods
accept a String for a profile URL, a file containing a profile URL, or a Vector
containing profiles or profile-diffs as Strings. All the methods return a vector of
profile attributes prior to resolution. For an example implementation, see
DELI_ROOT\src\com\hp\hpl\deli\JenaProcessProfile.java

If you create a new implementation of ProcessProfile you will also need to add some
code to the ProcessProfileFactory method in Workspace. This method uses the
ccppReaderType setting to determine which type of ProcessProfile is returned.

package com.hp.hpl.deli;

class ProcessorTypeProcessProfile extends ProcessProfile
{

 protected Vector process(String url)
 {
 …
 }

protected Vector process(FileReader file)
 {
 …
 }

protected Vector process(Vector profileVector)
{

 …
}

}

6.2 ProfileAttribute
The ProfileAttribute class has a single abstract method set(ProfileAttribute) that
performs resolution when an attribute has two values. Resolution rules are vocabulary
dependent so this mechanism has been used so that it is easy to add vocabulary
specific resolution. An outline for an implementation of this abstract class is shown
below. For an example implementation, see
DELI_ROOT\src\com\hp\hpl\deli\UAProfProfileAttribute.java

If you create a new implementation of ProfileAttribute you will also need to add
some code to the ProfileAttributeFactory method in Workspace. This method uses
the protocol setting to determine which type of ProfileAttribute is returned.

package com.hp.hpl.deli;

 16

class VocabularyProfileAttribute extends ProfileAttribute
{

VocabularyProfileAttribute(Workspace w)
 {
 super(w);
 }

 protected void set(ProfileAttribute a)
 {
 …
 }
}

6.3 ProcessRequest
The ProcessRequest class has a single abstract method: the constructor. This takes the
Workspace and a HttpServletRequest and converts them to three data structures:
referenceVector is a vector of referenced profile URLs as Strings, profileDiffMap is
a map of profile-diffs as strings indexed by profile-diff sequence numbers and
profileDiffDigestMap is a map of profile-diff digests as strings indexed by profile-
diff sequence numbers. Once these data-structures have been constructed, the
constructor calls the validateProfileDiffs() method in the super class. This re-
calculates the profile-diff-digests for the profile-diffs and compares them with the
profile-diff digests received in the request. If there is any discrepancy between the two
profile-diff digests then the profile-diff is discarded. An outline for an implementaiton
of this abstract class is shown below. For an example implementation, see
DELI_ROOT\src\com\hp\hpl\deli\UAProfProcessRequest.java

If you create a new implementation of ProcessRequest you will also need to add some
code to the ProcessRequestFactory method in Workspace. This method uses the
protocol setting to determine which type of ProcessRequest is returned.

package com.hp.hpl.deli;

class ProtocolProcessHttpRequest extends ProcessHttpRequest
{

 ProtocolProcessHttpRequest(Workspace w, HttpServletRequest request)

throws ServletException, IOException
 {
 …

 validateProfileDiffs();
 }
}

7 Conclusions
So in conclusion this report has described DELI, an open-source server
implementation of profile resolution for CC/PP. DELI is currently alpha grade
software provided to demonstrate how CC/PP may be implemented. It is designed to
be easily extensible and configurable so it may be used as a test-bed for prototyping
future developments with these specifications. DELI will be further developed to
ensure compatibility with these standards.

 17

Appendix A : DELI Test Plan

A.1 Test creating profiles via file reader interface
TEST 1: Test that it is possible to load a profile and convert it to a profile data
structure.
Create a test profile based on the sample profile in the UAProf specification. Ensure
the attributes are in the correct components as sample profiles in some versions of the
specification have the Cccp-Accept attributes in the wrong component. Load in this
sample profile using the Profile() constructor. Display the contents of the profile
using the toString() method. To run this test at the command line type:

java TestHarness 1

Check the printed profile is identical to the original profile.

TEST 2: Test that it is possible to retrieve a specific attribute from a profile.
Load the sample profile created in Test 1 using the Profile() constructor. Use the
getAttribute() method to retrieve some specific profile attributes. Display the
contents of these attributes using the toString() method. To run this test at the
command line type:

java TestHarness 2

Check the printed attributes are identical to those in the original profile.

TEST 3: Test that profiles with defaults are correctly processed.
Take the profile created in Test 1 and place some of the attributes inside a
<prf:default> section. For more details of this, see the CC/PP specification. Then
process this profile as described in Test 1. To run this test at the command line type:

java TestHarness 3

Check that the default attributes are processed correctly.

TEST 4: Test that standard simple attributes override defaults.
Create a profile with two simple attributes that use the locked and override resolution
rules respectively and three complex attributes that use the locked, override and
append resolution rules respectively. Suggested attributes are: SoundOutputCapable
(Locked Simple), BitsPerPixel (Override Simple), BluetoothProfile (Locked Bag),
PushAccept (Override Bag) and InputCharSet (Append Bag). For each attribute,
describe it using both defaults and standard attributes. Use “default” as the default
simple attribute values and “defaultA”, “defaultB” etc as the default complex attribute
values. Use “standard” and “standardA”, “standardB” etc as the non-default simple
and complex attribute values respectively. Load in this sample profile using the
Profile() constructor. Display the contents of the profile using the toString()
method. To run this test at the command line type:

java TestHarness 4

Check that all the attributes should have the value “standard” or “standardA”,
“standardB” etc as non-default values always override default values.

 18

TEST 5: Test the resolution rules in the presence of defaults for simple
attributes.
Repeat Test 04 but include multiple values for the non-default attributes. Call the first
instance of the non-default attributes “standard1” or “standard1A”, “standard1B” etc.
Call the second instance of the non-default attributes “standard2” etc. Check that the
resolution rules are correctly obeyed. To run this test at the command line type:

java TestHarness 5

Check that the final values of the attributes are:

SoundOutputCapable Standard1
BitsPerPixel Standard2
BluetoothProfile Standard1A, Standard1B etc
PushAccept Standard2A, Standard2B etc
InputCharSet Standard1A, Standard1B etc Standard2A etc

For more details of resolution rules see section 7.3 in the UAProf specification.

TEST 6: Test the resolution rules without defaults for simple attributes.
Repeat Test 5 but omit the default values. To run this test at the command line type:

java TestHarness 6

Check that the resolution rules are correctly obeyed and that the results are identical to
Test 5.

A.2 Test creating profiles via URL interface
TEST 7: Test that profiles with default references are correctly processed.
Repeat Test 4 but reference the defaults via a URL. Make the default profile available
from the corresponding web address. To run this test start the Servlet engine, then at
the command line type:

java TestHarness 7

Check that the defaults are correctly processed and that the results agree with Test 4.

TEST 8: Test that standard attributes override default references.
Repeat Test 5 but reference the defaults via a URL. Make the default profile available
from the corresponding web address. To run this test start the Servlet engine, then at
the command line type:

java TestHarness 8

Check the profile is processed correctly and that the results agree with Test 5.

A.3 Test creating profiles via HTTP requests
TEST 9: Test that non-defaults override defaults when using profiles and profile -
diffs.
Repeat Test 4 but place the defaults in the profile reference and the non-defaults in a
profile-diff. Send a HTTP request using this profile reference and profile -diff to the
server. To run this test start the Servlet engine, then at the command line type:

 19

java TestHarness 9

Examine testOutput\test09output.html and check the non-defaults override the
defaults as in Test 4.

TEST 10: Test that resolution rules are correctly applied when using profile and
profile -diffs.
Repeat Test 5 but place the defaults in the profile reference, the first set of non-
defaults in the first profile-diff and the second set of non-defaults in the second
profile-diff. Send a HTTP request using this profile reference and the two profile-diffs
in order to the server. To run this test start the Servlet engine, then at the command
line type:

java TestHarness 10

Examine testOutput\test10output.html and check the results correspond with Test
5.

TEST 11: Send profile reference with incorrect URL
Repeat Test 9 but use a profile reference that does not exist. To run this test start the
Servlet engine, then at the command line type:

java TestHarness 11

Examine testOutput\test11output.html and verify that a blank profile is returned by
the server.

TEST 12: Server replies to legacy device not in database
Retrieve the URL http://127.0.0.1:8080/ccpp/html/ using a HTML browser apart
from Microsoft Internet Explorer.

Verify that a blank profile is returned by the server.

TEST 13: Send profile reference with blank profile -diff
Repeat Test 9 but use a blank file for the profile-diff. To run this test start the Servlet
engine, then at the command line type:

java TestHarness 13

Examine testOutput\test13output.html and check it only contains defaults.

TEST 14: Send profile reference with profile -diff where profile -diff digests do
not match
Repeat Test 10 but some random strings to the profile-diffs before calculating the
profile-diff-digests. To run this test start the Servlet engine, then at the command line
type:

java TestHarness 14

 20

Examine the log generated by the web server and check it has error messages that
indicate it has detected an integrity error in the profile -diff-digest. Examine
testOutput\test14output.html and check it only contains defaults.

TEST 15: Send profile reference with misordered profile sequence numbers
Repeat Test 10 but ensure that the profile-sequence numbers used by the profile -diff
and the profile-diff-digest are unordered and do not match. To run this test start the
Servlet engine, then at the command line type:

java TestHarness 15

Examine testOutput\test15output.html and check it only contains defaults.

TEST 16: Test whitespace removal
Load in the profile used in Test 1, and apply whitespace removal to it using
ProfileDiff.removeWhitespaces() and print out the results.

To run this test at the command line type:
java TestHarness 16

Verify the profile is intact but that extraneous whitespaces have been removed
according to the rules specified in Section 4.4.

TEST 17: Caching
Run test 10 several times. Verify that the logging window reports that the server is
retrieving the reference profile from the cache rather than from the URL.

TEST 18: Configuration file
Start the server. Verify that the logging window reports that the configuration file is
setting the workspace variables legacyDeviceFile and vo

1 Resource Description Framework, http://www.w3.org/RDF/
2 Composite Capabilities / Preferences Profile, http://www.w3.org/Mobile/CCPP/
3 Wireless Application Forum, http://www.wapforum.org/
4 DELI web-site, http://www-uk.hpl.hp.com/people/marbut/deli/
5 RDF Model and Syntax Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
6 RDF Schema Specification 1.0, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
7 W3C RDF Validation service, http://www.w3.org/RDF/Validator/
8 Jena RDF Framework, http://www.hpl.hp.com/semweb/jena-top.html
9 Jena: Implementing the RDF Model and syntax specification, http://www-
uk.hpl.hp.com/people/bwm/papers/20001221-paper/
10 HP Labs Semantic Web Activity, http://www.hpl.hp.com/semweb/
11 CC/PP: Structure and Vocabularies, http://www.w3.org/TR/CCPP-struct-vocab/
12 CC/PP: Requirements and Architecture, http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/
13 CC/PP: Terminology and Abbreviations, http://www.w3.org/TR/2000/WD-CCPP-ta-20000721/
14 CC/PP exchange protocol using HTTP Extension Framework, http://www.w3.org/TR/NOTE-
CCPPexchange
15 Content Negotiation Header in HTTP Scenarios, http://search.ietf.org/internet-drafts/drafts-hjelm-
http-cnhttp-scenarios-00.txt
16 WAG UAProf proposed version 30 May 2001, WAP-248-UAPROF-20010530-p,
http://www1.wapforum.org/tech/terms.asp?doc=WAP-248-UAProf-20010530-p.pdf
17 RFC1321: The MD5 Message-Digest Algorithm, http://www.faqs.org/rfcs/rfc1321.html
18 Section 13.6 and section 14.4 in RFC2045: Multipurpose Internet Mail Extensions,
http://www.faqs.org/rfcs/rfc2045.html
19 RFC 2616: Hypertext Transfer Protocol 1.1 http://www.w3.org/Protocols/rfc2616/rfc2616.html

 21

20 HPL-2001-83: Current Techniques for Device Independence,
http://www.hpl.hp.com/techreports/2001/HPL-2001-83.html
21 HPL-2001-190: Implementing Content Negotiation with CC/PP and UAProf,
http://www.hpl.hp.com/techreports/2001/HPL-2001-190.html
22 Apache Cocoon, http://xml.apache.org/cocoon
23 Apache Jetspeed, http://jakarta.apache.org/jetspeed/site/index.html
24 Apache Struts, http://jakarta.apache.org/struts/index.html
25 Apache Tomcat, http://jakarta.apache.org/tomcat/index.html
26 Mortbay Jetty, http://jetty.mortbay.com
27 Apache ANT, http://jakarta.apache.org/ant/index.html

