

A Lightweight Dynamic Conversation
Controller for E-Services

Harumi Kuno, Mike Lemon
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-25 (R.1)
April 4th , 2001*

E-mail: harumi_kuno@hp.com, mike_lemon@hp.com

E-service
composition,
conversation
policies, agent
systems for
e-commerce,
XML-based
message
exchange,
collaborative
proxies,
E-commerce
based
architectures

As services become more loosely coupled and increasingly
autonomous, heterogeneous distributed services should be able
to discover and converse with each other dynamically, with or
without human intervention. Current paradigms of service
interaction require service developers to hardcode their logic to
adhere strictly to pre-defined conversation policies. We propose
here a mechanism for a Conversation Controller that can free
service (and, to some extent, client) developers from having to
couple business and conversation logic. We also describe our
implementation of a prototype Conversation Controller. The
Conversation Controller can direct and track spontaneous
conversations between services and clients, thus enabling
services to carry out an entire conversation without the service
developers having to implement any explicit conversation
control mechanisms.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Page 1

A Lightweight Dynamic Conversation Controller for E-Services

Harumi Kuno and Mike Lemon

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 1U-14

Palo Alto, CA 94304-1126
harumi_kuno@hp.com and mike_lemon@hp.com

Abstract

As services become more loosely coupled and

increasingly autonomous, heterogeneous distributed
services should be able to discover and converse with
each other dynamically, with or without human
intervention. Current paradigms of service
interaction require service developers to hardcode
their logic to adhere strictly to pre-defined
conversation policies. We propose here a mechanism
for a Conversation Controller that can free service
(and, to some extent, client) developers from having
to couple business and conversation logic. We also
describe our implementation of a prototype
Conversation Controller. The Conversation
Controller can direct and track spontaneous
conversations between services and clients, thus
enabling services to carry out an entire conversation
without the service developers having to implement
any explicit conversation control mechanisms.

1. Introduction

Electronic Commerce is driving distributed
computing to evolve from intra-enterprise application
integration, where application developers work
together to develop and code to agreed upon method
interfaces, to inter-enterprise integration, where E-
Services may be developed by independent
enterprises with completely disjoint computing
infrastructures. E-Services should be inherently easy
to integrate and should facilitate dynamic brokering
and composition[6,8]. This requirement leads to
certain technical challenges: E-Services must be able
to “reflect” their functionality and APIs (or their
equivalent); they must be able to communicate and
exchange business data in a meaningful way; and
finally, E-Services must have some degree of
flexibility and autonomy with regard to their
interactions.

For example, Figure 1, below, depicts an E-
Service marketplace with two different enterprises.
Suppose that a client service in one enterprise

(Enterprise B) discovers some kind of storefront
service in the other enterprise (Enterprise A). These
services can communicate by exchanging messages
using some common transport (e.g., HTTP) and
message format (e.g., SOAP).

However, now suppose that the storefront service
expects the message exchanges to follow a specific
pattern (conversation), such as the conversation
depicted in Figure 2. Because the client and
storefront services belong to different enterprises and
have discovered each other dynamically, service
developers are faced with several issues. For
example, how does the client service know what
conversations the storefront service supports? Does
the storefront service developer have to code the
conversation-controlling logic directly into the
service? If so, do developers have to re-implement
the client and storefront services each time a new
message exchange is added to the supported
conversation?

Our goal is to make it possible for service
developers to create services without having to
implement explicit conversation control. In this
paper, we address the problem of how to enable E-
Services from different enterprises to engage in
flexible and autonomous, yet potentially quite
complex, business interactions. We adopt an
approach from the domain of software agents,
modeling protocols for business interaction as
conversation policies, but extend this approach to

Figure 1. Two services belonging to different
enterprises can dynamically discover and interact
with each other.

Page 2

exploit the fact that E-Service messages are XML-
based business documents and can thus be mapped to
XML document types. In particular, we propose a
methodology by which a single third-party controller
can leverage “reflected” XML-based specifications to
direct the message exchanges of E-Services and their
clients according to protocols without the service
developers having to implement protocol-based flow
logic themselves.

Current systems require services to participate in
homogeneous marketplaces, in which participants
code to matching conversation protocols; should a
protocol change, all participants that support the
protocol must be updated and recompiled. This
reduces the likelihood that two services that discover
each other will be able to converse spontaneously. In
addition, existing systems also couple the message
exchanges with the internal state of a service/agent;
breaking this coupling between conversational logic
and business logic allows us to exploit the document
type properties of XML-based messages to produce
an extremely lightweight conversation controller.

We introduce here a model for a conversation
controller for E-Services that focuses on conversation
functionality, as opposed to a service’s business
functionality. Distinguishing between conversation
logic and business logic enables service developers to
delegate conversational responsibilities to some
conversation controller service, both freeing the
developers from having to implement explicit
conversation control mechanisms and allowing
services to interact even if they don’t support
precisely matching conversations. In Section 2, we
present work related to our efforts. In Section 3, we
describe our model for the problem space, and
introduce the paradigm of our solution. We have
implemented a prototype conversation controller, and
in Section 4 we describe our implementation.
Finally, we present conclusions and future work in
Section 5.

2. Related work

In his survey of agent systems for E-Commerce,
Griss [4] notes that researchers in the agent

community have proposed a number of agent
communication systems over the past decade, and
indeed agent-based e-commerce systems seem like a
natural model for the future of E-Services. Griss
identifies several kinds of agent systems appropriate
for E-Commerce, including personal agents, mobile
agents and collaborative/social agents. Griss then
lists seven properties that represent dimensions of
agent-like behavior: adaptability, autonomy,
collaborations, intelligence, mobility, persistence and
personality/sociability. We believe that although E-
Services exhibit some of these properties, E-Services
are not necessarily adaptable, intelligent or
anthropomorphic (they are not required to exhibit
personality/sociability). However, since agents
dynamically communicate via message exchanges
that conform to specified protocols/patterns, agent-
based conversations are recognized as an especially
appropriate model for E-Service interactions.

Several existing agent systems allow agents to
communicate following conversational protocols (or
patterns). However, to the best of our knowledge, all
of these are tightly coupled to specific agent systems,
and require that all participating entities must be built
upon a common agent platform. For example, the
Knowledgeable Agent-oriented System (KaoS)[2] is
an open distributed architecture for software agents,
but requires agent developers to hard-wire
conversation policies into agents in advance. Walker
and Wooldridge [9] address the issue of how a group
of autonomous agents can reach a global agreement
on conversation policy; however, they require the
agents themselves to implement strategies and
control. Chen, et al. [3] provide a framework in
which agents can dynamically load conversation
policies from one-another, but their solution is
homogeneous and requires that agents be built upon a
common infrastructure. Our Conversation Controller
is unique in that we require only that a participating
service produce two XML-based documents – 1) a
specification of the conversational flows it supports
and 2) a specification of the service’s functionality
(describing how the service can be invoked).

A few E-Commerce systems support
conversations between services. However, these all
require that the client and service developers
implement matching conversation control policies.
RosettaNet’s Partner Interface Processes (PIPs)[7]
specify the roles and required interactions between
two businesses. Commerce XML (cXML)[1] is a
proposed standard being developed by more than 50
companies for business-to-business electronic
commerce. cXML associates XML DTDs for
business documents with their request/response
processes. Both RosettaNet and CommerceXML
require that participants pre-conform to their

RegRQloginRQ

loginRS

registerRS

loginRS

loginRQ

catRQ

quoteRQ

PO_RQ

payRQ

catRS poRS confirmquoteRS

RegRQloginRQ

loginRS

registerRS

loginRS

loginRQ

catRQ

quoteRQ

PO_RQ

payRQ

catRS poRS confirmquoteRS

Figure 2 Output document types serve as transitions
between interactions.

Page 3

standards. Our work is completely compatible with
such systems, but is also unique in that we allow a
service’s clients to share the service’s Conversation
Controller dynamically – without having to
implement the client to the specifications of the
service.

Insofar as they reflect the flow of business
processes, E-Service conversations als o resemble
workflows. However, as the authors of the E-Speak
Conversation Definition Language (CDL1) [5]
observe, workflows and conversations serve different
purposes. Conversations reflect the interactions
between services, whereas workflows delineate the
work done by a service. A conversation models the
externally visible commercial interactions of a
service, whereas a workflow implements the
service’s business functionality. In addition,
workflows represent long-running concurrent fully
integrated processes, whereas E-Service
conversations are loosely coupled interactions.

3. Model and paradigm

In this section, we describe the model and
paradigm upon which our conversation controller is
based. Together, these allow us to free service
developers from having to handle conversational
logic explicitly.

3.1. Document-based message model

In our model, E-Services interact by exchanging
messages. Each message can be expressed as a
structured document (e.g., using XML) that is an
instance of some document type (e.g., expressed
using XML Schema). A message may be wrapped
(nested) in an encomp assing document, which can
serve as an envelope that adds contextual (delivery or
conversation specific) information (e.g., using
SOAP). We define a conversation to be a sequence
of message exchanges (interactions) between two or
more services. We define a conversation
specification (also known as a conversation policy) to
be a formal description of “legal” message type-
based conversations that a service supports.

We require the E-Service to communicate two
pieces of information to the Conversation Controller:

• A specification of the structure of the
conversations supported by the service
(interactions, valid input and output message
types of interactions, and transitions between
interactions).

1 The E-Speak Conversation Definition Language (CDL) is

not related to the Component Description Language (CDL).

• A specification of the service’s interfaces,
mapping of document types to appropriate
service entry points (for given interactions).

We assume that each service can produce its
conversation specification using some conversation
definition language (e.g., HP’s CDL) upon demand.
We also assume that a service can produce a
document-based specification mapping valid input
document types and service entry points to potential
output document types.

3.2. Paradigm

Once the above requirements have been met, our
conversation controller can act as a proxy to an E-
Service, and track the state of an ongoing
conversation, based on the types of messages
exchanged. A conversation controller that acts as a
proxy can perform the following tasks:

1. Once it has received a message on behalf of
an E-Service, the Conversation Controller
can dispatch the message to the appropriate
service entry point, based on the state of the
conversation and the document’s type.

2. When forwarding the response from the E-
Service to the client, the Conversation
Controller includes a prompt indicating valid
document types that are accepted by the next
stage of the conversation. This prompt can
optionally be filtered through a
transformation appropriate to the client’s
type. (E.g., if the client is a web browser and
has indicated that it would like form output,
then the Conversation Controller may
transform the response into an HTML form
before sending it to the client.)

In addition, if the client requests it and specifies
appropriate entry points, the Conversation Controller
can also direct the client’s side of the conversation.
This means that neither the service nor the client
developer must explicitly handle conversational logic
in their code.

In order for an E-Service to use a Conversation
Controller as a proxy, the service developer must do
the following (note that the service developer does
not need to implement code to handle the
conversation flow logic):

• Document the service’s conversation flow in a
specification.

• Document the type-based inbound document
handling entry points in a specification (ideally
capturing both input and output document
types).

• Advertise the service with an entry point going
through the Conversation Controller.

Page 4

Each time the Conversation Controller receives a
message on behalf of the service, it will identify the
current stage of the conversation and verify that the
message’s document type is appropriate; if not, then
it will raise an exception. If the message is valid,
then the Conversation Controller will invoke the
service appropriately. It will then identify the
document type of the response from the service,
identify the new state and the valid input documents
for that state, and format an appropriate response for
the client. The Conversation Controller can also pass
the response through an appropriate transformation, if
requested by the client. For example, if the client is
an HTML browser, then the Conversation Controller
could return an HTML form prompting for
appropriate input. Moreover, if the client is another
service that can return a specification of its own
service entry points, then the Conversation Controller
could automatically send the output message to
appropriate client entry points; if a valid input
document for the new state is returned, the
Conversation Controller could then forward it to the
service, thus mo ving the conversation forward
dynamically. As a result, the Conversation Controller
can help a client and service carry out an entire
conversation without either the client or the service
developer having to implement any explicit
conversation control mechanisms. This means that
the client developer does not need complete
knowledge of all the possible conversations
supported by all the services with which the client
might interact in the future. For example, each time
the Conversation Controller receives a message on
behalf of a service, it could implement the pseudo-
code listed in Figure 3, below.

3.3. Client automation

An argument can be made that developers
implementing E-Service clients will not want a
conversation controller to direct their part of the
conversation, both because they expect to hard-code
the client parts of the conversation and also because
they will find the idea of using a third-party to
control conversation foreign2. However, decoupling
conversation logic from business logic on the client
side greatly increases the flexibility of a client by
allowing it to interact dynamically with services even
if their conversation policies do not match exactly.
For example, the same client code could be used to
interact with two services that support different
conversation policies but common interfaces.

In order for a conversation controller to direct the
client’s part of a conversation, the controller must be

2 Conversation with Kevin Smathers, 1/4/2001.

able to dispatch messages the client receives from the
server in order to generate documents that the server
requests. This means that the client must be able to
communicate its service interfaces to the
Conversation Controller. For example, we can
extend the process described in Figure 3 to allow the
Conversation Controller to direct both the server and
client sides of the conversation, producing the
pseudo-code listed in Figure 4.

3.4. Conversation controller state

The Conversation Controller that we have
outlined above does not include any performance
management, history, or rollback mechanisms. If
one subscribes to the idea that intermediate states of
an E-Service’s conversation are not transactional, and
one also supposes that Conversation Management
functionality (including performance history, status
of ongoing conversations, etc.) is distinct from
Conversation Control functionality, then the

1. Look at the message header and determine the
current state of the conversation. (Ask the
service for specifications, if necessary.)

2. From the conversation specification, get the
valid input document types for the current state.

3. Verify whether the current message is of a
valid input document type for the current state.

4. If the received message is of a valid type, then
look up the inbound document in the dispatch
specification and dispatch the message to an
appropriate service entry point. If more than
one appropriate service entry point exists, then
dispatch it to each entry point (in order
specified by the service) until the service
produces an output document of a valid
document type. If no entry point exists or no
valid output document is produced, then inform
the client, also promp ting for valid input
document types.

5. From the conversation specification, calculate
the conversation's new state, given the
document type of the output document returned
by the service. Look up the valid input
documents for this new state.

6. Format the output document in a form
appropriate to the client type, also prompting
for the input document types that are valid in
the new state.

Figure 3. The Conversation Controller can
receive and handle a message on the behalf of a
service.

Page 5

Conversation Controller can operate in a stateless
mode.

4. Prototype implementation

We have implemented a prototype Conversation
Controller as well as example services and clients.
Our goal was to implement a conversation controller
that could receive messages on the behalf of the

service, validate that each message was of an
appropriate input document type for the current state
of the conversation, dispatch each message to
appropriate service entry point, and use the resulting
output document types to identify the next
appropriate interaction for the conversation.

We tried to leverage as much existing technology
as we could in building this prototype:

• We used the Conversation Definition
Language (CDL) from HP’s E-Speak
Organization to specify the conversations
supported by the E-Services. CDL is an
XML-based specification that defines a service
interface in terms of a list of interactions
(keyed by document type) and a list of
transitions that describe legal interaction
orderings.

• We implemented the services as Apache JServ
servlets (they could also have easily been
implemented using E-Speak, Chaiserver, Jini,
or CORBA).

• We used Apache’s Xerces and Xalan packages
for their XML and XSL functionality.

• We used a subset of the Web Services
Description Language (WSDL) to describe E-
Service interfaces. WSDL is a standard
proposed by IBM and Microsoft. WSDL
describes the capabilities of a web service and
specifies how to access that service's entry
points. WSDL is intended to simplify
software delivery by allowing software to be
invoked remotely (e.g., via the web) rather
than requiring the software to be installed
locally.

We made a number of simplifying assumptions
for this implementation. The Conversation
Controller is not responsible for maintaining
management history, transactional guarantees, multi-
party conversations or the synchronization of
multiple related conversations. We do not address
security issues at this time.

4.1. Directing conversations

In order to track the state of conversations, the
Conversation Controller needed to be able to perform
the following functions:

• Given a message, determine the type of
conversation (conversation specification) and
the stage (interaction identifier) of the ongoing
conversation.

• Given a message, identify its document type.
• Given a Conversation Specification and an

interaction identifier from that specification,

1. Look at the message header and determine the
current state of the conversation. (Ask the
service for specifications, if necessary.)

2. From the conversation specification, get the
valid input document types for the current state.

3. Verify whether the current message is of a valid
input document type for the current state.

4. If the received message is of a valid type, then
look up the inbound document in the dispatch
specification and dispatch the message to the
appropriate service entry point; otherwise,
inform the client that the message is not a valid
type and prompt for the input document types
that are valid in the new state.

5. From the conversation specification, calculate
the conversation's new state, given the document
type of the output document returned by the
service. Look up the valid input documents for
this new state.

6. If the client wishes to be treated as a browser,
then format the output document in an
appropriate HTML form, also prompting for the
valid input document types for the new state.

7. If the client wishes to be directed by the
Conversation Controller and there are valid input
documents for the new state, then look up
outbound document types in the client's dispatch
table, and invoke the appropriate client methods
that could produce valid input documents.

8. If the client produces a valid input document,
then send it to the service, invoking it through
the Conversation Controller (recursion takes
place here).

9. If the client does not produce any valid input
documents, or if there were no valid input
documents in the new state, then format and
return the output document in an appropriate
HTML form, also prompting for the new state.

Figure 4. The Conversation Controller can receive a
message from a client on behalf of a service,
dispatch it to the service, and then prompt the
client for an appropriate response.

Page 6

return the document types accepted as valid
input to that interaction.

• Given a Conversation Specification, an
interaction identifier from that specification,
and a document type (representing an input
document), return a boolean indicating
whether or not the document type would be
accepted as valid input for that interaction.

• Given a Conversation Specification, a source
interaction identifier from that specification,
and a document type (representing an output
document), return the target interaction
represented by the transition from the source
interaction given the output document type.

Our simple method of implementing the first two
requirements was to give each message a special
context element:

<Context>
 <ConversationId/>
 <In-Reply-To/>
 <Reply-With/>
 <DocumentType/>
 </Context>
Each of these elements has an “owner” who

controls the contents of the element value. The
Conversation Controller owns the ConversationId
field, which can be used to map to the conversation
type identifier, the current interaction and the valid
input document types for the current interaction of
the current conversation. The message sender owns
the Reply-With and DocumentType element. The In-
Reply-To element’s value should be the value of the
Reply-With element of the message to which the
current message is responding. Each party is
responsible for protecting the contents of their fields
from tampering, e.g., using encryption.

To meet the last three requirements, each time the
Conversation Controller reads a new conversation
specification (expressed in CDL), it populates two
hash tables: one that maps from interaction identifiers
to valid input document types, and one that maps
from source interaction identifier/transition document
types to target interaction identifiers. The
Conversation Controller uses the first table to look up
the valid input document types for a given
interaction. It uses the second table to determine
when a conversation has progressed from one
interaction state to another (given the document type
of an output document and a source interaction
identifier).

4.2. Dispatching messages to services

In order to forward messages to appropriate
service entry points, the Conversation Controller
needed to map input and output document types to

service entry points. For this, we created a WSDL
specification for each service. Each time the
Conversation Controller reads a WSDL specification,
it populates two hash tables: one that maps from
input document types to service entry point and
output document types, and one that maps from
output document types to service entry point and
input document types.

One open issue is how to couple the dispatch and
the conversation flow specifications. Our current
implementation uses these tables to find actions that
can handle incoming document types and produce
output documents of appropriate document types.
That is to say, currently the Conversation Controller
does not consider the state of the conversation when
dispatching the message. This is because the WSDL
and CDL are completely independent. For the future,
we are considering associating a WSDL specification
with each interaction.

4.3. Architecture

The prototype Conversation Controller as
currently implemented is stateless, and can direct
both servers and clients in CDL-specified
conversations (using Algorithm 2). Figure 5 sketches
the components of our initial prototype, from the
perspective of how the Conversation Controller
handles a message from a client to a service.

The Incoming Context Handler has logic that

handles message structure, and is responsible for
unpacking contextual information from incoming
message headers. The Outgoing Content Delivery
Handler is responsible for packing contextual
information into outgoing message headers and
composing outgoing messages. The Interaction
Handler parses and queries conversation definitions
(specified in CDL), for example to validate document
types or calculate new conversation states. The
Dispatch Handler parses and queries service
descriptions (specified in WSDL), then uses that
information to forward messages to services. The

Reply

Client Service

Message

Response

Invocation

In
teraction

 H
an

d
ler

D
isp

atch
 H

an
d
ler

C
o
n
ten

t
D

elivery
H

an
d
ler

C
lient

In
teraction
H

a
n
d
ler

Incoming
Context
Handler

Reply

Client Service

Message

Response

Invocation

In
teraction

 H
an

d
ler

D
isp

atch
 H

an
d
ler

C
o
n
ten

t
D

elivery
H

an
d
ler

C
lient

In
teraction
H

a
n
d
ler

Incoming
Context
Handler

In
teraction

 H
an

d
ler

D
isp

atch
 H

an
d
ler

C
o
n
ten

t
D

elivery
H

an
d
ler

C
lient

In
teraction
H

a
n
d
ler

Incoming
Context
Handler

Figure 5 The Conversation Controller handles
messages on the behalf of services.

Page 7

optional Client Interaction Handler and its
interactions (drawn with dotted lines) can dispatch
the reply from the service to the client and then
forward the client’s response back to the service (via
the Conversation Controller).

Figure 6 details how the Conversation Controller
uses these components to handle a message it
receives on the behalf of a service.

Each time the Conversation Controller receives a
message on behalf of a service, the Incoming Context
Handler parses the incoming message and extracts
(or initializes) its Context element. The Interaction
Handler uses this context element to identify the
current state, conversation specification (specified in
CDL) and document type represented by the
incoming message, then validates whether or not the
document type of the incoming message is valid for
the current state. If the incoming message is of a
legitimate type, then the Dispatch Handler parses the
service’s specification and forwards the message to
an appropriate service entry point. When the service
returns a response message, the Interaction Handler
uses the document type of the response message
(along with the Conversation Specification) to
identify the next state of the Conversation as well as
the new state’s valid document types. The Outgoing
Content Handler builds an outgoing message context
element from this information, and composes
(incorporating the response message from the
service) an outgoing message to return to the client.
If the client service has requested that the
Conversation Controller direct its side of the

conversation and has also provided a service
specification for itself, then the Dispatch Handler
identifies and dispatches to appropriate client entry
point(s) that could produce an appropriately typed
document using the client specification. If the client
produces a valid document for the new state, then the
Dispatch Handler will forward that message back to
the Conversation Controller on behalf of the service
(thus starting the cycle again).

5. Conclusions / future work

We have proposed here a mechanis m for a
conversation controller that can act as a proxy to an
E-Service, enabling the service to engage in complex
interactions with other services. Our solution is
unique in that we distinguish between the routing
(e.g., flow control) and management (e.g., quality of
service) of a conversation. We also make a
distinction between conversation logic and business
logic. These distinctions allow us to provide an
extremely lightweight conversation controller
capable of directing a service’s conversations with
other services or clients. This conversation controller
can dynamically execute a service’s conversation
logic given a minimum amount of information – a
specification of the conversations the service
supports, and a specification service’s functions. We
have successfully implemented a prototype
conversation controller, used it to control both
client/service and user (web browser)/service
conversations.

In the future, we plan to use this mechanism as a
test bed for rapid development of conversation-based
prototypes (for example, experimentation with
automatic negotiation policies). We also hope to see
this mechanism incorporated into a complete E-
Service marketplace. For example, we would like to
be integrate our prototype with a service management
service. In addition, we propose to extend our model
to include multi-party conversations.

Acknowledgements

We thank Alan Karp, Meichun Hsu, Qiming

Chen, and Kevin Smathers for input and comments
regarding this work. We owe special thanks to Alan
Karp, who first recommended that the Conversation
Controller act as a proxy to the service it represents.

References

[1] Web page: http://www.cxml.org

[2] Bradshaw, J.M., KAoS: An Open Agent
Architecture Supporting Reuse, Interoperability, and
Extensibility. Knowledge Acquisition for

Knowledge-Based Systems Workshop, 1996
URL:
http://spuds.cpsc.ucalgary.ca/KAW/KAW96/bradsha
w/KAW.html
[3] Chen, Q., Dayal, U., Hsu, M., and Griss, M.,
Dynamic Agents, Workflow and XML for E-

Service

Client

Conversation
Controller

5. Return
msg and
prompt for
next legal
input doc.

2. Incoming Context
Handler parses incoming msg,
and identifies current state and
msg document type.
Interaction Handler validates
input document type.

3. Dispatch
Handler looks up
service endpoint
and forwards
message to service.

4. Service
receives
message and
returns output
document.

4. Interaction Handler uses
output doc type to identify new
conversation state and new
valid input doc types. Content
Delivery Handler composes
outgoing message. Optionally,
Client Interaction Handler
forwards outgoing message to
client entry point, then
forwards client response back
to the Conversation Controller.

1. Client sends msg
to service

Service

Client

Conversation
Controller

5. Return
msg and
prompt for
next legal
input doc.

2. Incoming Context
Handler parses incoming msg,
and identifies current state and
msg document type.
Interaction Handler validates
input document type.

3. Dispatch
Handler looks up
service endpoint
and forwards
message to service.

4. Service
receives
message and
returns output
document.

4. Interaction Handler uses
output doc type to identify new
conversation state and new
valid input doc types. Content
Delivery Handler composes
outgoing message. Optionally,
Client Interaction Handler
forwards outgoing message to
client entry point, then
forwards client response back
to the Conversation Controller.

1. Client sends msg
to service

Figure 6 The Conversation Controller acts as a proxy to
services to services.

Page 8

Commerce Automation. First International
Conference on E-Commerce and Web-Technology,
2000.
http://www.hpl.hp.com/org/stl/dmsd/publications/qch
en_EC2000.pdf
[4] Griss, M., My Agent Will Call Your Agent . . .
But Will It Respond?. Software Development
Magazine, 2000. (Also available as technical report
HPL-1999-159)
[5] HP E-Speak Operations (updated by Alan H.
Karp), Conversation Definition Language
Specification for UDDI version 1.0, Nov, 2000.

[6] Kuno, H., Surveying the E-Services Technical
Landscape. International Workshop on Advanced
Issues of E-Commerce and Web-Based Information
Systems (WECWIS), 2000. (Also available as
technical report HPL-2000-22)
[7] Web page: http://rosettanet.org
[8] Seybold, P. B. Preparing for the E-Services
Revolution, 1999.
http://www.hp.com/e-services/pdfs/seybold.pdf
[9] Walker, A. and Wooldridge, M., Understanding
the emergence of conventions in multi-agent systems.
First International Conference on Multi-Agent
Systems, 1995.

Appendix A. Example CDL specification

The following XML document is an example of a CDL specification for a conversation supported by a storefront
service (example taken from [5]). Figure 2 sketches the transition table expressed in this specification.

<?xml version="1.0" encoding="UTF-8"?>
<Conversation conversationType="eSpeakSFS" id="conv123"
 name="simpleConversation">
 <ConversationInteractions>
 <Interaction StepType="ReceiveSend" id="Start" initialStep="true">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/LoginRQ.xsd" id="LoginRQ">

 </InboundXMLDocument>
 <InboundXMLDocument
hrefSchema="RegistrationRQ.xsd" id="RegistrationRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/ValidLoginRS.xsd"
id="ValidLoginRS">

 </OutboundXMLDocument>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/RegistrationRS.xsd" id="RegistrationRS">
 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="LoggedIn" initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/CatalogRQ.xsd" id="CatalogRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/CatalogRS.xsd" id="CatalogRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Registered"
initialStep="false">

Page 9

 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/LoginRQ.xsd" id="LoginRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/ValidLoginRS.xsd"
id="ValidLoginRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Catalogued"
initialStep="false">

 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/QuoteRQ.xsd" id="QuoteRQ">
 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/QuoteRS.xsd" id="QuoteRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Quotation"

initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/PurchaseOrderRQ.xsd"
id="PurchaseOrderRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/InvoiceRS.xsd"
id="InvoiceRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="Invoiced" initialStep="false">
 <InboundXMLDocuments>
 <InboundXMLDocument
hrefSchema="http://conv123.org/AuthorizePaymentRQ.xsd"
id="AuthorizePaymentRQ">

 </InboundXMLDocument>
 </InboundXMLDocuments>
 <OutboundXMLDocuments>
 <OutboundXMLDocument
hrefSchema="http://conv123.org/ConfirmationRS.xsd"
id="ConfirmationRS">

 </OutboundXMLDocument>
 </OutboundXMLDocuments>
 </Interaction>
 <Interaction StepType="ReceiveSend" id="end" initialStep="false">
 <InboundXMLDocuments/>
 <OutboundXMLDocuments/>

Page 10

 </Interaction>
 </ConversationInteractions>
 <ConversationTransitions>
 <Transition>
 <SourceInteraction href="Start"/>
 <DestinationInteraction href="LoggedIn"/>
 <TriggeringDocument href="ValidLoginRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Start"/>
 <DestinationInteraction href="Registered"/>
 <TriggeringDocument href="RegistrationRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Registered"/>
 <DestinationInteraction href="LoggedIn"/>
 <TriggeringDocument href="ValidLoginRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="LoggedIn"/>
 <DestinationInteraction href="Catalogued"/>
 <TriggeringDocument href="CatalogRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Catalogued"/>
 <DestinationInteraction href="Quotation"/>
 <TriggeringDocument href="QuoteRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Quotation"/>
 <DestinationInteraction href="Invoiced"/>
 <TriggeringDocument href="InvoiceRS"/>
 </Transition>
 <Transition>
 <SourceInteraction href="Invoiced"/>
 <DestinationInteraction href="End"/>
 <TriggeringDocument href="ConfirmationRS"/>
 </Transition>
 </ConversationTransitions>
</Conversation>

