

Software Deployment on Network Storage Based Systems

Todd Poynor
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-257
October 12th , 2001*

software
deployment,
software
installation,
diskless,
network
storage

This report briefly summarizes a number of recent
investigations related to software deployment on network
storage based systems that our team recently performed. A
specific context in which this was investigated was for a pool of
general-purpose servers in a single data center that are to be
allocated among different applications and/or different
customers according to demand or level of service purchased.
Separating software installations from server machines
increases the modularity of the data center, such that the
appropriate level of compute power can be more easily
provisioned for a specific software environment and the
available compute power can be more efficiently allocated
among software environments. A number of additional
capabilities and concerns unique to “diskless” software
deployment are discussed, as are general topics in improving
the modularity and flexibility by which software packages are
installed, configured, combined into software stacks, and
shared among servers in cluster environments.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1

1. Introduction

This report briefly summarizes a number of recent investigations related to software deployment on
network storage based systems that our team performed as part of the Distributed Service Utility
research project at HP Labs. This information is being published to the research and development
community in order to document some of the ideas, results, and ongoing projects that sprang from that
effort.

Our use of the term network storage based systems refers to architectures where storage resources may
be dynamically paired with compute, I/O, and other resources that make up a general-purpose server
system – that is, the server has no local disk. The term encompasses both the so-called Network-
Attached Storage (NAS) and Storage Area Network (SAN) architectures and associated protocols.

Here we are concerned with those portions of the software lifecycle called software deployment, and in
particular these activities in the breakdown of that process by Carzaniga et al [13]:

��Install: initial insertion of a system into a consumer site.

��Activate: starting up the executable components of a system.

��Deactivate: shutting down any executing components of an installed system.

��Update: a special case of installation that can often rely on the fact that many of the needed
resources have already been obtained during the installation process.

��Adapt: modifying a previously installed software system, initiated by such events as a change in
the environment of the consumer site.

��Deinstall: removal of a system from a consumer site.

The activities from their breakdown that are not included are release and derelease (retire), which are
activities of software producers. We also considered including configuration change tracking for
troubleshooting (as a part of fault management or security management), such as to track software
revisions installed, or to record when a patch was installed or a configuration parameter was modified.

2. Motivation and Design Principles

Here software deployment is investigated in the context of systems comprised of, among other things,
numerous general-purpose servers in a single data center. The servers are to be allocated among
different applications and/or different customers (in the case of a service provider’s data center hosting
multiple customers) according to demand or level of service purchased. Diskless servers for executing
applications and other software are employed in service of these goals:

��Efficient redeployment of compute power and applications through separation between
software installations and processing resources, allowing these two components to be associated
in modular fashion such that the set of servers running a software installation may vary
dynamically (and cost-effectively) according to need. Each change in association is to occur
relatively quickly due to: the “stateless” nature of the servers; leveraging the previous work to
install software from media and, to some degree, configure the software; and improvements in
the process by which software is automatically configured to run on new servers and in dynamic
environments.

2

��Decreased hardware costs due to lack of per-server disks and even I/O busses.

We use the term “software environment” for a collection of OS and application software, plus associated
control information, housed on network storage resources that corresponds to a traditional installation of
OS and application software on a local disk. The installation of a software environment occurs not to
install the software on a particular server, but in order to make the environment available to run on any
number of appropriate servers. We wish to quickly redeploy servers to execute different software
environments according to need, as in response to changing workloads or customer or resource sets. By
separating software environments from servers, we can accomplish this in a more dynamic (and cost-
effective) fashion than when software environments and servers are tightly bound together. The
appropriate level of compute power can be more easily provisioned for software environments, and the
available compute power can be more efficiently allocated among competing environments.

Such an architecture has the above advantages, and others noted below, over other projects, such as IBM
Océano [14], that are also aimed at dynamically allocating data center resources but that employ
traditional directly-attached disks. Other research projects that make use of network storage for
efficiency of server reallocation include Muse at Duke University [17].

The same techniques may be used not just for general-purpose servers based on such operating systems
as UNIX and Windows but also for reprogrammable networking infrastructure functions running on
multi-purpose platforms.

3. Sharing and Replicating Software Environments

There are well-known benefits to sharing software environments and/or individual software products
among multiple servers, and even across multiple customers hosted at the same data center. Sharable
software packages also lend themselves to efficient replication on multiple machines. This can be
greatly beneficial in manually constructing a cluster of identical servers and in automated deployment of
additional instances of software (as to automatically meet increased demand). Sharing installations
helps speed the time to construct or replicate an environment, helps reduce the amount of disk space
consumed by duplicate static files, and offers advantages in centralized management of environments
over the deployment life cycle, such as to reduce the need for duplicate actions applied to multiple
environments. Although these concepts also apply to traditional systems with local disks, for network
storage based systems these capabilities are vital to deriving the full benefit of the architecture.

Most tools for replicating installations are geared toward automating the steps necessary to perform the
installation of a cluster of identical servers with local disks that are expected to stay in that configuration
for some time. For our purposes we want to quickly and possibly automatically redeploy servers to
execute differing software environments according to need in highly dynamic fashion.

For effective shared deployment of software, important considerations include whether software
subscribes to a file system layout policy that enables cross-system sharing of software and whether the
installation procedures are organized into one-time install and per-replication configure phases, as
described in the subsections that follow.

3.1 File System Layout Policy

The policies by which OS and application files are placed in the file system hierarchy play a large part in
the way software is shared. This is influenced by such factors as:

3

1. Is there a distinction between the directories to which sharable, read-only files are installed and
the directories in which administrator-modified configuration files and programmatically-written log
files and other per-instance files are installed or created?

2. Is there a clear separation between the directories to which separate software products install
sharable files, such that there is a clear mapping between an OS or application product and the
directories needed to obtain access to the product (and only that product)? Preferably, each product
installs all sharable files beneath a single product root directory.

For example, the HP-UX file system hierarchy is organized (à la System V.4) into sharable vs. host-
private mount points [3], with structure for separating optional applications from the base OS, to ease
and speed replication of software in NFS-mounted clusters. Linux software has traditionally been less
consistent in adherence to such a file system layout policy. In fact, many separate packages install into
common directories /usr/local/bin, /usr/local/lib, /usr/local/man, etc., in direct conflict with point #2
above. There is a move toward greater organization of the layout in such Linux distributions as Red
Hat, which adopts the Filesystem Hierarchy Standard (FHS) [12].

3.2 Per-Server Configuration

Many of the options for efficiently sharing and replicating software configurations boil down to
separating the installation task into a one-time install action and a per-target configuration action. In
this fashion, read-only bits may be shared among multiple servers, as via NFS mount points, and host-
private information may be configured per server using such means as package-specific per-server
configuration performed by scripts. For example, the HP-UX installation utility SD-UX subscribes to
this model [4, 5].

On systems that either do not subscribe to amenable file system layouts and/or do not implement a per-
server configure phase in the installation process, it is possible compensate for this to some degree using
automation. We can “wrap” the existing tools to help automatically factor out installation and
configuration steps and installation directories, or we can modify the tools and software packages to add
explicit install and configure phases. Methods of automatically determining install vs. configure actions
include determining “deltas” of file information as in the NT SysDiff [10] and HP-UX mkpkg [11]
utilities, and instrumenting the file system protocols (designs for which are still under investigation and
may be described in a future report). Potential future directions include enhancing existing installation
tools and system software to enable these features.

Of key interest has been investigation into methods of improving the flexibility of software
configuration, in part so that even software with highly complex interactions with other software and
other network resources may be efficiently replicated to new machines. Although not necessarily
specific to network-storage-based systems, we briefly note some of these here. Improved languages for
expressing dynamic portions of configuration files using markup languages such as XML have been one
area of investigation. Another area that has been pursued is a framework for software to dynamically
configure and respond to changes in the surrounding environment, such as to establish and break ties
with other software and hardware services, as needed over the lifetime of execution of the program [15].
Some additional investigation that was performed looked at management information models by which
software and servers may be described in machine-readable formats for automation of deployment (such
as expressing dependencies on other software and hardware platforms), expressing service level
requirements, and so forth. This effort looked for improvements over existing mechanisms such as the
DMTF CIM Application Management Model [18], which has limited support for distributed systems

4

[20] due in part to its origins in traditional network operations management [21], and the
Marimba/Microsoft Open Software Description (OSD) [19], which has a number of limitations noted in
[22]. The general topic of dynamically reconfigurable and replicable software remains of high interest
as part of the utility computing programs at HP Labs [16], and work continues in these areas.

3.3 Avoiding Maintenance of Local Disks

A number of products exist for replicating an installation onto multiple servers with local disks. For HP-
UX, Ignite-UX is used for this purpose; on Linux the most popular tools include VA SystemImager [1],
REMBO [2] (which also replicates NT and other Windows OS’es), Red Hat KickStart [6, 7] (based on
RPM [9] packages), and IBM Linux Utility for cluster Installs (LUI) [8].

Part of the operation of these tools is to load remote software packages or file system images onto a
local disk at boot time. For Network storage based systems, downloading of files to local disks is
replaced by NFS mounting of remote file systems at a considerable increase in initial speed of
redeployment.

Reallocating a physical disk device from one customer to another exposes the danger that data belonging
to the previously allocating customer remains on the disk for potential access by the newly allocating
customer. For this reason, it is normally necessary to reformat the disk, wiping out all data stored
previously, when reallocating a disk to a new customer, a rather time-intensive operation (the IBM
Océano project [14], for example, does this). Network storage based systems can avoid the need for
reformatting physical devices by controlling access to most storage resources, providing only file-
system-level interfaces to files created by the customer and not providing general disk-block-level
access to these resources.

3.4 Management of Software Environments

A number of management tasks are needed for the individual software environments, such as to browse,
delete, etc. the environments, as well as the “catalog” of available environments. If environments
consist mainly of file system images residing within the file system, existing file system management
tools may provide a minimum of functionality, but may not be sufficient to implement an easily
managed system, especially for a very large number of environments. There are also a number of
additional actions that may be useful for shared software environments, such as to independently
upgrade a particular software package or select a subset of servers that are to be upgraded, and to modify
the set of servers that are to execute a certain environment. Potential future activities were to address
this topic.

3.5 Security Implications

Data centers shared among multiple customers have certain special security considerations, including
protection against unauthorized access to the software deployed. Common file system access controls
probably suffice for protection of file system images against snooping or corruption by other than the
owning customer. It may, however, be advantageous to allow instantiation of the same “base” file
system image for multiple customers, and even the details of what software a node is running may
expose more information than one would like.

Different customers may not want to share read-only file system mount points due to such concerns as
security, performance, and deviations from usual practices of accounting for disk space used. When a

5

customer creates a software environment that includes a software package used by multiple customers,
even sharable portions of its file system image could be copied from a protected location to a new copy
for that customer only, in order to alleviate this concern. There is little new security guarantee provided,
however, since shared access to an uncorrupted original image is still assumed, unless access is only
granted to a trusted party higher up in the service provider chain (such as the data center owner).

4. Automated Software Environment Assemblage

The modularity principles that separate software environments from compute power can be extended to
increase modularity of the software packages that comprise an environment. Improvements in, or
automation of, the processes by which different software packages are assembled into a software
environment, upgraded or deleted in multiple software environments at a time, etc. could provide
substantial improvements in manageability. This can also play a part in satisfying goals of modularity
between software environments and compute power by automating the process by which a software
environment is assembled from components appropriate for a particular server’s hardware.

Rather than requiring an administrator to manually install and configure each software environment, we
can provide tools and automation to help construct software environments, such as to assemble together
Red Hat Linux 6.2 plus an Apache Web server plus the appropriate files that comprise the Web content
for a customer (as we prototyped). This could enable such activities as:

• = Combining software packages and data on the fly to match changing demand. For example, a
“hot” web site could be moved from a shared Web server system to a dedicated system, or the
appropriate OS for a particular server could be combined with OS-independent Web site
content as required by the server architecture.

• = Performing version control, such as to backtrack to a known good configuration after an
installation that goes awry.

• = Upgrading software simultaneously for several environments. For example, the Apache Web
server software could be upgraded to a new release for each software environment that includes
the Apache Web server.

One approach is to base the solution on installation tools and software packaging formats that separate
the tasks of installation and configuration, using techniques as previously employed for diskless clusters
(and for single-point administration clusters). A variant of this idea is to write new scripts for existing
software packages that encode knowledge of how to access NFS mount points for software shares and to
configure combinations of software. Another approach, which may be employed to some degree with
unmodified toolsets and software packaging, records the effects of an initial install for later replay in
another environment or perhaps for undoing the installation. Existing models include NT SysDiff [10]
and HP-UX mkpkg [11]. An area of potential further investigation concerns how these deltas may be
manipulated to achieve automatic assembly of environments.

5. Conclusion

Modular server farm architectures based on network storage have clear advantages in quick and efficient
allocation of server resources dynamically matched with software environments according to policy.
This report has provided some background on this design principle and has described a number of

6

directions that have been considered, including a number of areas that we continue to be pursue, for
improving the deployment and lifecycle management of software in such an environment.

Acknowledgements

Many of the architectural principles on which this report is based were originally espoused by Lance
Russell, Bert Munoz, and Tung Nguyen of HP Labs. The ideas and positions on the application of these
principles to software deployment documented here were formulated by a team at HP Labs led by Tom
Wylegala, the membership of which also included Steve Hoyle, David A. Barrett, Dan Conway, Ilan
Ginzburg, and Baila Ndiaye.

References

[1] VA SystemImager documentation at http://systemimager.sourceforge.net/.
[2] REMBO documentation at http://www.rembo.com/docs/rembo/.
[3] HP-UX 10.0 File System Layout White Paper at /usr/share/doc/file_sys.ps on an HP-UX 10.0 or

above system.
[4] NFS Diskless Concepts and Administration white paper at

/usr/share/doc/NFSD_Concepts_Admin.ps on an HP-UX 10.01 or above system.
[5] File Sharing and Other Helpful Facts for HP-UX 10.0 Developers white paper at

/usr/share/doc/dev_apps.ps on any HP-UX 10.01 or above system.
[6] JWCS information on Red Hat KickStart at
 http://www.redhat.com/mirrors/LDP/HOWTO/KickStart-HOWTO.html.
[7] Red Hat Linux 6.2 Reference Guide section on KickStart at
 http://www.redhat.com/support/manuals/RHL-6.2-Manual/ref-guide/s1-kickstart2-howuse.html.
[8] IBM LUI information at
 http://oss.software.ibm.com/developerworks/opensource/linux/projects/lui/.
[9] RPM home at http://www.rpm.org/.
[10] 12 Steps to Cloning Windows NT Systems with SYSDIFF.EXE at
 http://www.winntmag.com/Articles/Index.cfm?ArticleID=1.
[11] Staelin, Carl. Mkpkg - A Software Packaging Tool, HPL Technical Report HPL-97-125R1 at

http://lib.hpl.hp.com/techpubs/97/HPL-97-125R1.html.

[12] Filesystem Hierarchy Standard at http://www.pathname.com/fhs/.
[13] Carzaniga, Antonio, et al. A Characterization Framework for Software Deployment Technologies,

University of Colorado Technical Report CU-CS-857-98, 1998 at
http://www.cs.colorado.edu/users/alw/doc/AvailablePubs.html.

[14] Appleby, K., Fakhouri, S., et al. Océano – SLA Based Management of a Computing Utility.

Proceedings IFIP/IEEE International Symposium on Integrated Network Management 2001.
[15] Poynor, Todd. Automating Infrastructure Composition for Internet Services. To appear at the 15th

USENIX Large Installation System Administration (LISA) Conference, December 2001. Also
published internally at HP as HP Labs Tech Report HPL-2001-212.

[16] Wilkes, John, Goldsack, Patrick, et al. Eos – The Dawn of the Resource Economy. Proceedings
HotOS VIII, May 2001.

http://systemimager.sourceforge.net/
http://www.rembo.com/docs/rembo/
http://www.redhat.com/mirrors/LDP/HOWTO/KickStart-HOWTO.html
http://www.redhat.com/support/manuals/RHL-6.2-Manual/ref-guide/s1-kickstart2-howuse.html
http://oss.software.ibm.com/developerworks/opensource/linux/projects/lui/
http://www.rpm.org/
http://www.winntmag.com/Articles/Index.cfm?ArticleID=1
http://lib.hpl.hp.com/techpubs/97/HPL-97-125R1.html
http://www.pathname.com/fhs/
http://www.cs.colorado.edu/users/alw/doc/AvailablePubs.html

7

[17] Chase, Jeffrey B., Anderson, Darrell C., et al. Managing Energy and Server Resources for a
Hosting Center. Proceedings 18th Symposium on Operating System Principles (SOSP), October
2001.

[18] DMTF Understanding the Application Management Model at
http://www.dmtf.org/spec/Whitepapers/CIM_Applications_wp.pdf.

[19] OSD -- Describing Software Packages on the Internet at

http://www.marimba.com/products/whitepapers/osd-wp.html
[20] CIM Tutorial: Applications and Namespaces at

http://www.dmtf.org/educ/tutorials/cim/extend/apps.html.
[21] Aschemann, Gerd and Kehr, Roger. Towards a Requirements-based Information Model for

Configuration Management, ICCDS IV, 1998 at
http://gemini.iti.informatik.tu-darmstadt.de/~kehr/publications/iccds98.pdf.

[22] Hall, Richard S., et al. Software Deployment Languages and Schema. University of Colorado
Technical Report CU-SERL-203-97, 1997 at
http://www.cs.colorado.edu/users/rickhall/deployment/SchemaPaper/Schema.html.

http://www.dmtf.org/spec/Whitepapers/CIM_Applications_wp.pdf
http://www.marimba.com/products/whitepapers/osd-wp.html
http://www.dmtf.org/educ/tutorials/cim/extend/apps.html
http://gemini.iti.informatik.tu-darmstadt.de/~kehr/publications/iccds98.pdf
http://www.cs.colorado.edu/users/rickhall/deployment/SchemaPaper/Schema.html

	Introduction
	Motivation and Design Principles
	Sharing and Replicating Software Environments
	File System Layout Policy
	Per-Server Configuration
	Avoiding Maintenance of Local Disks
	Management of Software Environments
	Security Implications

	Automated Software Environment Assemblage
	Conclusion
	Acknowledgements

