

ShiftQ: A Buffered Interconnect for Custom Loop
Accelerators

Shail Aditya, Michael S. Schlansker
HP Laboratories Palo Alto
HPL-2001-255
October 10th , 2001*

E-mail: aditya@hpl.hp.com, schlansk@hpl.hp.com

 ShiftQs are hardware structures consisting of registers and

switches which buffer and transport operands among function
units within custom hardware loop accelerators. ShiftQs help
minimize buffering and interconnect costs by customizing the
hardware to the given schedule and by intelligent sharing of
register and interconnect resources. This paper describes the
ShiftQ schema and a method to automatically synthesize them
from modulo-scheduled loops. We also evaluate the cost savings
by comparing them against traditional storage and interconnect
mechanisms.

* Internal Accession Date Only Approved for External Publication?
To be published in and presented at CASES '01, November 16-17, 2001, Atlanta, GA
Copyright ACM

ShiftQ: A bufferred interconnect for custom loop
accelerators

Shail Aditya
Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3L-5

Palo Alto, CA, USA
aditya@hpl.hp.com

Michael S. Schlansker
Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3L-5

Palo Alto, CA, USA
schlansk@hpl.hp.com

ABSTRACT
ShiftQs are hardware structures consisting of registers and
switches which bu�er and transport operands among func-
tion units within custom hardware loop accelerators. ShiftQs
help minimize bu�ering and interconnect costs by customiz-
ing the hardware to the given schedule and by intelligent
sharing of register and interconnect resources. This paper
describes the ShiftQ schema and a method to automatically
synthesize them from modulo-scheduled loops. We also eval-
uate the cost savings by comparing them against traditional
storage and interconnect mechanisms.

1. INTRODUCTION
With the recent explosion of smart appliances, mobile

communication and hand-held digital media processing de-
vices, the industry is faced with a tremendous design chal-
lange: how to design the wide variety of embedded elec-
tronic systems inside these devices with supercomputer per-
formance requirements at consumer-level cost and bring them
to market at a breakneck speed. The PICO (Program-In-
Chip-Out) project[1, 11] addresses this challange by provid-
ing an automatic methodology to design programmable and
non-programmable accelerators that are customized to ap-
plications starting from a high-level algorithmic description
such as a C program.
This paper describes technologies used within PICO-NPA,

the subsystem of PICO that designs non-programmable ac-
celerators, to execute compute-intensive loop kernels. These
custom accelerators o�er far lower cost and higher perfor-
mance than competing programmable approaches. This is
accomplished using hardware optimizations that take ad-
vantage of very speci�c knowledge of the application. Cost-
e�ective hardware for parallelizable loops is generated by
customizing control, datapath, and storage within the ac-
celerator to highly speci�c application needs. This allows a
level of e�ciency within each processor that is unmatched
using general purpose systems. Further, for a broad class

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES'01, November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011 ...$5.00.

of highly-parallelizable loops, these accelerators can be e�-
ciently expanded by adding identical processors to provide
linear increases in performance.
A major obstacle in designing parallel accelerators is the

design of the bu�ered interconnects that carry operands
among function units. This paper describes techniques that
greatly reduce bu�ering and interconnect costs by tailoring
interconnects to speci�c application needs. Operand trans-
port mechanisms have been developed for a variety of cus-
tom solvers [2, 3, 7]. However, unlike prior work, this pa-
per focuses on transport mechanisms for software pipelined
loops. This problem can be approached from one of two ex-
treme viewpoints. A fully centralized view places all virtual
registers in a common shared �le. This maximizes the poten-
tial that multiple virtual registers utilize the same storage
but also requires an expensive highly ported �le which is im-
practical for highly-parallel machines. A fully decentralized
view places each virtual register in its own physical register
�le. While this minimizes �le porting, physical registers are
not shared among virtual registers, and too many switches
may be required to connect function units to a large num-
ber of physical �les. The ShiftQ mechanism proposed in
this paper takes an intermediate position between these two
extremes, attempting to provide the best of both worlds in
terms of hardware cost. We describe the architecture of this
bu�ered interconnect and an automatic way of designing
these interconnects for a given loop schedule. In addition,
we evaluate the cost of these structures within PICO loop
accelerators.
The outline of the rest of the paper is as follows. Sec-

tion 2 states the problem in more detail. Section 3 decsribes
the ShiftQ structure, while Section 4 describes an algorith-
mic way to obtain it from a given loop schedule. Section 5
compares our synthesis results on a set of benchmarks and
Section 6 concludes.

2. LOOP ACCELERATION PROBLEM
A loop body consists of a network of operations that are

repeatedly applied to a stream of input data to compute
a stream of results. Within this network, edges connect
operations and represent data
ow from producers to con-
sumers. We de�ne the initiation interval (II) as the ex-
ecution time delay between adjacent loop iterations. Us-
ing software pipelining techniques [5], II can be made much
shorter than the time needed to complete one full iteration of
the loop. This increases throughput of the computation by
overlapping the computation of subsequent loop iterations.

Software pipelining is traditionally used as a loop accel-
eration technique in conjunction with programmable VLIW
processors that use multiported register �les to store operands
from the time that they are �rst computed until their �nal
use. The use of rotating register �les [4] allows register life-
times to persist for multiple loop iterations without being
overwritten in subsequent iterations. Multiple copies of the
same virtual register (VR) corresponding to multiple loop it-
erations executing simultaneously are collectively referenced
as expanded virtual registers (EVRs) [9]. EVRs provide
a virtual stack of storage elements for each variable so that
old values for an EVR are retained even after a new value
is written to that EVR. EVRs \connect" a def-use network
of operations in the sense that a value produced by any of
the producing operations (defs) for a single EVR may reach
any of the consuming operations (uses) for that EVR. When
disconnected def-use networks arti�cially share a common
EVR, register renaming is used to replace a single EVR with
multiple EVRs in order to split this graph into distinct sub-
graphs. We assume that such renaming has already been
performed on the loop code. Furthermore, we initially re-
strict our discussion to singly assigned EVRs where each
EVR is computed by a single static producer because this
represents a very common siutuation. A less common sit-
uation where multiple operations compute the same EVR,
possibly under distinct predicates, will be considered later.

2.1 Custom Loop Accelerators
Custom hardware accelerators designed for software pipe-

lined loops with II = 1 can take advantage of a natural
one-to-one correspondence between hardware function units
and operations within the program graph. If every opera-
tion in the loop body has a dedicated function unit which
executes the operation once a cycle, then all units execute
loop code with full e�ciency. A similar correspondence can
be established between data
ow edges in the program graph
and actual hardware datapaths so that all datapaths can be
used with full e�ciency. Such designs are easy to generate
because no heuristics are needed to decide which operations
share function units or which operands share registers.
However, II = 1 designs are often too high in rate and too

costly. Less expensive (II > 1) designs reuse resources, over
time, to execute more than one operation. Function units
execute multiple operations, hardware datapaths transmit
multiple operands, and registers store multiple operands.
E�cient techniques are needed to design custom hardware
for II > 1 designs so that the cost of required hardware
decreases with decreasing computational needs. Several al-
gorithms have been developed in the past to determine a
program schedule that speci�es which operations should be
placed on a common function unit and at what time these
operations should occur [5, 10]. While scheduling should be
performed in a hardware cost cognizant manner [6, 8], this
paper assumes that a program schedule is fully speci�ed and
focuses on techniques to design e�cient register structures
to transport operands for a given software pipeline schedule.

2.2 Register Organizations in Custom Loop
Accelerators

Figure 1 illustrates a processor that uses a uni�ed rotat-
ing register �le to store all operands. In this example, a
program references �ve EVRs (V1, ..., V5) that are all held
in a common �le. While multi-ported �les are very useful

Unified rotating register

(V1, V2, V3, V4, V5)

F1 F2

Figure 1: The Uni�ed Register File Scheme.

F1 F2

V1,V2, V3 V4, V5

Interconnect

Figure 2: One ShiftQ per Function Unit Scheme.

for programmable processors, they are often too expensive
for highly-parallel and customized non-programmable pro-
cessors. The use of multi-ported �les imposes two signi�cant
costs. First, as the number of read and write ports into a
multi-ported �le is increased the area of the �le increases
and the performance of the �le decreases. Thus, this ap-
proach does not e�ciently acccommodate a large number
of function units. Second, register �les require controllers
that generate an address for each port in order to select
the desired register element at each time step. The need to
generate these register addresses increases the complexity of
non-programmable accelerators.
Software pipelining packs operations on to function units

so that most function units are heavily utilized. As a result,
it is often the case that a dense stream of operands emerges
from each function unit on each cycle. In this paper, we
introduce ShiftQ as a hardware interconnect structure that
is optimized to receive such a stream of operands emerging
from a single function unit and transport it to receiving
function units at a later time.
Figure 2 illustrates the use of separate ShiftQs each re-

ceiving a stream of operands from a function unit output.
Each EVR in a loop schedule has an associated function unit
on which it is computed and the EVR's values are stored
within the ShiftQ associated with that unit. By partition-
ing register storage to one ShiftQ per function unit, this ap-
proach decreases the maximum number of input (one) and
output ports to each ShiftQ1. However, each ShiftQ is still
allowed to support more than one EVR. This often allows a
single register element within a ShiftQ to support multiple

1Alternate partitionings are possible [3] but they preclude
subsequent customization as discussed later.

F1 F2

V1 V2 V3 V4 V5

Interconnect

Figure 3: One ShiftQ per EVR Scheme.

EVRs whose lifetimes do not overlap. Together, this ap-
proach can substantially decreases the cost of higly-parallel,
non-programmable accelerators as opposed to using a uni-
�ed �le.
Given a fully speci�ed software pipeline schedule, hard-

ware costs may be further decreased when a general register
�le structure is replaced by a customized ShiftQ that is spe-
cialized to a speci�c repeating computational pattern. In
addition, such ShiftQs may also be specialized in bitwidth
as each register element within the ShiftQ needs to be only
as wide as the widest operand that it must support.
Another typical approach for designing fully customized

datapaths is to assign a separate storage structure to each
EVR in the program [2, 7] as shown in Figure 3. When
operands are of uniform width, this approach increases over-
all cost as it precludes the sharing of register storage ele-
ments among multiple EVRs. However, when operands have
di�ering bitwidth, the storage of these operands in separate
ShiftQs allows each shiftQ to be separately specialized to
the needs of its operands. This additional specialization can
decrease cost over the one ShiftQ per Function unit schema.
This paper describes the ShiftQ schema; it explains the

tradeo�s that favor the one ShiftQ per function unit ap-
proach and the one ShiftQ per EVR approach; it presents
heuristics that reduce hardware cost by carefully selecting
the best apprach and; it presents experiments that illustrate
the bene�ts of these heuristics.

3. SHIFTQ SCHEMA
A ShiftQ is a set of linearly connected register cells as

shown in Figure 4. The write port of the uppermost cell
is connected to a function unit which generates a down-
ward
owing stream of values into the cell under a modulo
schedule. A set of control signals C0; : : : ; CII�1 are used
to control the ShiftQ. These signals are called the modulo
phase bus. This bus generates control signals such that
each signal Ci is asserted on all cycles t where i = t mod II.
One modulo phase bus signal is always true on each cycle
as time \rotates" through various phases.
Loading of each cell in the ShiftQ is controlled by a shift

enable (SE) control signal. When SE is low a cell retains
its old value; when SE is high a new value is latched from
input. The ShiftQ shown in Figure 4 is currently con�g-
ured as a conventional shift register; the ShiftQ shifts on
every cycle because SE for every cell is driven by the OR
of all the phase bus signals. But in general, the ShiftQ en-

Function
Unit

se

se

C0 … CII-1

se

…

Figure 4: The ShiftQ schema.

tries need not be shifted every cycle. By eliminating terms,
each cell may be \programmed" to shift as infrequently as
needed. This scheme has some attractive properties. First,
operands are not replicated within the ShiftQ, a single copy
of each operand is held within its corresponding ShiftQ.
Second, bu�ering is minimized by sharing cells among dif-
ferent operands within a single ShiftQ while keeping each
operand alive a minimum number of cycles. Finally, reduc-
ing the number of cells also helps to reduce interconnect
costs. When two operands are read (at distinct moments in
time) from the same register and by the same function unit,
a single data path supports both data transfers.
We now intuitively describe how a particular ShiftQ struc-

ture such as that shown in Figure 4 may be designed while
minimizing its size. Consider the topmost ShiftQ cell in Fig-
ure 4. A new value is shifted into this cell whenever a new
value is generated by the function unit. On other cycles
when the function unit generates no value, the ShiftQ does
not shift. Given a modulo schedule, this is easily accom-
plished by removing a phase bus signal from the OR gate
which controls the topmost cell for every cycle in which the
function unit produces no result. Subsequent cells hold val-
ues which shift out of prior cells. A shift into a subsequent
cell occurs only when the value within the previous cell is
live (still needed by the program) and when the previous cell
must shift. The repeated application of these simple rules,
for each cell, provides a concise de�nition of a ShiftQ struc-
ture that uses a minimal number of registers and is easy to
control. The shifting control is implemented by eliminating
OR gate input terms in the control logic for each cell. A
�nal cell terminates the ShiftQ when no data needs to be
shifted out.
With a clear de�nition of exactly when all shifts occur

within a ShiftQ, it is also possible to track where each value
within the ShiftQ lies at each moment in time. When a value
residing within a ShiftQ is read by an operation at a speci�c
moment in time, the ShiftQ register cell holding the value is
identi�ed, and a hardware data path is connected from that
cell to the function unit port which uses the data. In this
manner, ShiftQs can support the sequencing of operands
between function units in an II > 1 loop accelerator.

3.1 A ShiftQ Example
Figure 5 shows an example ShiftQ design with II = 8

and housing three EVRs (V1; V2; V3) that are produced and
consumed at cycles as shown below.

EVR Production time Consumption time
(mod 8) (#cycles after prodn.)

V1 0 3, 4
V2 2 3
V3 4 5, 7, 13

The register lifetimes and usage is shown pictorially in Fig-
ure 5 (a) arranged in a modulo fashion. The markings
V1; V2; V3 in the �gure identify the cycles at which the cor-
responding EVR has a consuming reference.
Following the above intuitive description of how a ShiftQ

may be designed for these EVRs, we can build a time line for
the values present in each ShiftQ cell at each cycle as shown
in Table 1. A hyphen (-) at a cycle shows that a cell does
not contain a live value at that cycle. We also superscript
each register value
owing through the cells by the iteration
number in which it is produced starting from 0.
We can see that a total of three ShiftQ cells are needed

since the value in cell 2 becomes dead on cycle 17 before a
new value will be shifted into it on cycle 18. The pattern
of live values repeats itself after cycle 16 (17 is like cycle 9
etc.).
The ShiftQ structure corresponding to this example is

shown in Figure 5 (b). The �rst cell shifts whenever the
function unit computes a new value, i.e.at cycles 0, 2, and
4 (mod 8). The second cell also shifts on all these cycles 0,
2, and 4 (mod 8) because the value contained in the �rst
cell just before these cycles (i.e., on cycles 7, 1, and 3 mod
8) is still live. On the other hand, the third cell needs to
shift only on cycle 2 (mod 8) since the value contained in
the second cell is live only before that cycle (see cycle 9).
Also note that the various consumer references are so timed
that no output ports needs to exist for the �rst cell, while
that for second cell is shared among multiple EVRs.
The ShiftQ schema can be further augmented so as to sup-

port loop initialization (livein values) as well as loop �nal-
ization (liveout values). Loop initialization and loop �nal-
ization pose special requirements which do not conform to
a steady state modulo schedule. In the next section, we will
describe an algorithmic way to arrive at a ShiftQ structure
for a given loop schedule taking into account its steady-state,
initialization and �nalization requirements.

4. SHIFTQ GENERATION
A number of design decisions must be made before a hard-

ware ShiftQ can be de�ned and optimized. A schedule of
operations and an assignment of EVRs to ShiftQs are nec-
essary before the ShiftQ construction procedure can begin.
Also, assignments to some EVRs may precede the loop body
in order to perform livein initialization. Likewise, references
to liveout EVRs may follow the loop body and allow the use
of values computed within the loop body to be used outside
the loop.
A software pipeline schedule assigns to each operation, a

function unit which executes the operation, and a schedule
time tschedop when the operation starts execution relative
to the start of an iteration. The scheduler guarantees that
when the single iteration schedule is applied repeatedly cor-

responding to the initiation of a new iteration every II cy-
cles, the schedule is still legal, i.e., all dependences (both
inter- and intra-iteration) are satis�ed, and no resource is
used simultaneously by multiple operations.
The following section describes the process of designing

and optimizing a ShiftQ according to the one ShiftQ per
function unit output scheme as illustrated in Figure 2. Sub-
sequent sections describe how ShiftQs are accessed, how
liveins and liveouts are handled, and how EVRs with multi-
ple producing operations are handled, generalizing the static
single assignment restriction imposed in Section 2.

4.1 Steady state
Figure 6 presents the pseudocode to design a steady state

ShiftQ for a given function unit output operating under a
modulo schedule. The ShiftQ is designed to shift cells only
when absolutely necessary, i.e., a cell shifts only if the pre-
vious cell shifts and the value within the previous cell is still
live. This strategy guarantees that the length of the ShiftQ
will be no more than the maximum number of simultane-
ously live EVRs produced by a functional unit.
A number of assumptions are needed to understand the

pseudocode. We assume that virtual registers are numbered
and can be identi�ed by an integer index r. The vector tsr
represents the time when the single assignment EVR r is
produced relative to the start of that iteration. Likewise,
ter represents the end of the lifetime of EVR r (the time
of the last use) relative to the start of the iteration. These
start and end times represent the time that the data enters
the ShiftQ interconnect and the time at which the data is
last needed within the interconnect.
The calculation of the time of production must accom-

modate actual function unit output latency, to, at which a
destination operand r is available relative to the start of the
operation p that produces r. That is,

tsr = tschedp + tomp

where, the operand r is the mth result operand of the op-
eration p. Likewise, a source operand r is consumed at a
time that is adjusted by the input sample time ti relative
to the start of the consuming operation c. Therefore, the
time of last use is computed as the max of such times over
all consumer references cr. That is,

ter =
max
cr (tschedc + tinc)

where the operand r is the nth source operand of the oper-
ation c.
Each cell of the ShiftQ is represented in the pseudocode as

a set of state variables that identify various properties of that
cell at all (modulo) times. The pseudocode computes state
variables for the jth cell as a function of the state variables
for the (j � 1)th cell. The solution progresses inductively
starting with the 0th cell as a basis step (Lines 3-8), growing
the ShiftQ as necessary (Lines 12-28). The following state
variables are computed at each inductive step. The variable
shift setj de�nes the set of modulo times (phase bus cycles)
on which the jth cell shifts. For the 0th cell, this is just the
set consisting of production time tsr mod II for all the
EVR r produced by this functional unit (Line 5-6). The
variable live vrj;s de�nes the EVR held within the jth cell
on cycles equal to s mod II. The variable
ight timej;s
de�nes the number of cycles that the EVR held within the
jth cell at time s has been within the ShiftQ since it was

0

2

4

6

V1
V1

V2

V3

V3

V3

Function
Unit

se

se

se

C0 … C7

V1, V2, V3

V3

(a) (b)

Figure 5: A ShiftQ Example. (a): Overlapping EVR lifetimes in a modulo schedule. (b): A ShiftQ design
for these EVRs.

Cell# EVR contained during cycle
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 V 0

1 V 0

1 V 0

2 V 0

2 V 0

3 V 0

3 V 0

3 V 0

3 V 1

1 V 1

1 V 1

2 V 1

2 V 1

3 V 1

3 V 1

3 V 1

3 V 2

1 V 2

1 V 2

2

1 � � V 0

1 V 0

1 V 0

2 � � � V 0

3 V 0

3 V 1

1 V 1

1 V 1

2 � � � V 1

3 V 1

3 V 2

1

2 � � � � � � � � � � V 0

3 V 0

3 V 0

3 V 0

3 V 0

3 V 0

3 V 0

3 � V 1

3

Table 1: A time line of values present in each ShiftQ cell.

Procedure Compute_ShiftQ_Steady_State(FUoutput)
01: // Basis step for induction identifies shift times for cell 0.
02: // Shift occurs with insertion of each EVR r generated on this function unit's output.
03: shift_set[0] = nil

04: for each EVR r generated at this FUoutput:
05: s = ts[r] mod II // calcuate modulo start time for EVR r
06: shift_set[0] += s // add s to shift_set for cell 0
07: live_vr[0,s] = r // cell 0 at time s holds EVR r
08: flight_time[0,s] = 0 // cell 0 at time s holds EVR which just entered ShiftQ
09:

10: // Given all state variables for cell[j-1], calculate state variables for cell[j].
11: // Shift occurs into cell[j] if value in cell[j-1] is live and cell[j-1] shifts.
12: j=1 // begin with second cell
13: while shift_set[j-1] not empty do // continue growing ShiftQ until no live EVR is left
14: shift_set[j] = nil

15: for each s in shift_set[j-1] // cell[j-1] shifts at s. Does cell[j] shift at s?
16: sp = prev(s, shift_set[j-1]) // previous to s in shift_set[j-1]
17: r = live_vr[j-1,sp] // cell[j-1] held EVR r before s
18: // calculate relative time at which data would enter cell[j]
19: flight_delta = (s==sp) ? II : (s-sp) mod II // range is 1 .. II
20: flight_t = flight_time[j-1,sp] + flight_delta

21: if (flight_t < (te[r] - ts[r])) // Is EVR r still live?
22: live_vr[j,s] = r // record EVR r as still live
23: flight_time[j,s] = flight_t // record its life completed at cell[j] cycle s
24: shift_set[j] += s // shift into cell[j] at time s mod II
25: endif
26: endfor

27: j=j+1
28: endwhile
endprocedure

Figure 6: Pseudocode to determine steady-state ShiftQ structure.

Procedure Find_ShiftQ_Cell(r, t)
01: // Find the cell position j where EVR r will be

02: // available t cycles after its production
03: j = 0
04: loop
05: for each cycle s in 0..(II-1)
06: if (live_vr[j,s]==r && flight_time[j,s]==t)
07: return j

08: endfor
09: j = j+1
10: forever
endprocedure

Figure 7: Pseudocode for accessing ShiftQs.

�rst computed. Note that this pseudocode only computes
the state variables at sparse moments in time corresponding
to actual shifts taking place. Interpolation to evaluate each
state variables at intervening moments in time when a cell
does not shift is straightforward and not shown.
The inductive ShiftQ computation proceeds as follows.

For each cycle s at which the (j�1)th cell shifts, we need to
identify whether the previously contained value is still live
or not, and therefore would need to shift into cell j. The
previously contained value of cell j � 1 is just the one that
was shifted at the one previous shift sp (Line 16). Note that
this could be the same as s due to the modulo nature of the
schedule. The positive time di�erence between the previous
shift sp and the current shift s together with the
ight time
already spent in cell j � 1 gives the total
ight time of this
EVR. This
ight time is compared against the EVR's actual
lifetime (Line 21) and the shift s is recorded if the variable
is still live.
Given the number of ShiftQ cells as computed above and

the shift setj of each cell to control the shifting, a hardware
ShiftQ structure as shown in Figure 4 can easily be built.

4.2 ShiftQ access
Each EVR reference in the loop is characterized by its

EVR index r and a relative iteration distance d which
identi�es the value of EVR r produced d iterations ago. The
ShiftQ cell position at which this value (r; d) is stored is
not �xed, but it may shift down as newly produced values
displace old ones. Therefore, we need to compute the cell
position holding a value (r; d) within the ShiftQ at any given
time. Since each consumer reference accesses the value at
a �xed time tc relative to the start of the iteration2, this
cell position is �xed for each consumer operation. We can
compute this position easily using the state variables of the
ShiftQ as shown in Figure 7. For a consumer reference at
time tc referencing the EVR value (r; d), this EVR must
have been produced at time given by,

tp = tsr � d � II

The
ight time of the value (r; d) since its production is then
simply tc � tp which is used to search for the appropriate
cell position. The pseudocode shown in Figure 7 attempts
to search for the EVR r in each modulo cycle s of every
ShiftQ cell starting from the zeroth. The �rst cell in which
the
ight time reaches the desired value is returned.

2As stated earlier, this time of access includes the input
sample latency, tir.

4.3 Livein / Liveout values
In general, the software pipelined loop may have livein

and liveout values that must be initialized before entering
the loop body, and must be referenced after the loop ter-
minates, respectively. In the modulo schedule, the livein
values appear to have been produced by operations execut-
ing in iterations before the �rst one. Likewise, the liveout
values appear to be consumed by operations executing in it-
erations after the last one. We term the corresponding pro-
ducer/consumer operation as a virtual producer/consumer.
We need to identify positions within the ShiftQ where such
values will be stored and create a mechanism to seamlessly
integrate them with the steady state schedule when the loop
starts or terminates. Below we describe the livein handling
mechanism and architecture in detail. The liveout mecha-
nism is symmetric and hence not shown for brevity.
The livein initialization scheme is computed using the

pseudocode shown in Figure 8. First, the overall livein refer-
ences of the loop body are classi�ed according to the ShiftQ
that houses the corresponding EVR. Each livein EVR ref-
erence (r; d) identi�es the iteration distance d, which is the
number of iterations ago it appears to have been produced.
Then, assuming that the loop starts at absolute time Ts, the
absolute virtual production time Tvp of this EVR reference
is computed as d � II cycles earlier than its absolute pro-
duction time for the �rst iteration (Line 4). If this time is
earlier than the start of the loop Ts (Line 5), then the value
appears to have been already produced and reside in one of
the steady state ShiftQ registers. This initializing position
in the ShiftQ at the start of the loop is identi�ed by com-
puting how far the value would have shifted down during
the time elapsed between its (virtual) production and the
start of the loop (Line 7).
If the virtual production time of a livein is later than the

start of the loop, as in the case when the producer opera-
tion is scheduled very late in the loop schedule, we can not
initialize the livein value into the steady state registers since
they are being used to store other EVRs during this time.
Therefore, all such liveins are collected separately and are
sorted according to their entry time into the ShiftQ. These
values are assigned separate storage called a Pre�xQ where
they may be initialized and
ow into the ShiftQ at the ap-
propriate time.
The hardware scheme integrating ShiftQ with the Pre�xQ

is shown in Figure 9. The important point to note is that
now a multiplexor is introduced in the path of the func-
tion unit to the ShiftQ, which is
ipped occasionally in the
direction of the Pre�xQ rather than the function unit via
the pre�x shift enable (PSE) control signal. The PSE also
causes the entire Pre�xQ to shift down by one element. The
PSE is \programmed" to allow such shifting at precisely the
virtual production times tv of the various liveins (Figure 8,
Line 19). This correctly emulates the fact that a value was
produced by the FU at that time.

4.4 Multiple Producer ShiftQs
Until now, we have been considering only singly assigned

EVRs having only one producer operation (and hence func-
tion unit). Now, let us consider the case when multiple op-
erations may conditionally write to the same EVR. In this
case, the lifetime of an operand r begins with the earliest

Procedure Compute_ShiftQ_Livein(ShiftQ)
01: // Assume: The modulo schedule starts at absolute time Ts.

02: Prefix_list = nil
03: For each livein reference (r,d) for this ShiftQ:
04: Tvp = Ts + ts[r] - d*II // absolute time of virtual producer
05: if (Tvp < TS) // initialize in actual ShiftQ
06: flight_time = TS - Tvp // time elapsed since virtual prodn.
07: c = Find_ShiftQ_Cell(r, flight_time)

08: Initialize (r,d) in ShiftQ cell[c]
09: else // initialize in separate PrefixQ
10: prefix_list += (Tvp, (r,d))
11: endif
12: endfor
13: // Construct PrefixQ

14: sort Prefix_list by ascending key Tvp
15: j = -1
16: For each (Tvp, (r,d)) in Prefix_list // earliest livein first
17: Allocate PrefixQ cell[j]
18: Initialize (r,d) in cell[j]
19: Shift PrefixQ by one at time Tvp // emulate production

20: j = j-1
21: endfor
endprocedure

Figure 8: Psuedocode for ShiftQ livein initialization.

scheduled producer reference pr. That is,

tsr =
min
pr (tschedp + tomp)

Furthermore, the EVR is uniquely housed in the ShiftQ cor-
responding to the function unit on which the earliest pro-
ducer is scheduled. If there are multiple operations produc-
ing the EVR at the same time (under mutually exclusive
predicates), then we can choose any one of the correspond-
ing ShiftQs to house the EVR.
The ShiftQ and Pre�xQ generation algorithm described

above remains exactly the same. However, the hardware
schema shown in Figure 9 gets modi�ed by allowing remote
function units producing the same EVR to overwrite the
current value of the EVR housed in this ShiftQ. This is easily
accomplished by adding a multiplexor in front of the ShiftQ
cell that needs to be overwritten much in the same way as
the Pre�xQ is multiplexed at the start of the ShiftQ. The
cell position to be overwritten is determined in the same way
the position of a consumer access is determined as described
in Section 4.2.

5. EXPERIMENTAL EVALUATION
In this section, we will evaluate and compare the cost of

the various register organization schema presented in Sec-
tion 2.2 across several embedded applications. First, we
present an intuitive description of some cost reducing heuris-
tics used in generating ShiftQs.

5.1 ShiftQ Optimization Heuristics
One drawback of the one ShiftQ per function unit out-

put scheme (SHQ-FU) as presented in Section 4 is that the
sharing of register values is limited to those produced by a
single function unit. Therefore, the total number of registers
needed in a computation may in general exceed those allo-
cated in a uni�ed rotating register �le con�guration (URR).
However, this fact becomes an advantage when we allow cus-

tomization of individual ShiftQs based on the datawidths of
EVR values contained in them. The width of a ShiftQ needs
to be only as wide as the maximum width EVR produced by
the function unit feeding it. Therefore the total number of
bits stored in all the ShiftQs (as a measure of the hardware
cost) may still be less than the uni�ed register �le con�gu-
ration which must be as wide as the maximally wide EVR
over the whole loop schedule.
While the scheme where only one EVR is allowed per

ShiftQ (SHQ-EVR) does not share registers and hence may
have a higher register count, it allows additional customiza-
tion of datawidth to just one EVR. Some of this bene�t may
be applied even to the SHQ-FU scheme by using the follow-
ing width reducing technique. If values with longer lifetimes
are narrower than those that are short-lived, we can \taper"
the ShiftQs in length since all values enter one end of the
ShiftQ (the wide end) and then die at di�erent times mov-
ing towards the other end (the narrow end). We use this
tapering technique by default in all our experiments.
Sometimes, when EVRs with widely di�erent widths are

produced on the same function unit output and they have
similar and overlapping lifetimes, then the SHQ-FU scheme
may end up wasting bits as compared to the SHQ-EVR
scheme due to unwarranted register sharing. In this case, a
simple cost reducing heuristic is to partition the EVRs being
housed in a ShiftQ into classes of similar widths (within a
threshold percentage) and form multiple separate ShiftQs,
one for each class. We call this the partitioned ShiftQ (PSHQ)
scheme. Note that, although we no longer have one ShiftQ
per function unit output, the ShiftQ generation algorithms
are still valid, albeit on a reduced set of EVRs. In our ex-
periments, this heuristic is applied with a width threshold
of 20%, i.e., a new ShiftQ class is generated if the width of
an EVR di�ers from an existing class by more than 20%.
Finally, another space saving heuristic used traditionally

in uni�ed rotating register �les is to allocate EVRs in a mod-
ulo wrapped manner (closed-loop model) [4] thereby saving

Function
Unit

Mux

se

se

se

se

C0 … CII-1

se

…

pse

…
PrefixQ

ShiftQ

1 0

Figure 9: The ShiftQ-Pre�xQ schema.

some space as opposed to allocating them in a sliding win-
dow (open-loop model). This takes advantage of the fact
that all registers in the uni�ed �le e�ectively shift at the
same time. In the SHQ-FU scheme, however, more than
one EVRs may exist that cause the various cells to shift
at potentially unequal intervals. Therefore, the close-loop
model does not work for the SHQ-FU scheme and it may
lose some opportunity to save space. However, when only
one EVR is present in a ShiftQ, its shifting pattern is the
same for every cell and therefore the closed-loop allocation
model may be used. In our experiments, we assume that
this optimization has been made for SHQ-EVR and PSHQ
schema (in every partition that has only one EVR).

5.2 Experimental Setup
Table 2 shows several embedded applications from various

domains for which loop accelerators with ShiftQs have been
designed using the PICO-NPA system. These include tele-
com applications (atmcell, viterbi), signal processing (�r),
image �ltering (linescreen, taubman, sobel), and data com-
pression (dct, hu�man). The table shows the lines of C code
and the depth of the kernel loop nest that is converted into
a hardware accelerator.
The multi-dimensional computation intensive kernels of

these applications are �rst automatically transformed into
a single-dimension loop that can be modulo scheduled at a
speci�ed throughput given by II. The resulting code is syn-
thesized into hardware for each of the interconnect schemes
described above. For cell, dct, and �r, we have synthesized
several versions with di�erent II in order to show the ef-
fect of increasing II which e�ectively decreases the achieved
throughput of the accelerator. For others, we have �xed II
to a typical value.

5.3 Results
The loop accelerators designed by PICO-NPA are non-

programmable, highly specialized hardware structures de-
signed to exploit very high levels of instruction-level par-
allelism (ILP) in the applications. The range of through-
put achieved in the applications reported here was from 1
op/cycle for �r at II=8, to 128 ops/cycle for atmcell at II=1.
In general, the throughput increases linearly as the II is de-
creased. Beyond II=1, we can scale the performance of the
accelerators by allocating more than one processor. For sim-
plicity, all the designs considered in this study are single
processor designs.
Another important point to note is that the cost of the

loop accelerators designed by PICO-NPA is typically a frac-
tion of the cost of a general purpose processor (or a DSP
processor) because of the highly customized datapath de-
signed speci�cally for that one application as shown in this
paper. The range of estimated gate cost of the accelera-
tors designed in this study was from 6122 gates for �r at
II=8, to 68122 gates for dct at II=1. For the same applica-
tion, the cost typically decreases (sub-linearly) as the II is
increased. Such low cost/performance ratios are not achiev-
able in a general purpose processor which must implement
a programmable solution.
We compare loop accelerators designed by PICO-NPA us-

ing each of the register interconnect schemes presented in
this paper for each of the applications at a given II. Ta-
ble 3 shows the number of registers allocated and the total
number of bits allocated in each of the schemes for each ap-
plication. The number of registers is useful as an estimate
of the degree of sharing among the various EVRs. Max-
imal degree of sharing is possible in the case of a uni�ed
rotating register �le (URR) while no sharing is possible in
the case of the SHQ-EVR scheme3. However the total num-
ber of bits allocated is still quite high in the URR scheme
since all registers have the same width (32-bits) and there-
fore a lot of bits are wasted for narrow EVRs. This e�ect is
clear in Figure 10 where we have plotted the total number
of bits used in each of the schema. The biggest penalty for
the URR scheme is for atmcell which contains a lot of 1-bit
data. On the other hand, for some applications (lyapunov
and hu�man) URR yields the smallest number of bits over
all schema because the application is dominated by 32-bit
data and hence allows maximal sharing of registers with-
out wasting too many bits. Still, in terms of actual silicon
area, we expect the URR scheme to be much more expensive
than the other schemes due to a highly ported centralized
organization.
The two ShiftQ schemes take an intermediate position on

register sharing while enabling width optimizations. The
SHQ-FU scheme uses less bits than either URR or SHQ-
EVR scheme except in two cases. First, when II = 1 SHQ-
EVR scheme wins out because there is no sharing anyway
and a closed-loop model yields the best allocation. Second,
for certain applications such as taubman, an accidental shar-
ing between a wide and a narrow EVR wastes too many bits.
The PSHQ scheme is designed to capture both these scenar-
ios. In general, it may yield a little worse bit cost than the
SHQ-FU scheme due to potential loss of sharing but it is

3Sometimes the number of registers in URR scheme are
higher than those in SHQ-EVR scheme becuase an open-
loop allocation model was assumed for URR while a closed-
loop model was assumed for SHQ-EVR.

app.II kernel size Description

�r.1,2,4,8 1(2D) 16-tap Finite impulse response �lter (convolution)
dct.1,2,4,8 42(2D) 8-element Discrete Cosine transformation on 8x8 blocks

atmcell.1,2,4,8 135(1D) ATM cell recognition in a stream of bits
hu�man.8 16(2D) Hu�man coding of blocks of 64 elements
linescreen.6 59(2D) Halftoning algorithm on an image stripe
lyapunov.6 12(3D) Matrix equation solver
sobel.8 18(2D) Edge detection algorithm

taubman.8 4(6D) Image demosaicing algorithm
viterbi.6 63(2D) Error-correcting decoding of a signal

Table 2: Application kernels for evaluation.

app.II URR SHQ-EVR SHQ-FU PSHQ
#regs #bits #regs #bits #regs #bits #regs #bits

�r.1 34 685 26 378 28 416 26 378
�r.2 16 295 19 298 17 258 18 266
�r.4 10 196 13 215 11 175 12 183
�r.8 8 163 11 182 9 142 10 150
dct.1 139 3115 139 1797 146 1965 139 1797
dct.2 78 1814 112 1673 88 1254 89 1252
dct.4 50 1197 104 1648 65 908 66 909
dct.8 36 904 98 1627 47 685 48 679
atmcell.1 293 5563 300 550 304 616 300 550
atmcell.2 262 4850 303 553 295 595 283 533
atmcell.4 243 4490 306 576 257 532 267 537
atmcell.8 242 4365 310 596 259 508 264 476
hu�man.8 19 453 34 594 24 483 28 464
linescreen.6 48 916 78 499 68 460 69 468
lyapunov.6 72 1374 117 1995 82 1450 86 1474
sobel.8 122 2912 170 1045 166 726 168 746
taub.8 95 2265 84 677 116 1553 79 610
viterbi.6 89 1763 164 1104 123 943 131 982

Table 3: Results of using various register interconnect schemes.

0

1000

2000

3000

4000

5000

6000

fir
.1

fir
.2

fir
.4

fir
.8

dc
t.1

dc
t.2

dc
t.4

dc
t.8

at
m
ce
ll.
1

at
m
ce
ll.
2

at
m
ce
ll.
4

at
m
ce
ll.
8

hu
ffm
an
.8

lin
es
cr
ee
n.
6

lya
pu
no
v.
6

so
be
l.8

ta
ub
.8

vit
er
bi
.6

T
o
ta
l b
it
s URR

SHQ-EVR

SHQ-FU

PSHQ

Figure 10: Total number of bits used in various register interconnect schema.

more robust for all values of II and for applications with
varying data widths. In a real world situation, it is also pos-
sible to design and evaluate all three schema and pick the
best.

6. CONCLUSIONS
In this paper we have presented a novel, low-cost, bu�er

and interconnect mechanism called ShiftQs to be used in
custom hardware accelerators executing modulo scheduled
loops. The scheme results in smaller total number of bits
needed than either a uni�ed register �le design or a design
in which each virtual register is allocated in a separate hard-
ware structure. A more detailed cost analysis (e.g., includ-
ing multiplexing and interconnect) is the subject of ongoing
investigation.
We have shown an algorithmic way to derive the ShiftQ

design and its initialization logic automatically from the loop
schedule. The scheme has been implemented within the
PICO-NPA high-level synthesis tool and has already pro-
duced successful RT-level designs for several embedded ap-
plication kernels.

7. REFERENCES
[1] S. Aditya, B. R. Rau, and V. Kathail. Automatic

Architecture Synthesis of VLIW and EPIC Processors.
In Proceedings of the 12th International Symposium
on System Synthesis, San Jose, California, pages
107{113, November 1999.

[2] S. Devadas and R. Newton. Algorithms for hardware
allocation in data path synthesis. IEEE Transactions
on Computer-Aided Design, 8(7), July 1989.

[3] J. Hoogerbrugge and H. Corporaal. Register �le port
requirements of transport triggered architectures. In
Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 191{195,
December 1994.

[4] V. Kathail, M. Schlansker, and B. R. Rau. HPL
PlayDoh architecture speci�cation: Version 1.0.
Technical Report HPL-93-80, Hewlett-Packard
Laboratories, Feb. 1994.

[5] M. S. Lam. Software pipelining: An e�ective
scheduling technique for VLIW machines. In
Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and
Implementation, pages 318{328, June 1988.

[6] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber,
and T. Sherwood. Bitwidth cognizant architecture
synthesis of custom hardware accelerators. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(11), November 2001.

[7] S. Note, W. Guerts, F. Catthoor, and H. D. Man.
Cathedral-III: Architecture-driven high-level synthesis
for high throughput DSP applications. In Proceedings
of the 28th ACM/IEEE Design Automation
Conference, pages 597{601, June 1991.

[8] P. G. Paulin and J. P. Knight. Force-directed
scheduling for the behavioral synthesis of ASICs.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 8(6), June 1989.

[9] B. R. Rau. Data
ow and dependence analysis for
instruction level parallelism. In U. B. et al., editor,
Proc. Fourth Intl. Wshop. on Languages and

Compilers for Parallel Computing, pages 236{250.
Springer-Verlag, 1992.

[10] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proceeding of the 27th
Annual International Symposium on
Microarchitecture, pages 63{74, December 1994.

[11] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail,
S. Mahlke, G. Snider, S. Anik, and S. Abraham.
High-Level Synthesis of Nonprogrammable Hardware
Accelerators. In Proc. Application-Speci�c
Architectures and Processors, 2000.

