

Bounding Space Usage of Conservative
Garbage Collectors

Hans-J. Boehm
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-251
October 9th , 2001*

E-mail: Hans_Boehm@hp.com

garbage
collection,
memory
management,
space bound

Conservative garbage collectors can automatically reclaim unused
memory in the absence of precise pointer location information. If a
location can possibly contain a pointer, it is treated by the collector as
though it contained a pointer. Although it is commonly assumed that
this can lead to unbounded space use due to misidentified pointers,
such extreme space use is rarely observed in practice, and then
generally only if the number of misidentified pointers, such extreme
space use is rarely observed in practice, and then generally only if the
number of misidentified pointers is itself unbounded.

We show that if the program manipulates only data structures
satisfying a simple GC-robustness criterion, then a bounded number of
misidentified pointers can result at most in increasing space usage by
a constant factor. We argue that nearly all common data structures
are already GC-robust, and it is typically easy to identify and replace
those that are not. Thus it becomes feasible to prove space bounds on
programs collected by mildly conservative garbage collectors, such as
the one in [2]. The worst-case space overhead introduced by such mild
conservatism is comparable to the worst-case fragmentation overhead
for inherent in any non-moving storage allocator.

The same GC-robustness criterion also ensures the absence of temporary
space leaks of the kind discussed in [13] for generational garbage collectors.

* Internal Accession Date Only Approved for External Publication
To be published in and presented at the 29th Annual ACM Symposium on Principles of
Programming Languages, Portland, OR 16-18 January 2002
 Copyright Hewlett-Packard Company 2001

Bounding Space Usage of Conservative Garbage
Collectors

Hans-J. Boehm�

Hewlett-Packard Laboratories
1501 Page Mill Rd.
Palo Alto, CA 94304

Hans Boehm@hp.com

ABSTRACT
Conservative garbage collectors can automatically reclaim
unused memory in the absence of precise pointer location
information. If a location can possibly contain a pointer, it
is treated by the collector as though it contained a pointer.
Although it is commonly assumed that this can lead to un-
bounded space use due to misidenti�ed pointers, such ex-
treme space use is rarely observed in practice, and then
generally only if the number of misidenti�ed pointers is itself
unbounded.
We show that if the program manipulates only data struc-

tures satisfying a simple GC-robustness criterion, then a
bounded number of misidenti�ed pointers can result at most
in increasing space usage by a constant factor. We argue
that nearly all common data structures are already GC-
robust, and it is typically easy to identify and replace those
that are not. Thus it becomes feasible to prove space bounds
on programs collected by mildly conservative garbage collec-
tors, such as the one in [2]. The worst-case space overhead
introduced by such mild conservatism is comparable to the
worst-case fragmentation overhead for inherent in any non-
moving storage allocator.
The same GC-robustness criterion also ensures the ab-

sence of temporary space leaks of the kind discussed in [13]
for generational garbage collectors.

1. INTRODUCTION
Garbage collection, or automatic memory reclamation, al-

lows unreachable memory objects to be automatically recy-
cled, providing two kinds of bene�ts to the programmer:

Convenience The programmer does not need to provide
code to explicitly deallocate memory. Nor do interface
speci�cation need to deal with issues of object \own-
ership" to assign deallocation responsibility. This can

�Some of this work was done while the author was employed
by SGI.

substantially simplify both interface speci�cations and
programs that use them. Less frequently, it can result
in signi�cant application speedups.1

Safety Since the programmer does not explicitly deallocate
memory, there is no danger of accidentally reusing an
object's memory while the object can still be accessed.
This prevents one module from corrupting the data
structures of another module to which it should not
have access, greatly simplifying fault diagnosis, espe-
cially in large projects. It also makes it possible for
the rest of the language implementation to guaran-
tee interesting safety and security problems, e.g. that
a module cannot read or write arbitrary sections of
memory by misinterpreting an integer as a pointer.

In this paper, we will be interested in tracing garbage col-
lectors, which are most commonly used in language run-time
systems. These traverse all reachable memory objects, and
then make the remainder of the heap available for reallo-
cation to new objects. Traditionally this has required that
the garbage collector be able to precisely identify all pointer
variables (roots) and be able to accurately locate all pointer
�elds inside heap objects. Such collectors are commonly de-
scribed as type-accurate.
Conservative garbage collectors have relaxed this require-

ment to tolerate ambiguous pointers, i.e. locations which
may or may not contain pointers. Ambiguous pointers whose
value is a valid object address are treated as though they
were pointers, in that the data structure they reference may
not be reclaimed.
They have several advantages leading to their continued

use, e.g. in some of IBM's Java virtual machines, in the
runtime for the GNU Java compiler, in Amazon.com's web
server, in some Xerox printers, in many Scheme implemen-
tations, etc.
In particular:

1. They can be used with C/C++ programs and the vast
majority of preexisting binary libraries. The C/C++
compiler must obey some additional correctness con-
straints in that pointers must remain recognizable by
the collector. Empirically standard compilers satisfy
this constraint for all programs at low optimization
levels, and for nearly all programs at high optimiza-
tion levels. This typically requires a large degree of

1See for example http://www.hpl.hp.com/personal/
Hans Boehm/gc/example.html

conservatism, in that essentially all pointers will be
ambiguous.

2. They can be used with compilers that generate C code.
This typically requires less conservatism in the collec-
tor, since the compiler may be able to describe pointer
locations in heap objects.

3. They allow the collector/compiler interface to be much
simpler. In the case of a fully conservative collector for
C/C++ it is almost nonexistent. In other cases, the
collector may elect not to describe pointer locations in
a few cases in which it would be diÆcult or expensive
to do so, e.g. for the top frames of thread stacks [2].
Many type accurate, i.e. non-conservative collectors
introduce time or space overhead into non-allocating
code as part of the collector interface; this is much less
of an issue for conservative collectors.

4. They facilitate language interoperability. They allow
multiple language implementations to more easily share
a single garbage collected heap, since there needs to be
far less agreement on the collector interface [15]. In the
case of a mixed Java/C program, they allow the collec-
tor to scan the C variables for pointers to Java heap
objects, thus eliminating the need for complex, rela-
tively error-prone, and sometimes expensive interfaces
such as JNI [10].2

5. Since language interoperability is easier, it also tends
to be easier to write C language run-time support code
for something like a Java virtual machine. That sup-
port code is likely to be more eÆcient, since it does
not need to worry about explicit communication with
the garbage collector. Small degrees of conservatism
provide most of the advantage here; it often simpli�es
matters greatly if the collector can simply see variables
local to the run-time system on the stack.

On the other hand, conservative collectors have the disad-
vantage that they restrict object movement. There is no way
to safely update a \pointer" to a moved object, unless we
are certain that it was really a pointer.3 Although it is often
a performance advantage not to move objects, it appears to
be a signi�cant performance disadvantage for programs that
allocate primarily large numbers of very short-lived objects.
Conservative collectors also risk retaining unreferenced

memory as a result of misidenti�ed pointers. A value v of
some other data type, e.g. an integer, may be misidenti�ed
as a pointer to a large, and possibly growing, data structure,
which is not really reachable. In this way v may cause the
collector to retain large amounts of unreachable memory.
Empirically, this occasionally has some e�ect on space us-

age, but this a�ect is rarely catastrophic[8, 4]. The large
majority of applications behave perfectly well with a con-
servative garbage collector. A few applications don't, espe-
cially if the collector is too naive. But in those cases, the
failure is generally easily detectable during testing, and can
be avoided by communicating small amounts of type infor-
mation to the garbage collector.

2Note that the reference is a 300 page book on JNI, de-
scribed by the amazon.com reviewer as \densely written".
It is not the only book-length treatment of JNI.
3It is still possible to move objects referenced only by un-
ambiguous pointers, c.f. [3].

We are only aware of one explicitly deallocating program
in which replacement of explicit deallocation with conserva-
tive garbage collection failed unavoidably. And in that case
conservative pointer tracing was not the issue; the program
relied on deallocating reachable, but unaccessed memory.
Thus no garbage collector could have solved the problem.
But our concern here is not the empirical or typical per-

formance of conservative garbage collection. That issue is
addressed well by [8]. We would instead like to address the
concern that a conservatively collected program may unex-
pectedly retain large amounts of memory due to a particu-
larly unfortunate misidenti�ed pointer, which did not arise
during testing. We would like to bound space usage indepen-
dently of the particular pointer-like values that arise during
a particular execution.
We do this both be proving a mathematical bound on

space consumption, and by suggesting a testing technique
for identifying potential unbounded growth without actu-
ally needing to �nd an execution for which a particularly
unfortunate pointer misidenti�cation actually occurs. The
primary goals are to

1. Get us closer to making conservative garbage collectors
safe for environments that require hard space bounds,
such as embedded environments,

2. To provide a more intuitive explanation of why con-
servative collectors in fact behave reasonably well in
practice, and

3. To provide a better characterization of what can pro-
voke failure of conservative collectors, so that it can be
avoided.

Our results can also be used to bound the damage caused
by an inappropriate object promotion in a type-accurate
generational garbage collector.

1.1 An Embarrassing Failure Scenario
Some data structures do not interact well with conserva-

tive garbage collection. Lazily evaluated in�nite lists are
one such example. Fortunately for us, these are rarely used
with conservative garbage collectors.
A more common example, mentioned in [16, 4], is a simple

queue data structure, implemented as a singly linked list,
with a head and tail pointer. Elements are inserted into the
tail position and removed at the head by advancing a head
pointer. Removed elements should be reclaimable by the
garbage collector. But a single false pointer to one of the
queue elements will prevent any further such reclamation, as
in �gure 1. Thus if the active queue length is intended to be
bounded, a conservative collector may arbitrarily increase
space consumption as the result of a single false reference.
We make several observations about this example:

1. This is an unpleasant situation, given our goal. The
presence of such data structures clearly precludes prov-
ing any interesting bounds on space consumption.

2. It is not immediately apparent how to test for this sit-
uation. We ran a simple toy program based on this
data structure on Linux/X86 with our fully conser-
vative collector4, and no apparent space leaks. Un-
fortunately, a single misidenti�ed dynamically-created

4cf. http:/www.hpl.hp.com/personal/Hans Boehm
/gc

False reference head tail

Erroneously retained
(growing)

...

Figure 1: False reference retaining unbounded space
in a queue

\pointer" could introduce such a leak, and indeed it
did appear with more collector debugging facilities en-
abled.5

3. The above data structure is easily �xable. Clearing
the next �eld in the list element being removed from
the queue will avoid the potential disaster. This kind
of \�x" is still much safer than resorting to manual
storage management, since errors cannot corrupt un-
related data structures. It negates the convenience ad-
vantage of using a garbage collector, but it preserves
the safety advantages.

4. The problem is not limited to what is normally re-
ferred to as conservative garbage collection. It could
also be caused by having the garbage collector acciden-
tally trace from a dead compiler-generated variable, or
by promoting a queue element to a generation that is
e�ectively not collected.6 This data structure is safe
only with a system that is carefully designed to prevent
any form of extra space retention (cf. [1]).

The next section is concerned with \well-behaved" data
structures that bound the damage caused by spurious point-
ers, or by accidental promotion in a generational collector.
We argue that most commonly encountered data structures
are well-behaved in this sense.

2. BACKWARD-FORWARD REACHABILITY
In the following, and in the rest of the paper, we say that

an object is reachable, conventionally reachable, or properly
reachable from another other object if it can be reached by
following real, not misidenti�ed, pointers form the other ob-
ject. If no other object is mentioned, we mean that it is
accessible by following real pointers from a program vari-

5The \black-listing" technique of [4] will usually prevent this
from happening as the result of a misidenti�ed preexisting
constant value. The value would have to be generated af-
ter or near the time the corresponding memory object is
allocated, and then remain constant.
6For example, VisualWorks Smalltalk apparently has a per-
manent object space, to which all old objects can be moved
as a result of an explicit client call, but which is not im-
plicitly collected. An accidental promotion of a single queue
element to this space would have the same e�ect. Similar
problems can occur in more conventional generational col-
lectors, but the damage would be temporary, since all gen-
erations are eventually collected. Nonetheless it could cause
appreciable performance degradation.

root

x

y

Figure 2: Objects backward-forward-reachable from
root through x.

able or root. The reachable objects are precisely those that
a type-accurate, i.e. non-conservative collector would retain.

Observation 2.1. Unreachable objects are never modi-
�ed. In particular objects erroneously retained by a con-
servative collector cannot be modi�ed after they become un-
reachable. We rely heavily on this rather obvious fact.

On object x is a predecessor of y if x points directly to y.
We continue to use this terminology to refer to the original
graph even in contexts in which we also need to discuss the
reverse of the original edges.
We de�ne the set of objects that are backward-reachable

from an object x to be those objects y such that x is reach-
able from y. De�ne the set of objects backward-reachable
from a root pointer to be those objects backward-reachable
from the object to which it refers. An object is backward-
reachable if it is backward-reachable from any root.
An object y is backward-forward-reachable from a root

r through an anchor x i� x is backward-reachable from r

and y is reachable from x. (See �gure 2.) An object y

is backward-forward-reachable if there is an object x such
that y is backward-forward reachable through x. An ob-
ject is backward-forward-reachable if it is backward-forward-
reachable from any root.
Call a data structure, i.e. a set of objects, strongly con-

nected if, for any two objects x and y in the set, y is reach-
able from x if and only if x is reachable from y, i.e. an ob-
ject is reachable from another if and only if it is backward-
reachable. Data structures such as doubly linked lists, or
trees with parent pointers that maintain back-pointers cor-
responding to all forward pointers, are particular instances
of this.

Theorem 2.1. If a program only builds strongly connected
data structures, that is if x is reachable from y whenever y is
reachable from x, then the set of backward-forward reachable
objects is the set of reachable objects.

Proof Trivial. �

Theorem 2.2. If a program is purely \functional", in the
sense that an object's �elds are set only during initialization,
then the set of all objects S backward-forward reachable from
a root r through an anchor x, was at some point reachable
from a single root.

Proof The object x must have been accessible through a
root at some point. Since objects are not changed, all of S
was reachable through x at that point. �
We de�ne a program to be strongly GC-robust if it satis�es

the conclusion of the preceding theorem, that is if all objects
backward-forward reachable from a root through a single an-
chor were at some point reachable from a root. We say that
a data structure is strongly GC-robust if this statement ap-
plies when restricted to objects that are part of that data
structure. Both data structures created by functional pro-
grams and circular data structures are strongly GC-robust.
Note that we are really applying this de�nition to the

garbage collector's view of the data. In particular, although
lazy functional programs can be reasoned about as though
they did not update objects, the implementation, as seen by
the garbage collector, does. Thus we do not consider them
\functional" in the above sense. Lazy functional programs
manipulating in�nite data structures are generally not GC-
robust, leading to the issues observed in [16, 13].

3. A SPECIFIC BOUND
In the following we assume:

1. A garbage collector will only consider memory objects
to be reachable if they were properly allocated in the
past, and thus were at some point reachable. Pointers
to unallocated memory are never considered valid.

2. An object that was last modi�ed by the collector will
not subsequently be viewed as live by the collector,
before having been reallocated. E�ectively this means
that once the collector has reclaimed an object, it will
stay reclaimed until it is reallocated. This may take
some care if the collector builds free lists, which might
be referenced by false pointers.

3. Objects that appear to be reachable to the collector
can be modi�ed only by the client (mutator).

4. Any modi�ed object is directly pointed to by a root at
the time of modi�cation.

We expect that these hold for all common conservative
collector implementations.

Theorem 3.1. Consider a conservative garbage collector
which misinterprets a single arbitrary value v as pointer.
The set of all objects S that appear reachable from v, i.e.
that are reachable from the object x containing address v,
were at some point backward-forward reachable from a single
root through a single anchor. The anchor can be chosen to
be x.

Proof Let y be the last object in S to be created or mod-
i�ed. Let time t be immediately after y's creation or modi-
�cation. Clearly at that point y was pointed to by a root r.
Since this is the last modi�cation of S, y must already have
been reachable from x at this point. Thus x was backward
reachable from y, and thus all of S was backward-forward
reachable from r through anchor x at time t. �

Corollary 3.2. If a program uses only strongly GC-robust
data structures, and the number of pointers misidenti�ed by
a garbage collector is bounded by N (e.g. because only the
stack is scanned conservatively, and its depth is bounded, or

because only the top stack frame is scanned conservatively, or
because we only conservatively scan stack frames correspond-
ing to the run-time system), then the extra space returned
by conservative pointer scanning is bounded by N times the
maximal amount of live memory.

Proof Follows trivially from the preceding theorem and
the de�nition of strong GC-robustness. Each misidenti�ed
pointer retains a data structure that was backward-forward
reachable, and hence reachable at some point during pro-
gram execution. Thus the memory retained by a single
misidenti�ed pointer is bounded by the maximal amount
of live memory used during program execution. �
The above corollary gives a rather extreme bound on ex-

cess memory retention, but a bound nonetheless. The bound
itself may be suÆcient to give hard guarantees in a few
cases, e:g: if there are only a few conservatively scanned
roots, and/or the program maintains many disconnected
data structures, only one of which can be retained by a false
reference. In any case, it helps to explain why real conser-
vatively collected programs don't grow without bounds, and
rarely retain signi�cant amounts of extra memory.

4. TESTING FOR POTENTIAL LEAKS
The above gives a provable space bound on conservatively

garbage-collected programs. We assumed that the underly-
ing program was strongly GC-robust.
In many cases we are less concerned with a hard space

bound than with some empirical assurance that the pro-
gram will not exhibit unbounded space leaks. However, we
also often do not have a proof that all the programs data
structures are strongly GC-robust. We would like to be able
to test such programs for potential space leaks.
As we saw in our motivating example, even non-GC-robust

programs may run in apparently bounded space, simply be-
cause no false pointers happen to reference the o�ending
data structure. Thus simply testing such programs as we
would a non-garbage-collected program may not be satis-
factory. Here we explore a method for explicitly testing a
conservatively collected program for potentially unbounded
space leaks due to non-GC-robust data structures.

4.1 Characterizing unbounded growth
In general, the memory reachable from a single misiden-

ti�ed pointer v can be pictured as in �gure 3. The misiden-
ti�ed pointer v \points to" an object x from which we can
reach a set U of otherwise unreachable objects. From x we
may also be able to reach an additional set of objects R,
which are also reachable from proper roots. Objects in R

are still modi�able by the client, but objects in U are not.

Lemma 4.1. Assume that non-pointer value v is an ad-
dress inside object x. At time t1 let U1 be the set of objects
reachable from x, but not reachable from proper roots. Let
U2 be the corresponding set of objects erroneously retained
by v at some later time t2. Any objects in U2 but not in U1

must have become unreachable (from proper roots) between
t1 and t2.

Proof Objects in U1 cannot change in the interim, since
they are not actually accessible to client code. Thus the only
way for the set of improperly retained objects to grow is for
an object previously reachable from both x and a proper
root to become unreachable. �

R

U

xv

roots
proper

Figure 3: False reference pointing to reachable and
unreachable objects

Theorem 4.2. Again assume that a non-pointer value v

is an address inside object x. If the number of objects reach-
able from x but not reachable from proper roots grows with-
out bounds, then the length of the longest simple path from x

through unreachable objects to a reachable object also grows
without bounds.

Proof Let U be the set of root-unreachable objects reach-
able from x. By the preceding lemma, the set of objects er-
roneously retained by v can grow only if at least one object
y accessible from x becomes inaccessible from proper roots.
We consider two cases:

1. There is a path from y to a properly reachable ob-
ject. In this case y must be on a path from x to a
reachable object. If it is on a simple path, then that
path must have grown longer as a result of y becoming
unreachable. If it is not on a simple path between x

and a reachable object, then consider a minimal path
from x to a properly reachable object z through y, as
in �gure 4. Let w be the �rst object on this path to
be repeated. The object w must be reachable from
y. (If the cycle didn't contain y, the path wouldn't
be minimal.) Thus the path from x to the previously
reachable object w was extended to a longer path to a
reachable object.

2. There is no path from y to a reachable object. In
this case, no path from x to a reachable object is ex-
tended. But at any point there are only a �xed number
of such objects y, and each one can be made inacces-
sible at most once. Thus this case can only occur a
�nite number of times between instances of case 1.

Thus we must grow a simple path from x to a reachable
object in�nitely often. Since the out-degree of each object
is �nite, this is would be impossible if the length of the
longest such path where bounded. �
This implies that if the length of simple paths through

unreachable objects ending in a reachable object remains

x
v

y

properly reachable

w

Extension of path from x

Figure 4: False reference pointing to reachable and
unreachable objects

bounded, then all paths from a possible false reference to a
reachable object remain bounded, and hence the amount of
unreachable memory that can be retained by a single false
reference remained bounded. Thus this characterizes the
potential for unbounded leaks without having to consider
all possible potential false references.

Observation 4.1. The above theorem still holds if we ap-
proximate the longest simple path by performing a depth-
�rst-search of the backwards reachability graph, and simply
delete the depth-�rst-search back-edges, i.e. the edges to ob-
jects currently on the depth-�rst-search stack. The above
argument still applies to the remaining paths.

This has the advantage that while �nding the longest sim-
ple path in a directed graph is NP-complete (see [7], problem
ND29), the same problem for the resulting acyclic graph is
eÆciently computable. We assign a height to each vertex
during a depth-�rst search of the reverse reachability graph.
The height is computed simply as one plus the maximum
height of its predecessors (ignoring the previously mentioned
edges introducing cycles). Since the predecessors of an un-
reachable node are also unreachable, this height must remain
constant once it has been computed, and hence needs to be
computed only once.
In our motivating queue example, the height of each dis-

carded object is one more than that of its predecessor.

4.2 Weak GC-robustness
We de�ne a program to be weakly GC-robust if the length

of simple paths through unreachable objects ending at an
object in the data structure remains bounded for any exe-
cution, or equivalently, if the height of objects pointed to
by unreachable objects remains bounded. By the preceding
theorem, weakly GC-robust programs cannot exhibit un-
bounded space leaks due to a single misidenti�ed pointer.

By analogy to the earlier terminology, we call a data struc-
ture weakly GC-robust if simple paths through its no longer
reachable objects remain bounded.

Theorem 4.3. Strongly GC-robust programs (or data struc-
tures) with a bounded number of reachable objects are weakly
GC-robust.

Proof Assume the program is not weakly GC-robust, but
is strongly GC-robust. There is an unboundedly growing
path starting at x, ending in a reachable object. For any
object p in this path, which became unreachable at time
t, consider the last time t0 at which this object, or another
object p0, preceding it in the path, had just been allocated or
modi�ed. At time t0, the object p0 must have been referenced
by some root r. Thus the entire path was backward-forward
reachable from r through x at t0. Thus from the de�nition
of strong GC-robustness, the entire path from x to p must
have been reachable at some point. Since this is true for
arbitrary p, and hence arbitrary path length from x to p,
the number of reachable objects is not bounded. �

Observation 4.2. The converse of the preceding theorem
does not hold.

Consider the queue data structure in our motivating ex-
ample, but restricted so that only a bounded number of
elements are ever removed. This structure is weakly GC-
robust, but not strongly so. The strong GC-robustness
criterion allows us to impose precise bounds on the cost
of misidenti�cation. Our notion of weak GC-robustness
was designed to allow us to reason about bounded vs. un-
bounded space loss. Whether there are better ways to char-
acterize these is an open issue.

Conjecture 4.1. All common data structures, except the
straight-forward implementations of singly-linked queues and
in�nite data structures relying on lazy evaluation, are weakly
GC robust.

4.3 A testing algorithm
We can now give a possible strategy for testing that an

application will not grow without bounds as the result of a
bounded number of pointer misidenti�cations. We modify
the garbage collector so that:

1. Before each collection, we build an auxiliary data struc-
ture allowing us to quickly �nd all pointers to a partic-
ular object. E�ectively, this is the backwards points-to
graph.

2. As with the unmodi�ed collector, we trace all objects
reachable from normal roots, marking the objects we
encounter.

3. Using the data structure from step 1, we perform a
depth-�rst search of the backwards reachability graph,
computing the height of both unreachable objects, and
of reachable objects directly referenced by unreachable
objects. We report the maximum height computed for
a reachable object directly referenced by an unreach-
able one.

4. We arrange to retain the heights of any reachable ob-
jects pointed to by unreachable ones. This will be

used as a starting point for future height computa-
tions. Since the unreachable part of the graph cannot
change in the future, the remembered value will con-
tinue to describe its contribution to the height of the
reachable object. We thus do not need to retain the
unreachable part of the graph for future collections.

5. We discard unreachable objects as for a normal collec-
tion. We also discard the reverse reachability graph
and any other auxiliary data structures, except for the
height information from the preceding step.

If the reported maximumheights appear to remain bounded,
we conclude (subject to the usual uncertainties of program
testing) the the program is weakly GC-robust, and is thus
not subject to unbounded pointer misidenti�cation leaks. If
the heights appear to grow without bound, we can iden-
tify the source of the growth, and hopefully repair it with
explicit pointer clearing or the like.

4.4 Empirical observations
We built a prototype implementation of the above frame-

work inside our garbage collector. It shares some of the
underlying infrastructure with that used in [14], and could
easily be made to report, for example, the allocation sites
for the objects responsible for increasing heights. Thus it
could be used to easily isolate non-GC-robust data struc-
tures, though we do not currently have a very attractive
user interface.
Here are some resulting observations:

� Based on a small sample of test programs, of which
Ghostscript7 was the only nontrivial application, the
maximum height of objects for well-behaved applica-
tions stabilizes quickly, and is usually on the order of
at most tens or hundreds.

� In spite of the fact that our prototype uses poor al-
gorithms in a few places, the testing runs were not
particularly resource intensive. Ghostscript could be
easily tested on any of the supplied inputs on a 32MB
Pentium 100 laptop in about a minute or less.

� The preceding is in contrast to some earlier attempts
which retained backwards-reachable objects. This ap-
pears to be ill-advised, since it is common to build
data structures that reference a small number of \pop-
ular" objects (cf. [9]), which are referenced by many
other objects, some of which are regularly dropped.
Retaining objects \backwards-reachable" from popu-
lar objects can result in substantial space leaks for GC-
robust applications. And there seems to be no obvious
automatic mechanism for handling them specially.

� Our queue example exhibited spectacular growth in
maximum object height, as expected. We stopped it
once it passed a million. Interestingly, even this test
was very easily runnable on the laptop, since the grow-
ing chain was not retained. In our test, the computed
height grew without bounds, but the heap did not.

7We used the version from the Zorn bench-
mark suite. These are available from
ftp://ftp.cs.colorado.edu/pub/misc/malloc-
benchmarks. Our version was slightly modi�ed in
ways irrelevant to this discussion.

5. PRIOR WORK
We are not aware of any prior work attempting to give

theoretical bounds on space usage with conservative collec-
tion.
There has been prior complimentary work examining more

general issues related to space bounds for programs running
with type-accurate garbage collectors (cf. [6, 1, 5]).
The observation that conservatively garbage collecting lazy

functional programs may result in unacceptable space leaks
is due to Wentworth [16]. We explored some of these is-
sues a further, and provided techniques for reducing pointer
misidenti�cations in [4]. The fact that Wentworth's obser-
vation also applies to a lesser extent to lazy functional lan-
guages collected with a precise generational collector is ex-
plored in [13]. Hirzel and Diwan recently completed a empir-
ical study of the space space cost of conservative collection,
by using a very interesting methodology [8].

6. SUMMARY
We introduced a notion of GC-robustness. We argued that

most existing applications and all eager functional programs
are already GC-robust. Any application in an imperative
language can be made at least weakly GC-robust by clearing
objects that would otherwise become chains of backwards-
reachable objects. Typically this requires very little e�ort,
since there are no or few such objects.8 If it is necessary,
such modi�cation negates a small part of the convenience
advantage of garbage collection. It does nothing to negate
the safety advantages.
It appears that application data structures are quite likely

to be naturally GC-robust, in contrast to, for example, the
prohibition on cycles imposed by most reference-counting
garbage collectors.
We suggested a testing mechanism to identify non-GC-

robust data structures in programs, and aid the user in mak-
ing an application GC-robust.
For a GC-robust application, we can bound the space that

can be lost due to a single pointer misidenti�cation or due to
a single inappropriate promotion in a generational collector.
The worst-case space bound for a collector that scans even

the full mutator stack conservatively is unpleasantly large,
since every integer variable on the stack can introduce a
false reference, and every false reference can retain a data
structure the size of the accessible heap. Nonetheless, our
results give some insight as to why substantial heap growth
is rarely observed in practice.
For a slightly conservative collector such as that in [2],

the bound on the space lost due to pointer misidenti�cation
appear to be on the same order as the factor of 10 to 20 that
can be lost to fragmentation with a non-moving allocator in
the worst case.9 Since we routinely live with the fragmenta-
tion bound, perhaps there is hope for a practical application
of our bound on retention due to pointer misidenti�cation.

8Our experiment strongly suggests that Ghostscript usually
generates none, even though that was clearly not a design
goal. The fact that unbounded growth was not observed in
[8] also suggests, though less strongly, that they are also rare
in other applications.
9Any non-moving allocator may require a heap size that is
O(logk) times the size of live objects, where k is the size
ratio between the smallest and largest object [11, 12]. Just
as in our case, the typical case is �far better than that.

7. LIMITATIONS
For a collector that conservatively scans heap objects,

there are other potential dangers that we have not addressed
here. Even if all data structures are GC-robust, a bounded
number of objects may be erroneously retained. This col-
lection of objects may include a possibly greater number
of additional misidenti�ed pointers, which may cause addi-
tional retention, etc. Thus the total amount of erroneously
retained memory may become unbounded even if all data
structures are GC-robust. Even though properly reachable
memory is bounded, the number of misidenti�ed pointers is
not.
This is arguably a less serious concern than non-GC-robust

data structures, since the problem is about equally rare, de-
pends more on statistical properties than individual pointer
misidenti�cations,10 is thus more amenable to conventional
testing, and can usually be easily remedied by supplying a
small amount of type information to the collector. It is usu-
ally far easier to communicate the layout of heap objects to
a garbage collector than it is to communicate the location
of pointers in registers, etc. Nonetheless, we know of no
way to precisely bound the space usage of such programs
without resorting to (usually somewhat dubious) statistical
arguments.
Our space bound limits the memory treated as reachable

by a conservative collector in terms of the memory reachable
from proper pointers stored at run-time. We have not ad-
dressed the issue of de�ning what proper pointer values are
visible to the collector at what point during program execu-
tion. In order to completely prove that a particular space
bound is satis�ed for a given source program, the language
speci�cation would need to de�ne which objects are properly
reachable at which point in the program. Most languages,
e.g. Java, avoid doing so in order to avoid constraining the
compiler as in [1]. Note for example that common subex-
pression on variable-sized objects can keep data structures
reachable for extended periods, potentially increasing space
usage without bounds.
Problems introduced by space-unsafe compiler optimiza-

tions tend to recur, in that if they apply to one invocation
of a recursive function, they will apply to all. Hence our
arguments about memory retention from a single spuriously
retained object do not apply, and neither would any statis-
tical arguments.

8. REFERENCES
[1] A. Appel. Compiling with Continuations. Cambridge

University Press, 1992.

[2] K. Barabash, , N. Buchbinder, T. Domani, E. K.
Kolodner, Y. Ossia, S. S. Pinter, J. Shepherd,
R. Sivan, and V. Umansky. Mostly accurate stack
scanning. In Proceedings of the Usenix Java Virtual
Machine Research and Technology Symposium, April
2001.

10In contrast to non-GC-robust data structures, this problem
is likely to be reduced to in�nitesimal occurrence probabil-
ity by reducing the probability of pointer misidenti�cations,
since unbounded growth requires an unbounded sequence of
pointer misidenti�cations, not just a single unlucky integer
value. Hence the black-listing technique of [4] is probably
much more e�ective at addressing this problem than non-
GC-robust data structures.

[3] J. F. Bartlett. Compacting garbage collection with
ambiguous roots. Lisp Pointers, pages 3{12,
April-June 1988.

[4] H.-J. Boehm. Space eÆcient conservative garbage
collection. In SIGPLAN '93 Conference on
Programming Language Design and Implementation,
pages 197{206, June 1993.

[5] D. R. Chase. Safety considerations for storage
allocation optimization. In SIGPLAN '88 Conference
on Programming Language Design and
Implementation, pages 1{10, June 1988.

[6] W. D. Clinger. Proper tail recursion and space
eÆciency. In SIGPLAN '98 Conference on
Programming Language Design and Implementation,
pages 174{185, June 1998.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[8] M. Hirzel and A. Diwan. On the type accuracy of
garbage collection. In Proceedings of the International
Symposium on Memory Management 2000, pages
1{11, October 2000.

[9] R. L. Hudson and J. E. B. Moss. Incremental
collection of mature objects. In Proceedings of the 1992
International Workshop on Memory Management
(LNCS 637), pages 92{109. Springer, 1992.

[10] S. Liang. The Java Native Interface: Programmer's
Guide and Speci�cation. Addison-Wesley, 1999.

[11] J. M. Robson. An estimate of the store size necessary
for dynamic storage allocation. Journal of the ACM,
18(3):416{423, 1971.

[12] J. M. Robson. Bounds for some functions concerning
dynamic storage allocation. Journal of the ACM,
21(3):491{499, 1974.

[13] N. Rojemo. Generational garbage collection without
temporary space leaks. In Proceedings of the 1995
International Workshop on Memory Management
(LNCS 986), pages 145{162. Springer, 1995.

[14] M. Serrano and H.-J. Boehm. Understanding memory
allocation of Scheme programs. In Proceedings of the
2000 International Conference on Functional
Programming (ICFP), pages 245{256, 2000.

[15] M. Weiser, A. Demers, and C. Hauser. The portable
common runtime approach to interoperability. In
Proceedings of the 12th ACM Symposium on Operating
Systems Principles, December 1989.

[16] E. Wentworth. Pitfalls of conservative garbage
collection. Software Practice and Experience,
20(7):719{727, 1990.

