

A Framework for Analyzing and Organizing
Complex Systems

Sven Graupner, Vadim Kotov, Holger Trinks
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-24
February 6th , 2001*

E-mail: {sven_graupner, vadim_kotov, holger_trinks} @hp.com

distributed
systems, system
management,
system model,
optimization,
model-based
management,
system factory

The paper discusses a framework and advanced technologies enabling
the quantitative analysis, organization and optimization of large-
scale, globally distributed enterprise and e-service systems.

The goal is to organize complex systems in such ways that traffic at
application and service layers can be better explained, predicted and
controlled. In distinction to traffic management at the network layer,
our work approaches higher system perspectives where architectural
decisions are made about the overall organization of work and task
flows, the global placement of data and applications, caching and
replication etc. Those decisions are significant for the traffic induced
in the system later on. Little support is provided today for designing
and evaluating large-scale systems from these perspectives, primarily
caused by the difficulties in developing realistic
computerized models reflecting dynamic characteristics of services,
applications, access patterns, resource demands and capacities.

Novel approaches presented here have been developed to
formalize models providing the basis for analysis and
understanding large-scale systems from top-level perspectives. The
notion of ‘systems of systems’ refers to viewing systems from
different perspectives and capturing the various aspects at different
levels of granularity. Case studies with earlier versions of our
approach have been carried out with two big
corporate partners.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

- 1 -

Sven Graupner, Vadim Kotov, Holger Trinks
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

{ sven_graupner,vadim_kotov,holger_trinks} @hp.com

����������	�
��
The paper discusses a framework and advanced
technologies enabling the quantitative analysis,
organization and optimization of large-scale, globally
distributed enterprise and e-services systems.

The goal is to organize complex systems in such ways that
traffic at application and service layers can be better
explained, predicted and controlled. In distinction to
traffic management at the network layer, our work
approaches higher system perspectives where
architectural decisions are made about the overall
organization of work and task flows, the global placement
of data and applications, caching and replication etc.
Those decisions are significant for the traffic induced in
the system later on. Little support is provided today for
designing and evaluating large-scale systems from these
perspectives, primarily caused by the difficulties in
developing realistic computerized models reflecting
dynamic characteristics of services, applications, access
patterns, resource demands and capacities.

Novel approaches presented here have been developed to
formalize models providing the basis for analysis and
understanding large-scale systems from top-level
perspectives. The notion of ‘systems of systems’ refers to
viewing systems from different perspectives and capturing
the various aspects at different levels of granularity. Case
studies with earlier versions of our approach have been
carried out with two big corporate partners.

� ����������������������
Network management systems can exactly measure and
analyze traffic in complex environments at the network
layer. Since networks are shared among large numbers of
applications, it is hard to associate the observed traffic
with individual applications or even higher notions such
as services in large-scale distributed systems. Similarly,
metrics used in system management basically refer to
utilization of individual machine parameters such as CPU
and storage. They are also hard to correlate with

distributed applications typically sharing machines at
geographically distributed locations. It is hard to
physically localize distributed applications and
associating them with individual machines. Current
system management approaches have weaknesses in
deriving useful information from their information bases
about the behavior of systems at higher system
perspectives. Available information is too detailed, hard
to correlate and thus too complex for such perspectives.

Another observation from analyzing current system
management technology (see also [10]) is:

- component views dominate with a focus on physical
(or hardware) components, originating from SNMP-
approaches, but also favored by newer extensions
such as CIM [1] and XML/CIM [2],

- information models of system management systems
are based on compositions of physical components.

As mentioned, it is not favorable attempting to determine
physical components participating in performing
distributed applications or even higher notions of services
comprised by numbers of applications. Referring to
physical components just leads to enormous complexity.
Dynamism of applications and services actually prevents
associating individual portions of them with physically
localizable hardware components.

In conclusion, there is a mismatch in what we call
granularity and abstraction between complex software
systems as targets of consideration and physical
component views provided by management systems.
Appropriate counterparts for software components need to
be identified as “virtual” execution platforms. The layers
of software systems (or software stacks) must be
complemented with an adequate hierarchy of layers of
execution platforms. Higher-ordered layers of execution
infrastructures are themselves comprised by distributed
software systems. The hierarchy of software layers starts
with the local operating system software providing the
execution platform for local applications and continues
further up the hierarchy of layers. We extend this view
and develop a systematic methodology uniformly
applicable up to highest system perspectives to large-

- 2 -

scale, globally distributed enterprise and e-services
systems. Despite of all differences of components
considered at different layers of granularity, we believe
that their general behavior follows similar patterns based
in queuing theory and traffic flow systems. We make use
of this assumption and describe models of individual
system layers in similar and compatible terms allowing us
to correlate models for various evaluations. It will also
allow us moving from component-centric views towards
system views with better understanding and predicting
system behavior and interaction between systems.

Challenges addressed in this paper are:

- developing a general methodology for identifying and
uniformly reflecting components and systems at
different layers of granularity;

- identifying the appropriate information to be
represented in the model bases of individual layers
used for analysis and decision support for overall
arrangements in the organization of individual system
layers and in the overall system; examples of such
decisions are where shares of services or application
functionality will be provided, cached or replicated in
an effective manner;

- representing (or computerizing) the identified
information providing the models for supporting the
various stages of systems’ life cycles with issues of:

- how to obtain the model information,

- how to describe the model information,

- how to keep the model information current,

- how to incorporate dynamic parameters,

- how to maintain statistical information;

- developing tools for monitoring and analyzing
systems from higher system perspectives and
providing decision support at organizational level –
in our approach based on reasoning upon model
descriptions representing components at appropriate
layers of granularity.

The paper is organized as follows: after briefly discussing
the need for viewing and modeling systems from higher
system perspectives to support the life cycle of systems
throughout all stages, the methodology of viewing
systems as Systems of Systems is introduced. In this view,
systems are considered as being composed of sub-systems
representing the various layers of different granularity.
Then, the principles for modeling we use are explained.

In the second part of the paper, the System Factory is
presented as a general framework comprising the various
technologies we have developed. Two case studies then
show the current stage of investigation and
experimentation using that technology.

This report presents the current state of research of the
‘Systems of Systems’ project at Hewlett-Packard
Laboratories, Palo Alto.
 � ����������� ��!�"�#$��%�&('�!�)*&$+�,�-�.�&$��)

�/,�0���&�1$0
As there is a software life cycle, a system life cycle also
exists. Our technology and the System Factory framework
support the three phases in the system life cycle: design
and integration; updating and reengineering; and
management and maintenance.

Phase I: Design and Integration

The Design and Integration phase is the first and the main
phase at which future system emerge. The phase consists
of several stages:

Qualifying and Evaluation:

- the design goals are determined with requirements,
system scale and budget considerations,

- business and IT processes are analyzed,

- application characterization and profiling of a
potential workload are made,

- component characterization and users’ special
requirements are analyzed.

Modeling and Analysis:

- an appropriate system segment is chosen,

- the architecture of a template system of the segment
is chosen, then modified, refined, and scaled,

- the system components (hardware, software,
applications, services) are determined,

- models of the designed components are built or
retrieved from System Factory’s Repository,

- the designed system models are constructed form the
component models and template system models
stored in System Factory’s Repository,

- workload predictions are made and analyzed;
workload is synthesized if not available otherwise,

- models are used for capacity planning, to analyze
performance under various projected workloads, to
identify bottlenecks prior to implementation.

- 3 -

Model Validation and Calibration with the real System:

- models are used to study scalability, availability and
other requirements,

- measurements and experiments are made to validate
and calibrate the models,

- search for best solutions using the validated models,

- proof of the concept, benchmarking, testing and
verifying complete the Design and Integration stage.

Phase II: Updating and Reengineering

At the Updating and Reengineering phase, the models
built at the previous stage are used to find the best way to
upgrade the designed system if the IT requirements or
capabilities have changed. System Factory can be used to
evaluate how the system may also change as result of:

- significant increase in the number of systems, sub-
systems and components,

- significant change of permanent workload,

- addition of new types of system components,

- porting and migration of new applications or
databases,

- changes in data and application partitioning among
the system’s subsystems.

System Factory uses the obtained information in its model
bases to identify what changes in the original design
should be made in order to tune the system performance
or adjust other parameters.

Phase III: Management and Maintenance

The Management and Maintenance phase uses the models
derived at the Design and Integration stage to manage
dynamic system features, such as load prediction and
balancing. System Factory’s distributed monitoring
infrastructure can be used to trace changes in the system
(new nodes, topology and parameter changes, new
applications, etc.) besides monitoring workload and
parameters. Model parameters are automatically updated
when such changes are reported from the monitoring
infrastructure. Updated models are constantly analyzed.
Results are propagated to system managers for calibrating
model parameters with system observations.

2 354�6�7�8�9�8�:�8�;�<
This section explains what we understand as appropriate
layers of granularity for viewing systems as Systems of
Systems. It also explains the general approach of matching
demand occurring at each layer with capacity offered
underneath. This principle is uniformly applied across all
layers of consideration. It allows us to reduce and
consolidate the complex correlations among large-scale
application and services’ systems into one, characterizing
correlation: matching demanded with available capacity in
the three dimensions: processing, storage, and
transmission. It forms the basis for optimizing general
arrangements in the overall system organization at the
respective layers.

3.1 Viewing Systems as ‘Systems of Systems’

Understanding the behavior of large-scale application
systems requires consideration of what we call
components of equivalent or matching granularity by
vertically classifying systems into:

• services at the top layer (=sets of co-operating
distributed applications solving tasks),

• distributed applications (=sets of application tasks
performed at geographically dispersed locations),

• application tasks assigned to individual locations
representing shares of applications performed there,

• individual processing locations of application
processes as lowest resolution layer.

Figure 1: ‘Systems of Systems’ view with layers

Accordingly, matching granulates on execution side are:

• virtual service centers (as representatives for
execution environments assigned to sets of services
and located in several, distributed data centers),

• data centers,

• clusters of machines hosting individual application
tasks within data centers, and

• individual machines as locations of final processing.

Virtual Service Centers

Data Centers (DC)

Clusters in DC

individual Machines

Services

Distributed Applications

Application Tasks

Application Processes

‘services’

‘servers’

- 4 -

Other classifications may be defined as well to correlate
adequate elements in models. The two hierarchies
represent counterparts of elements with corresponding
granularity for each layer: software systems executed by
respective execution environments. We also refer to this
as notion of abstracted ‘ services’ performed by abstracted
‘ servers’ [3] in order to unify terminology for components
at the various layers.

3.2 Resource Demands and Capacities

The primary question in understanding systems is the
understanding of resource demands on the one side and
available capacities on the other side. Again, components
of adequate granularity must be correlated in order to
avoid mismatches as pointed out in the introduction. We
introduce four layers of granularity for identifying,
modeling and correlating components.

Two basic approaches can be applied. One is matching
the counterparts of abstracted ‘services’ with matching
‘servers’ at each layer (Figure 2). This view reflects the
distribution of portions of services, distributed
applications, applications tasks and processes among
respective processing locations of virtual service centers,
data centers, clusters of machines or even refined to
individual machines within clusters. At each horizontal
layer, the environments of the servicing stations or
‘servers’ provide the capacities to meet the demand of the
‘services’ at the respective layer.

Figure 2: ‘Services’ distribution among ‘servers’

Another approach reflects the vertical resolution of
‘services’ through its own layer hierarchy and the
resolution of ‘servers’ through the layers on the other side.
In this view, demand is induced from the top layer down
the hierarchy, and capacity is provided in a bottom up
direction – applicable for both sides (Figure 3).

For the ‘services’ side, the use of services translates into
certain activity (or demand) in the underlying layer of
distributed applications causing activity in individual
application processes which finally translates into load or
traffic in processing locations and networks. Capacities
satisfy demands in the opposite direction.

Figure 3: Vertical resolution though layers

Models represent environments for each layer and for
each side. They may be correlated with neighbored
models in the layer above or below or at the other side in
order to formulate various scenarios, views or
considerations. Multiple models may be involved in such
scenarios, and each model can represent either role. For
example, multiple distributed applications are performed
in one data center. Their added demand then represents
the portion of capacity the data center has to meet. Or,
one global service is represented in various data centers
around the world. Each of the data centers then absorbs
that portion of demand services need in each data center.

One set of models always represents the demand side and
counterpart models are representing the capacity side in
each correlation. Each model may be referred to in either
role and must hence provide both information of the
environment it describes in a comparable manner.

In Figure 4, example 1 represents a correlation of
mapping services’ demands with capacity a virtual service
center provides (a virtual service center represents shares
of execution environments located in several data
centers). The second example shows a correlation within
the ‘servers’ hierarchy of how individual machines
provide the capacity of a cluster. Any other neighbored
correlation would be possible.

Figure 4: Two examples for model correlations

‘services’

‘servers’
 Services

Distributed Applications

Application Tasks

Application Processes

Virtual Service Centers

Data Centers (DC)

Clusters in DC

individual Machines

capacity

demand

Services

Distributed Applications

Application Tasks

Application Processes

Virtual Service Centers

Data Centers (DC)

Clusters in DC

individual Machines

demand

capacity

Services

Distributed Applications

Application Tasks

Application Processes

Virtual Service Centers

Data Centers (DC)

Clusters in DC

individual Machines

capacity

demand

Services

Distributed Applications

Application Tasks

Application Processes

example 1

example 2

Virtual Service Centers

Data Centers (DC)

Clusters in DC

individual Machines

- 5 -

By manipulating models, various scenarios may be
evaluated, optimized and validated by simulation before
final decisions are made and implemented in real systems.
Capacities may be planned and evaluated as well as
demand predictions can be fortified, all based on
information about the system represented by models.

Applications or services behave well and can be operated
efficiently when the overall system is in a balance
throughout all layers. Bottlenecks and congestions may
occur at any layer degrading the overall system
performance: in the network infrastructure with routers
and name servers, at the application layer while accessing
a shared data base or at the services layer while
performing intermediary services such as a financial
transaction. There is no integrated approach today to
capture and correlate a complex system vertically through
different layers as it is proposed here, and applying
similar patterns to description, modeling and analysis for
each of the layers (queuing theory, flow analysis etc.).

3.3 Optimal Matching Demand with Capacity

As mentioned, the basic methodology in our approach is
the (optimal) matching of resource demand with offered
capacity at adequate layers. Models are represented for
each side of the introduced layers. For example, there are
models describing a distributed application and others
describing applications tasks. There may also be models
describing the infrastructure installed in a data center in
such terms that this can be interpreted as operating
infrastructure offering the needed capacity to perform the
applications. There is always the duality of resource
demand and matching capacity in our approach.

Based on model descriptions, the placement of services,
distributed applications, and application tasks can be
analyzed and optimized. Results from this optimization
provide support for higher-level decisions about the
overall system organization. The section ‘Generic
Optimization Framework’ explains how optimizations are
performed. Results have been shown in [7].

“Compatible” model representations enabling the
correlations and the model bases will be described next.

= >�?�@(A�B�C*D�E�F$G�H�I�D�B$JKG�L�@�MONPD�Q�@�R
S @�L�T�E I�U�H�I�D�B�L

To enable the mentioned correlations and optimizations,
models have to be “compatible” and composable on the
fly by applying the same principles and patterns
representing their environments. These principles are
explained here. After that, the System Factory framework
is discussed we are using for experimentation.

In the following, the requirements for model descriptions
are outlined allowing the correlations in the ways
described:

- Compatibility of model descriptions including
referring to the same elements and relationships used
for representations in model descriptions and for
parameter sets. A generic language is needed.
Traditionally, a Lisp-like language is used (see
fragment in Figure 6) which can be translated into an
XML representation we use externally.

- Common parameter sets have to be identified
expressing respective demands and capacities for
each model in a generic way.

- Constraints need to be expressed in a generic manner.

- Incompleteness of information must be tolerated. We
do not assume the presence of model descriptions for
all layers and environments, only for those of interest.

The last point is in particular important since our targets
are large-scale systems whose dynamism prevents
completeness of information at each time. Our models
thus represent rather statistical behavior reflecting the
essential characteristics.

Figure 5: Model descriptions may exist for all environments

4.1 Model Descriptions

The abstractions for model descriptions are possible
because of the common pattern the behavior of
components and environments follows. This pattern is
based in queuing theory, and dynamic traffic modeling,
enhanced by means to express demands and capacities.

Model descriptions contain following elements [6]:

• to express structure (topology):

- sets of components represented as nodes
with or without memory,

- sets of links represent relationships between
nodes,

- nets as patterns for common network and
interaction topologies;

Services

Distributed Applications

Application Tasks

Virtual Service Centers

Data Centers (DC)

Clusters in DC

- 6 -

• to express parameters of nodes and links as:

- fixed (static) parameters,

- variable (dynamic) parameters;

• to express hierarchical structures in models:

- sub-relationships.

Elements used in simulations are:

- items representing flowing data or tasks
through the model – items can be induced
and distributed at nodes in models, and

- workload characteristics.

Models are described in a Lisp-like input language as
shown in the example fragment below. XML
representations can be generated and are used for
external access and processing.
 VXWZY\[]K^`_baZcd_e^f_baZc\gZh ikjmlondprqsj tu_badcvgdwrxzy{t}|~ � iZ��_e^`~ � iZ�e^ �mloWd��h V�jmWvwXxzyr� �zwrxz� �}cZnZid�v�d�Z�d�Z� �\|~ � iZ��^ �mlfWZ��wrxzyr� �zwrxz� �vjmW\h V�cZndiZ�\�Z�d�Z�Z� �v|`|iZnd�vq\wr�z�|h ikjmlondprqsj t}[]�^ j ��Ydqv�X� � �Z�����\iZnd�vq\h V�\qZ�\WZl ��^ j ��YZq\gZ�eadqZadqZ� iZ�_b� �bq\gZ�\qZ�\xz� �bq\|loqd�ZadqZ_�j t�_b Zndloqd_e^o_�� ¡¢�Z�_b� £}�Z�_b� ¤¥�d�v_�� w¥�d�_b� ¦��_b� xu�_b� ���\||wrxzy{t}[]�^ j ��Ydqv�X� §{�k���d¨ziZnZ�\q\wrxzy_badcZ_e^`_badcvgd�z�Z�ZqdprWZ�dqZ_�t}_badcvgk¡©YZYZ~ � ª�nsjm� WdiZprWd�ZqZ_«t_badcvgdxZjmWZlfnZ�ZqdprWZ�dqZ_�t}_badcvgk¡©�Z�\� iZprWd�ZqZ_«tu|YZndl jm� j¬� WZi\^j ��YZq\®¯¡©°znZl jm� jm� Wdiv�\ns±bt�_bqZl ²�� ªbqd_e�\|iZqkjz^�j ��YdqvxZjmndl{idnZ�\qvx}cZnZid�v�d�Z�d�Z� �´³µ� jm ktzYZndloqdisjz�\||¡©YZYd~ � ªbnsj¬� WZiZpXWZ�Zqd_�t}[]K^�j ��Ydqv¤r~ ad_�jmqdl{idnZ�\q¶¡©°z°zx�\qZ�\WZl ��^ j ��YZq\gZ�eadqZadqZ� iZ�_b� �bq\gZ�\qZ�\xz� �bq\|_badcZ_e^f_baZc\gs¡©YdYZ·d�Z¸Z¹ktu_�aZc\gs¡©YZYd·Z�d¸Zºst�|

iZqkjz^ j ��YZq\xZjmndl{cdnZiZ�\�Z�d�Z�d�Z� �´³µ� jm ktzYZndloqdisjz�\|_bqdl ²�� ªbqd_e»`_b� ¡¢_�� £u_b� ¤�_b� w�¼
YZndl jm� j¬� WZi\^ j ��Ydqv®½¡©°znZl jm� jm� WZi\�\ns±bt�_bqZl ²�� ªbqZ_��v||

¡©YZYd·Z�d¸Z¹st}[]�^ j ��Ydqv¾X¿{¿`� � ÀdÁs��� Â{�`ÃrÂ`Ä{�\iZnd�vq´¡©¸Zº�\qZ�\WZl ��^ j ��YZq\gZ�eadqZadqZ� iZ�_b� �bq\gZ�\qZ�\xz� �bq\|�Zqd~ ns��gs¡©YZYdprWZ�dqZwrqd~|¡©YZYd·Z�d¸Zºst}[]�^ j ��Ydq¶¡©YdYZ~ � ªbnkjm� WZidprWZ�dqvidnZ�\q¶¡©¸dº�\qZ�\WZl ��^ j ��YZq\gZ�eadqZadqZ� iZ�_b� �bq\gZ�\qZ�\xz� �bq\|�Zqd~ ns��gs¡©YZYdprWZ�dqZwrqd~|

Figure 6: Illustration of an internal model description

Descriptions are interpreted by a model interpreter. The
model interpreter must know all types of elements
referred to in the model. It is currently not possible to
introduce new element types in model descriptions
themselves. Examples for element types in Figure 6 are:
Clients, Cluster or ApplicationNode. New element types
must be implemented in C++ using the CSL library and
linked into the model interpreters. [6] explains in detail
how this is done. The System Factory framework offers a
set of predefined element types covering the most
common cases.

Nodes represent locations where requests and data are
passed through. In accordance to the modeled
environment, nodes may represent machines with certain
processing capacity or application tasks such as a
database capable of handling a certain amount of
transaction load. Nodes may also represent whole data
centers with certain processing capacity available for
certain application services. All these examples show
that the model notation is generic. It depends on the
interpretation what a model represents.

Similarly, links may represent physical network
connections among machines, they may represent
bandwidth installed between data centers of a corporate
network or also communication activity between two
applications. It again depends on the interpretation and
the context what model elements represent.

We combine this generality with a systematic way of
classifying components of a real system into layers
according to granularity.

4.2 Generalized Description of Capacity and
Demand

Similar notions of model descriptions have long been
used in modeling and simulation. However, they are not
sufficient for our purpose of representing demands and
capacities in convenient ways. We thus have extended
this notion by a generic notion of expressing demand and
capacity.

Since nodes primarily represent elements of demands and
capacities, we represent each node in various vectors or
matrices describing demand and capacity for certain
parameters (explained below). Links represent
transmission capacity and demand between nodes in a
matrix. In their entirety, these data structures represent a
consolidated summary of demand and capacity in a
compact format. The data structures are seen as
extensions to the model descriptions discussed above and
forming together with them the description of a model
environment.

- 7 -

Theory of Relativity:
 Normalizing Demands and Capacities

In order to enable correlations between different model
environments, demand and capacity parameters are
represented in a normalized notion. Normalized means
not in terms of absolute measures such as total amounts
of memory installed or processing capacity, but relative
to each other by relating them to an arbitrarily chosen
base unit within each modeling environment. For
example, instead of characterizing one machine node
with a processing capacity of 4 CPU’s of type IA64 and
another machine with 16 CPU’s of type PA850, we
chose one of the platforms and assign it the processing
capacity of 1.0 (=base unit). The capacity of the other
platform is then expressed relatively to this base unit.
Assuming that 1 IA64 CPU is capable of the processing
of 2 CPU’s of type PA850, and the 4 CPU IA64 machine
is chosen as base unit, the resulting processing capacities
for both machines would be: 1.0 for the IA64 machine
and 2.0 for the PA850 machine. The term ‘processing
capacity’ of a machine, however, does not only represent
the type and number of CPU’s. It is a characterization of
the overall machine capacity in one parameter
summarizing all different parameters of clock speed,
cache sizes, RAM etc. Similarly, demands can be
expressed relatively to each other in the same modeling
environment. This principle is generally applicable
throughout all layers and all modeling environments.

Optimization of the matching of demands with capacities
does not depend on the absolute values of capacities or
demands. Solutions are the same with absolute and
normalized parameters. This enables us using normalized
parameters and their advantages.

In order to correlate two different model environments,
the two parameters sets for demands and capacities have
to be set into proper relation by so-called correlation
factors which translate demands and capacities expressed
relative to one environment into demands and capacities
of another environment by multiplying with these factors.

Determining Normalized Parameters

Absolute capacity parameters as specified for individual
machines or demand measured in systems can be used to
derive normalized values. In particular for software at
higher system layers it is difficult to extract these values.
Estimates can then be used as approximations as, for
instance, described in initial system specifications.
Parameters may even be guessed or defaulted to 1.0
when no information is available at all. The System
Factory environment provides means to validate and
calibrate these parameters by observations in the real
system. Realistic parameter sets will then evolve over

time. This calibration process is essential for the
validation of the model base and an important
enhancement of the current System Factory framework
compared to its earlier versions [8].

Normalizing demand and capacity parameters enables
their comparability and is the primary way to reduce all
the diversity found in systems. This diversity primarily
prevents formalizing and correlating views from higher
system perspectives today. For this reason it is vital to
consolidate all the diversity found in systems in a
systematic manner as proposed here. It may be argued
that too much information considered being important is
lost. However, we see in it the primary way to unify
diversity and lifting up the focus of consideration
towards higher system views. This makes our approach
distinct from others. It is complementary to other
approaches representing other information and
knowledge about systems by other means such as
dependencies in e-services management [12].

Formalizing Parameters for Demand and Capacity

Capacity and demand are referred to as rather abstract
terms so far. Both must be formalized in order to be
compatible and correlatable. Three dimensions are
chosen for capacity and demand.

Parameters for capacity are classified into:

• processing capacity as consolidated measure for
requests, jobs or tasks per time unit,

• storage capacity offered by servicing stations,

• transport capacity available between servicing
stations as consolidated volume units per time.

The same metrics applies to the demand side:

• processing demand as requests, jobs, tasks per time
unit initiated by an application or service to a
servicing station,

• storage demand required in servicing stations,

• transport demand between applications or services
as volume units per time unit or capacity shares.

All parameters for processing, storage and transport
capacities and demands are expressed relatively to fictive
base units as introduced above. Base units for the
parameter categories can freely be chosen for each
modeling environment. Individual parameters are then
specified as multiples (or fractions) of their base units,
and correlation factors are applied when correlating
modeling environments.

- 8 -

More formally, each element represented in a model can
be represented in data structures assigned to model
descriptions at the capacity side by a:

- processing capacity vector -- ÅÇÆ ,
- storage capacity vector -- ÈeÉ ,
- transport capacity matrix -- Ê©Ë
and at the demand side by a:

- processing demand vector -- ÌÎÍ ,
- storage demand vector -- ÏÑÐ , and a

- transport demand matrix -- Ò�Ó .
Each model element with a representation on the
capacity or demand side has an entry in respective
processing or storage vectors or matrices for expressing
transport and communication demands or capacities
between each pair of elements.

Model environments with the normalized parameter sets
are then used by System Factory’s Generic Optimization
Framework described later in this report to find
approximations of optimal placements of services on
servicing stations based on the demand and capacity
structures of both environments.

An example of a simple capacity model can be described
by two vectors and one matrix for n elements:

1. 0.2 0.0 - - - - - . . .

2. 1.0 0.0 0.3 - - - - . . .

3. Ô�Õ = 1.0 Ö*× = 1.0 Ø*Ù = 0.0 0.6 - - - . . .

4. 0.5 2.4 0.3 0.2 1.0 - - . . .

…
n

Figure 7: Examples of normalized capacity vectors and
 matrices for n nodes

In the example, the first element in ÚeÛ represents a
processing element with a capacity of 0.2 or 20% of the
assumed base processing capacity. The following two
elements represent exactly the base capacity and the next
element 50% of that capacity and so forth. Respectively,
storage capacities are shown in the following vector Ü�Ý .
Transport capacities between node elements are
represented in the transfer capacity matrix Þ¶ß . Transport
capacities between two elements may represent
bandwidth installed in a network or communication
needs between applications or services depending on the
modeled environment.

The same principle applies at the demanding side with
respective vectors and matrices for àÎá , âÑã and ä�å . The
normalized vectors and matrices for capacities and
demands can be extended by further parameters.

Figure 8: Example of the simple capacity model
 (according to parameters from Figure 7)

System Organization:
Mapping Demand onto Capacity

The goal besides representing and calibrating the
information about the behavior of systems from higher
perspectives is also optimizing overall arrangements in
systems we refer to as system organization.

System organization is formalized and reduced to finding
optimal mappings of demands onto capacities based on
model descriptions. In a top down view, globally
distributed services are resolved into participating
distributed applications representing certain demands to
be allocated in distributed data centers. The model
description of an application task represents this demand.
The sum of all demands of all application tasks then
represents the cumulative demand to be distributed
across the data centers. The counterpart models of an
infrastructure of distributed data centers represent the
capacities to absorb the demands described in the model
environments of the application tasks. Based on this
information, an optimal mapping or allocation of
application tasks in the infrastructure of data centers can
be determined by System Factory’s Generic Optimization
Framework. Optimization policies are represented by
configurable cost functions used to evaluate
approximated solutions.

Solutions then can be further evaluated by simulations in
the System Factory framework and proposed for
realization in the system supporting the first stage of the
system life cycle. Other stages are supported as well.

Formalizing Constraints

Pure capacity and demand consideration are not
sufficient in reality. There are constraints that have to be

base unit

1.

2.

3.

4.

æ�ç : 0.2è*é : 0.0

ê�ë : 1.0 ì*í : 0.0

î�ï : 1.0ð*ñ : 1.0

ò�ó : 0.5ô*õ : 2.40.3

0.0

1.0

0.2

0.6

- 9 -

met as well. For example, certain application tasks
cannot be allocated in foreign data centers for legal
reasons though demand/capacity considerations would
favor such a solution. Another matrix is currently used
for expressing constraints when correlating a demand
with a capacity modeling environment:

• affinity/repulsion constraint matrix – ö�÷�ø
This matrix represents elements for each correlation
from the demand side in one dimension and from the
capacity side in the other dimension. Probabilistic
values between zero and one express that two
elements [demand, capacity] must be associated in
any case (value 1.0) or must not be associated (value
0.0). Any other value between 0.0 and 1.0 represents
the degree of affinity or repulsion between two
elements. The value 0.5 is neutral and assumed as
default.

4.3 Correlating Models

Model descriptions are internally represented in the
notion shown in Figure 6 for historical reasons. The
external representations use XML. Conversion between
the two formats is straightforward since both model
descriptions follow a tree structure. Hyperlink technology
is used to access and correlate models from different
locations since we assume that the model base of large-
scale distributed systems will be distributed as well.
System Factory’s model base is thus designed and
implemented as a distributed model base accessible
through web-technology providing the connectivity. XML
is the standard for data representation used in many
systems today.

Currently, complete model descriptions are distributable
elements. It is planned to use XML hyperlink technology
to support modularization of model descriptions as well.
It would enable to distribute also individual elements
referred to in models and linking them together on
demand. Element modules could then be maintained
separately or even offered by suppliers offering capacity
to customers. Customers could then access offered
capacity descriptions from providers and evaluate them
within their model environments and eventually purchase
capacity from them.

But these are considerations for future enhancements.
Another enhancement is extending model descriptions by
economic factors and time schedules in addition to current
capacity and demand parameter sets.

ù ú�û�ü$ý�þ�ÿ��$ü�����þ��	��
������ü�� ý�ÿ��	����þ��
Our approach entirely relies on models about large-scale
system representing modeling environments at various
layers of granularity. Following questions occur:

- How to obtain models?

- How to keep model descriptions current?

- How to manage large numbers of model descriptions?

- How to evolve models with changes in the system?

- How to reflect dynamically changing parameters in
model descriptions?

- How to correlate model descriptions?

- How to integrate statistics into models?

System Factory provides the framework and an integrated
environment for addressing these questions. It is intended
for system designers and integrators. It should help them
quickly adopting customer environments and using
System Factory as a smart configurator to identify and
underpin organizational decisions in systems from higher
perspectives. They can experiment with various scenarios,
analyze them, and elaborate the best solutions before
being implemented.

Figure 9: The System Factory Framework

System Factory consists of following main parts:

- distributed model base,

- distributed monitoring infrastructure, and

- presentation and control through consoles.

repository

simu-
lation

 brainware mb
server

optimization
 engines

real
system

presentation and
control consoles

distributed model base

distributed monitoring
infrastructure

monitoring
sensors

http/xml

- 10 -

The framework is inherently distributed with multiple
locations for model bases and monitoring. We use web
standards for communication (http, email protocols) and
external representations (xml) for models, monitoring
data, events, and all other data used in the System Factory
framework.

The model bases host model descriptions at various
locations. Some model bases may also provide further
capabilities for optimization and simulation as shown in
Figure 9. They will be discussed in more detail later.

The distributed monitoring infrastructure serves the
purpose to constantly observe various parameters
measured in the real system, process this information and
finally extract parameters and assign them to parameter
sets of particular model environments. This enables
keeping model parameters up to date and also to discover
divergence between evaluated and observed parameters.

The presentation and control consoles allow to “ look into
the system”, displaying the various models and
parameters. They also allow performing certain control
functions such as manipulating model descriptions and
correlating model descriptions. The currently Java-based
GUI will be replaced by using regular web browsers and
advanced XML technology (XVG [13]) for presentation.
Examples of the current presentation are shown in the
Figures 14 to 16.

5.1 The Distributed Model Base

The Distributed Model base forms the heart of the
System Factory where all model descriptions are
maintained. Models are accessible in their external
representation as XML documents by web interfaces.

The Repository

The Repository is an intelligent database which stores
information obtained and used in the system design and
maintenance, namely information about:

- prior and current model descriptions of hardware,
software, networks, middleware, applications,

- typical solutions and template models,

- typical workload patterns, traces, benchmarks.

The whole information in the repository is structured into
a hierarchy of segments, related to different business
patterns and corresponding IT infrastructures. The
segments may also differ by levels of detail. XML is used
as specification language for the repository as well
providing standard and contemporary technology.

Brainware

The overall collection of tools and libraries for decision
making for system organization and administration is
summarized under the term brainware in System Factory.

The Generic Optimization Framework and the Simulation
Engine represent current tools of System Factory’s
brainware and are described in separate sections below.

5.2 The Distributed Monitoring Infrastructure

The Distributed Monitoring Infrastructure provides the
link into a real system. Sensors constantly observe
certain parameter such as load absorbed by an
application by checking their log files or interfacing with
existing monitoring infrastructures such as HP
OpenView [5]. Parameters are filtered and processed
through the distributed monitoring infrastructure and
assigned and compared with corresponding parameters in
model descriptions. Monitoring serves the purpose of
delivering measured data for model validation and
calibration, parameter update and the discovery of
divergence between evaluated parameters from models
and observed behavior in the real system.

The Distributed Monitoring Infrastructure is structured
into a hierarchy of domains. Communication between
monitoring units is also based on http/xml.

Monitoring Units

Monitoring units are passive in the sense that they do not
initiate action in the monitored system. Monitoring should
be non-intrusive to the monitored system. Monitoring
units perform the task of monitoring the behavior of
certain components of a system.

A Monitoring Reference Model [9] defines the elements
of a monitoring process performed by a monitoring unit
(slightly extended here):

• generating monitoring information:

- gathering (raw) status data and detecting raw
events from observed components;

• local processing of monitoring data:

- filtering and condensing gathered status data,

- mapping input status data and event information
into primitive (“analog”) status variables such as
CPU load and eventually deriving discrete state
variables from them such as “{ low, high} ” ,

- deriving composite status or state information
from primitive information by applying
processing functions,

- 11 -

- detecting events from certain status changes or
state transitions on primitive or composite status
or state variables.

The central data structure containing primitive or
composite status and state information about
observed components is usually referred to as the
Management Information Base (MIB) of the unit.

• collecting statistics of selected monitoring
information, and

• dissemination of monitoring data:

- to inform (usually) higher-ordered units in the
monitoring infrastructure about status and state
changes and events.

Input to monitoring units is provided by sensors. Sensors
are responsible for data gathering about observed
components. Sensors generate “raw” input data for further
processing by monitoring units.

Special kinds of sensors are so-called Interface Sensors
providing bridges into other monitoring or management
systems for the purpose of collecting status information
from these sources. SNMP interface sensors could be an
example. Interface sensors can also provide hooks into
other management systems such as HP OpenView [5].

Another special kind of sensors is used to connect to
lower-ordered monitoring units enabling to set up
information dissemination topologies (mostly but not
necessarily forming hierarchies corresponding to
monitoring domains) for monitoring data. Such sensors
are called Connector Sensors.

Figure 10: Topology of monitoring units

Sensors’ raw data are first filtered and condensed by
performing some functions and are then mapped into
(primitive) status variables in the MIB. According to
changes in primitive status variables, composite status
variables may be updated as well. Composite status
variables allow representing more abstract or higher-level
status information.

Status variables represent discretized values of observed
analog parameters such as an observed load “measured
between 0% and 100%”. Functions transform primitive
into composite status variables. Discrete state variables
may be used as well. Discrete state variables are not
defined by ranges of numeric types but by explicit sets,
for instance, a state variable may represent load as “{ low,
normal, high} ” . Functions map status variables into state
variables. Mapping status into state variables provides
further filtering and abstraction. State machines then are
applied to perform transitions upon state variables and to
derive composite states.

An important part of processing monitoring data is event
detection. Events are defined by event conditions. Event
conditions are represented by boolean functions
depending on a set of status or state variables maintained
in the MIB of a monitoring unit. The boolean function is
evaluated on any change of any of the dependent status or
state variables. If the function with the event condition
evaluates ‘ true’ , it is said that an event has occurred.

The output of an monitoring unit is monitoring data:

- primitive or complex status or state information,

- changes in status or state variables, and

- events based on event conditions.

Each of the data will be locally time-stamped when issued
to other units. Monitoring units may collect certain
monitoring data persistently over time allowing statistical
evaluations (traces, use patterns, workloads, traffic, error
behavior and more). Statistics are collected in databases
separately from monitoring units.

Subscribe-mechanisms provide higher flexibility then
fixed reporting paths for the dissemination of monitoring
data. It enables dynamic changes and allows replication of
monitoring paths for improved robustness and availability
of the monitoring system.

Other characteristics are communication patterns how and
when monitoring data will be sent to subscribers:

- scheduled push – driven by configurable schedules
(e.g., every 100ms, every Monday, 10 o’clock, etc.),

- event-driven push – at the occurrence of an event,

- subscriber poll – on request of subscribers.

A

Output: dissemination of
 - status
 - states
 - events

Input:
 - status
 - states
 - events

�

Processing

�

�

sensors
role of

connector
sensor

for: primitive
 - status
 - state
Vars

composite
 - status
 - state
Vars
 - events M I B

Monitoring
Unit

- 12 -

5.3 The Generic Optimization Framework

The Generic Optimization Framework (GOF) is an engine
performing the described mappings of application
demands onto capacities provided by their infrastructures.
The Generic Optimization Framework is part of System
Factory’s model base used to improve the overall design
and organization of global-scale enterprise and e-services
systems. GOF allows solving optimization problems
falling into the class of general arrangement or mapping
problems typically classified as NP-hard so that
approximations are applied in practice. We currently use a
Genetics Algorithm to approximate solutions [7].
Problems are characterized by finding mappings of one
set A into another set B by meeting some optimality
criteria and taking constraints into account.

In the context of System Factory, mappings refer to
distributing the introduced notions of abstracted ‘services’
among ‘servers’ , optimized under goals such as reducing
the overall traffic in the system or balancing load.
Services are represented by a vector A. Further input data
describe services’ demands for processing, storage and
communication in the parameter set for A. Servicing
stations or servers are described in vector B with
respective processing, storage and transport capacities
described in B’s parameter set. The result of an
optimization is a mapping matrix containing a solution of
services assigned to servicing stations.

Figure 11: Principle for optimizations

The figure shows the general principle with data
structures represented as vectors and matrices. Further
parameters may be included in parameter sets as well. The
figure does not show the affinity/repulsion constraint
matrix – ����� – taken into account for generating and
evaluating solutions (if present).

An optimization is performed by a configurable
optimization algorithm based on a configurable cost
function representing the optimization goal or policy.
Input parameters and output results are represented in a
normalized (generic) form. Backward mappings then
translate results contained in the normalized result matrix

back into the application space based on separately
provided translation descriptions.

 Generic Optimizations

Since optimizations follow the same pattern for all layers,
and all input and output data are normalized for internal
processing, the same generic optimization algorithms,
policies and principles can be applied.

Optimization algorithms follow the same iterative pattern
for finding approximations:

1. generate a possible solution;

2. evaluate the solution according to constraints
and an optimization goal or policy;

3. a “better” solution returns a lower cost value
from the evaluation by a cost function;

4. if the evaluated solution is better than prior
solutions, replace the worst solution in the
solution pool with the generated solution;

5. repeat the cycle until some termination criteria
applies.

Figure 12: General pattern of optimization algorithms

The GOF provides the architectural framework for the
described optimizations. Its main functions are parameter
normalization, performing optimizations based on
configurable optimization algorithms and cost functions
representing optimization policies. Results are translated
from their normalized representations back into the
application space by the Solution Mapper (Figure 13).

Normalization in GOF refers to applying the correlation
factors to two model environments in order to make them
comparable. A better name probably should have been
found for GOF’s normalizations to distinguish them from
the normalizations applied in System Factory’s models for
abstracting and consolidating the diversity of absolute
parameters.

GOF is based on approximations for finding optima.
Different algorithms exist for approximations. For small
solution spaces, complete enumeration and evaluations by
a cost function may be applied. For larger dimensions of
models, subsets of the solutions space may be evaluated.
As we experienced, Genetics Algorithms provide a fast
and good approach for finding optima in larger-scale
systems up to few hundred nodes [7]. More algorithms
exist. All these algorithms are based on the same pattern
of generating and evaluating solutions. GOF allows

o
p
t
I

m
I
z
e

resulting
mapping
matrix

‘services’
vector A

 s e r v I c e s
s
r
v
e
s

s
r
v
i
s

parameter set A

Cost’fct

‘servers’
vector B

s
r
v
e
s

parameter set B

 capacity

 . . .

 demand

 . . .

Opt’Alg

- 13 -

incorporating many of such algorithms into a general
framework as configurable entities.

Similarly, cost functions evaluate a particular solution
according to optimization goals. They also follow the
same pattern: better solutions according to the goals are
evaluated with better cost values. This allows generalizing
cost functions and mapping them into the general
framework as configurable entities as well.

The set of optimization algorithms and cost functions is
orthogonal meaning that each cost function can ideally be
combined with any optimization algorithm.

Different optimization goals will require different sets of
input parameter used in cost functions. Each cost function
hence also requires its own normalizers for respective
parameter input sets.

Architecture of the Generic Optimization Framework

The following figure shows the architecture of the
Generic Optimization Framework:

Figure 13: General Optimization Framework Architecture

Optimization algorithms and cost functions are provided
as configurable entities to GOF. Configuration input data
determine which algorithm in combination with which
cost function will be used for a particular optimization.

GOF will be hosted on dedicated machines called GOF
optimization engines. Conceptually they belong to System
Factory’s model bases. All input and configuration
parameters will be provided as a set of XML documents
representing one optimization task. GOF is accessible
through web http/xml interfaces.

5.4 The Simulation Engine

The simulation engine allows further validation of
proposed optimization solutions or provided scenarios.
Simulations are based on the Communicating Structures
Library (CSL), a C++ simulation library developed at HP
Labs [6]. Various workloads can be described and
simulated. The whole diversity of system components and
structures is represented in CSL as a uniform and
systematic composition of a small number of simple basic
concepts that describe data traffic and data placement in
systems. CSL uses C++/CSIM, a commercial process-
oriented discrete-event simulation package.

CSL nodes can be assigned processes that generate items,
receive or send items from or to other nodes. They can
also transform items. A node with assigned processes
becomes a simulation node and is able to model active
components of systems. Processes exchange information
with other processes via mailboxes. Processes can send
messages to a mailbox and can receive messages from
mailboxes. A mailbox has a queue of messages waiting to
be received and a queue of processes waiting to receive
messages. Synchronization and control of interactions
between processes is supported by the mechanism of
events. A process that encounters a wait() statement with
a given event as an argument either continues, if the event
is in the occurred state, or waits on the event if the event
has not occurred yet.

CSL allow us to construct also queuing networks. A CSL
node and a CSL net (comprised by links) can be presented
as a service center or as a queue node. Such a queue node
executes a queuing model that is associated with it. The
type of the model is defined by the arrival time
distribution and by the service time distribution, plus the
number of servers in the node. The input data for the
queuing model are an inter-arrival rate and a mean service
time. The model returns the average waiting time, the
average time spent in a queue node, the average number
of items in the node, the average number of waiting items,
and their standard deviations.

Given the number of the queue nodes, and for each node:

- the arrival rate from outside the network,

- the probability that an item moves from node A to B,

- the service time and the number of servers,

the CSL-based queuing net returns for each node:

- the average time spent in a queue node,

- the average number of items in the node,

- the average number of waiting items and their
standard deviations.

Optimization
Engine

Config
Input

GOFconf.xml

Model
Input

str.xml
ld.xml

. . .
service

.xml
prt.xml

. . .

Parameter
Normalizer

configurable
 Cost’fct and Opt’Alg

Cost’fct
A

Cost’fct
B

Cost’fct
C

Norm’er
A

Norm’er
B

Norm’er
C

Opt’Alg

1

Opt’Alg

2

Solution
Output

 sol0.
xml

Solution
Mapper

s
r
v

 s r v

- 14 -

� � ��!	"�!�#	$�%	$�&('	#)%�#�*)+,'�#	$���'	-

Presentations are currently based on model descriptions
that only contain topological structure and behavioral
parameters introduced in the section about model
descriptions. No graphical presentation information is
contained in model descriptions. The current lack of
graphical presentation information only allows abstract
presentations of models.

XML technology enables keeping graphical presentation
information separate from model content. The mixture of
model content and presentation content in model
descriptions is a major drawback in other modeling
packages such as MATLAB/SIMULINK.

SVG [13] is an emerging XML standard for vector
graphics enabling customized presentations of models
with keeping model content information separate from
graphical presentation information, both represented in
XML, and both are merged together in a XVG-enabled
display device such as recent web browsers. This is a
planned enhancement to enable the customization of
presentations.

6.1 System Factory User Interface

The System Factory User Interface is currently
implemented as Java-GUI. It presents several functions to
the user organized as so-called shops.

To make System Factory not just a collection of tools, but
an interactive synergetic federation of problem solvers, it
is necessary to provide (1) a common system specification
basis for different shops and tools, and (2) standardized
interfaces for interaction between its shops, tools, and
repository.

.

Figure 14: Java-based GUI for System Factory

Figure 14 shows the Model Builder shop. The left panel
contains the textual specification of an e-services model,
which is constructed by a user or is customized using a
template model from the repository. The right panel
displays that fragment of the model communication
structure in the mentioned abstract form.

Several shops categorize the System Factory User
Interface:

• Workload Engine provides the capability to analyze
traces received from the repository or from the so-
called Measureware shop; or synthesizing artificial
workload and feeds it into the Model Runner.

• Model Builder allows describing system topologies,
system parameters, as well as variations in
topologies and parameters in both textual and
graphical form.

 Figure 15: Visualization in the Solution Analyzer

• Measureware accesses resource and performance
data from the monitoring infrastructure. The
collected data may be stored in the repository or fed
into models.

• Model Runner actually prepares and runs simulation
experiments according to the system integrator’s
objectives.

• Solution Analyzer analyzes simulation results and
presents them in a graphical form as shown in Figure
15.

• Solution Synthesizer looks for better solutions in the
solution space typically available after modeling of
complex systems with multiple optimization criteria.

• Management Shop implements the model-based
tasks of system organization and management. The
shop provides access to the system manager (or a
hierarchy of distributed system managers) that

- 15 -

observe system parameters and behavior through the
monitoring infrastructure. The managers react on
reported event conditions and act by notifications
though the GUI if applicable and/or by automatically
updating model parameters.

 Figure 16: Visualization in Simulation Run

. /,0�1�2)354�6	7�892�1

Two case studies have been carried out with an earlier
version of the System Factory framework to gather
experience with large customer environments. This earlier
version basically consisted of the modeling and simulation
environment of System Factory. It did not have the
technology we have recently developed and described in
this paper: the homogeneous approach of matching
demand with capacity at different layers of granularity,
the Distributed Model Base, the Generic Optimization
Framework and the Distributed Monitoring Infrastructure
enabling automatic model calibration and validation.
These technologies were considered as needed after the
experiences made with the earlier version of the System
Factory.

7.1 Case Study 1

The case study considered a worldwide distributed IT
system for a global transportation company (FedEx). This
environment had been modeled and analyzed using CSL
modeling.

Considered areas were:

- tracing package delivery paths (hundreds of millions
of transactions per day),

- processing for billing,

- customer services for web access,

- common internal enterprise business applications.

The overall IT infrastructure was represented as a three-
level hierarchical network of a system of three-tiered
computing centers:

- global Data Centers, several of them,

- regional Processing Centers, tens of them,

- local Operations Centers, tens of thousands of them.

Requirements were “almost real-time” computing and cost
effectiveness by fulfilling the overall processing tasks
with an efficient amount of systems.

Information was distributed and exchanged among centers
according to the publish-subscribe paradigm: applications
publish data for potential use by other applications and
are subscribers for data published by others. Two
alternative choices were investigated: point-to-point
communication and dispatch by data brokers (or
information hubs). The first case represents a web of
point-to-point links, which were hard-coded for specific
platforms, applications and data formats. In the second
case, so-called data brokers represented shared message
routing hubs. Brokers maintained the tables of subscribers
for each type of the messages and forwarded messages to
the subscribers. The task was to evaluate the two choices.

The constructed CSL model contained those system
features that influenced the message traffic and were
important for satisfying the global system requirements.
The model helped to identify bottlenecks and the system
sensitivity to changing parameters such as the number of
centers, bandwidth in local and global networks, various
kinds of message packaging, etc.

The sensitivity and utilization analysis included:

- system response times on bursty workload,

- system scalability with an increasing number of
participants,

- data broker overhead,

- various data broker topologies.

The main result of the project validation was the reduction
of the proposed three-level system architecture to a two-
level architecture. This is an example of an organizational
change or decision at the very top-level system
perspective. The CSL analysis of the traffic in the system
had shown that when the functions of the second-level
data centers were moved to the top-level data centers and
the lower-level operation centers, the global traffic
became less congested, response times were improving
while still satisfying the basic system requirements. The
overall cost could be, of course, dramatically reduced.
The general approach of this modeling may serve as a
template model for other company-wide IT infrastructure
of global delivery companies and stored in the repository.

- 16 -

7.2 Case Study 2

A complex case study was the validation of the enterprise-
wide IT infrastructure of the Boeing aircraft corporation.
The main task was to predict the system scalability with
the number of workstations increasing in the range from
several 1000s to several 10,000s.

The system had four tiers: workstations, application
servers, method servers, and database servers. Method
servers provided support for the product data management
programs accessing and managing the data in database
servers. The traffic of requests was propagated from the
first tier to the last. The response traffic was passed back.
Requests had different priorities, and responses had
varying lengths. The request-response traffic could be
bursty. A generic model was constructed that actually
became the basis of the Systems of Servers modeling
template as part of System Factory’s repository.

: ; <�=9>�?�<�@BADC	E�F)>	G�@)H5I�J)J)>�E�K

Investigations as described in the case studies have
widely been carried out for large IT environments as for
example shown in [11]. Models are usually specifically
constructed for particular investigations. It is hard to
validate those models. This leads us to the perception to
accompany complex operating IT infrastructures with an
integrated, widely self-maintained, validating and
calibrating model infrastructure as a meta-system. The
distributed model base realistically reflects the system’s
landscape and behavior in order to integrate and simplify
investigations. We thus step beyond what is being
addressed in traditional system modeling.

In regard to system management systems, our focus is on
higher system perspectives then lower-level component
views usually covered by those systems.
AI-based approaches have been investigated for
automating system management tasks as well. They rely
on (too) detailed and complete “ logical” information
about systems, which is hard to obtain and maintain in
large-scale contexts. We prefer statistical, “behavioral”
information uniformly represented in models.

Another new approach we propose is in the consolidation
and reduction of the diversity found in real systems into
few, basic parameters for demand and capacity enabling
us to integrate the various layers of systems, including
the layers of software systems, in a uniform manner in
continuation of the approach investigated in [4].

We believe that by our approach a better understanding
of systems will enable decision support, automation and
optimization for system management and system
organization from higher perspectives to systems.

LNM	OPM	Q�M�R�S	M�T

[1] Distributed Management Task Force (DMTF):
Common Information Model (CIM) Specification,
http://www.dmtf.org/spec/cim_spec_v22, June 1999.

[2] DMTF (Distributed Management Task Force, Inc.):
Specification for the Representation of CIM in XML,
Version 2.0, http://www.dmtf.org/download/spec/xmls/
CIM_XML_Mapping20.htm, July 20th, 1999.

[3] Graupner, S., Kotov, V., Trinks, H.: Distributed Service
Management with System Factory, HP Labs Technical
Report, HPL-2000-152, November 17th, 2000.

[4] Graupner, S.: A homogeneous Architecture for
Applications and Operating Systems, Ph.D. Thesis,
Chemnitz University of Technology, Germany, 182 pages,
Shaker Verlag, ISBN 3-8265-3261-9, November 1997.

[5] Hewlett-Packard: http://www.openview.hp.com.

[6] Kotov, V., Rockicki, T. M., Cherkasova, L.: CSL:
Communicating Structures Library for System Modeling
and Analysis, HP Labs Technical Report, HPL-98-118,
June 1998.

[7] Kotov, V., Trinks, H.: Optimization of E-Service
Solutions with the Systems of Servers Library, In
Proceedings of MASCOTS 2000, pp. 575-582, August
29th – September 1st, San Francisco, September 2000.

[8] Kotov, V.E. Communicating Structures for Modeling
Large-Scale Systems. In Proceedings of the 1998 Winter
Simulation Conference, Washington, D.C., ed. Medeiros,
D.J., Watson, E.F., Carson, J.S., and Manivannan, M.S.,
pp.1571-1578, December 1998.

[9] Mansuri-Samani, M.: Monitoring of Distributed Systems,
Ph.D. Thesis, 165 pages, University of London, UK,
December 1995.

[10] Martin-Flatin, J.P., Znaty, S., Hubaux, J.P.: A Survey of
Distributed Enterprise Network and Systems Management
Paradigms, Journal of Network and Systems
Management, Special Issue on Enterprise Network
Systems Management, Vol. 7, No. 1, March 1999.

[11] Oleson, V., Eisenhaur, G., Pu, C., Schwan, K., Plale, B.,
Amin, D.: Operational Information Systems – An
Example from the Airline Industry, First Workshop on
Industrial Experiences with Systems Software (WIESS
2000), San Diego, October 22nd, 2000.

[12] Sahai, A., Machiraju, V., Wurster, K.: Managing Next
Generation E-Services, Hewlett-Packard Laboratories
Technical Report HPL-2000-120, September 2000.

[13] W3C: Scalable Vector Graphics (SVG) Overview:
http://www.w3c.org/Graphics/SVG, created in February
1999.

