
 

Self-Aware Services:  Using Bayesian 
Networks for Detecting Anomalies in 
Internet-based Services 
 
Alexandre Bronstein, Joydip Das, Marsha Duro, Rich Friedrich, 
Gary Kleyner, Martin Mueller, Sharad Singhal, Ira Cohen1 
Internet Storage and Systems Laboratory  
HP Laboratories Palo Alto 
HPL-2001-23 (R.1) 
October 15th , 2001* 
 
E-mail: {alex_bronstein, joydip_das,marsha_duro, rich_friedrich, gary_kleyner, 
martin_mueller, sharad_singhal}@hp.com, iracohen@ifp.uiuc.edu 
 
service 
management, 
anomaly 
detection, 
Bayesian 
networks, on-
line learning, 
fault and 
performance 
management 

 

We propose a general architecture and implementation for the 
autonomous assessment of health of arbitrary service elements, 
as a necessary prerequisite to self-control. We describe a health 
engine, the central component of our proposed ‘Self-Awareness 
and Control’ architecture. The health engine combines domain 
independent statistical analysis and probabilistic reasoning 
technology (Bayesian networks) with domain dependent 
measurement collection and evaluation methods. The resultant 
probabilistic assessment enables open, non-hierarchical 
communications about service element health. We demonstrate 
the validity of our approach using HP's corporate email service 
and detecting email anomalies: mail loops and a virus attack. 
We also present the results of applying on-line machine 
learning to this architecture and quantify the benefits of the 
Bayesian network layer. 

 

* Internal Accession Date Only    Approved for External Publication 
©Copyright Hewlett Packard Company  2001  
1   Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801 
 



1 

Self-Aware Services: Using Bayesian 
Networks for Detecting Anomalies in 
Internet-based Services 

A. Bronstein, J. Das, M. Duro, R. Friedrich, 
G. Kleyner, M. Mueller, S. Singhal 
Hewlett-Packard Company 
1501 Page Mill Road 
Palo Alto, CA 94304 
{alex_bronstein, joydip_das, marsha_duro, 
rich_friedrich, gary_kleyner, 
martin_mueller, sharad_singhal}@hp.com  

I. Cohen 
Beckman Institute 
405 N. Mathews Ave. 
Urbana, IL 61801 
iracohen@ifp.uiuc.edu 
 
 
 

 
 

Abstract 
We propose a general architecture and implementation for the autonomous 
assessment of health of arbitrary service elements, as a necessary prerequisite to self-
control. We describe a health engine, the central component of our proposed ‘Self-
Awareness and Control’ architecture. The health engine combines domain 
independent statistical analysis and probabilistic reasoning technology (Bayesian 
networks) with domain dependent measurement collection and evaluation methods. 
The resultant probabilistic assessment enables open, non-hierarchical communications 
about service element health. We demonstrate the validity of our approach using HP’s 
corporate email service and detecting email anomalies: mail loops and a virus attack. 
We also present the results of applying on-line machine learning to this architecture, 
and quantify the benefits of the Bayesian network layer. 
 

Keywords 
Service management, anomaly detection, Bayesian networks, on-line learning, fault 
and performance management. 
 

1. Introduction 

Managing complex hardware and software systems has always been a difficult task. 
The Internet and the proliferation of web-based services have increased the 
importance of this task, while aggravating the problem in at least four ways: 
• Internet speed software development and release means less reliable and more 

frequently updated software. 



 

2 
 
 

• Multi-tier and distributed software architectures increase the complexity of the 
environment and obscure causes of both functional and performance problems. 

• Internet style service construction implies more dynamic dependencies among 
the distributed software elements of the overall services making it difficult to 
construct and maintain accurate system models. 

• Internet scale deployments increase the number of service elements under a 
particular administrator’s responsibility. 

 
Currently, the paradigm for detecting problems in computing environments is to 
monitor many hardware, software and system operational variables across time and 
note the occurrence of abnormal events. The information is typically monitored by 
small sets of network, system and application administrators who assess, for each 
service element, whether that element is ‘healthy’ or not. In this context, the 
assessment of health is a determination of whether the current observed behavior is 
consistent with expectations. These expectations may be based on models of correct 
behavior or on observations over time and the patterns within those observations. The 
assessment of health is key to troubleshooting problems and detecting faults and 
failures before they propagate to the users of the system. 
 
As the numbers of service elements and complexity of service environments have 
grown, so has the amount of management information, increasing the burden on IT 
staff. Advances toward more efficient and accurate problem detection have included:  
• Applying reasoning techniques to the monitoring information to help the 

administrator answer the question ‘is this service element healthy?’ Simple 
examples include the commercially pervasive use of fixed or statistical thresholds 
and the classification of alarm levels. Commercial applications of more 
sophisticated reasoning technology, for example, neural networks [1], are also 
beginning to emerge. 

• Applying reasoning techniques to the abnormal events information to help 
answer the question ‘which service element is causing the problem?’ Alarm or 
event correlation systems [2] are now found in many commercial products [3] [4] 
[5]. Rule-based or model-based expert systems associate individual abnormal 
events with service elements, and group events to focus on the likely causal 
element(s), thereby reducing the set of events that need to be presented to the 
administrator. 

 
Sophisticated anomaly detection technologies are now seen in the network 
management and hardware management spaces. Anomaly detection in software, 
however, has made less progress. The advent of complex, distributed and federated 
services has brought a new class of challenges. 
 
In the research community, attempts have been made to extend existing management 
models to include service elements as first-class objects, such as [6], [7] and [8]. In 
the probabilistic reasoning arena [9], Hood [10] [11] [12] has used a Bayesian 



 

3 
 
 

network over threshold violations in measurements in a computer network to give a 
probabilistic assessment of the existence of a fault in the network. Our work builds on 
these approaches, by generalizing Hood’s Bayesian network application idea to 
arbitrary service elements.  
 
The rest of this paper1 is organized as follows: in section 2, we present the model and 
architecture for self-aware services, and its properties. In section 3, we describe an 
instance of that architecture, customized to email services and detection of mail loops 
and virus intrusions. In section 4, we explain and present our efforts to apply machine 
learning to improve the accuracy. And in section 5, we analyze the advantages of the 
probabilistic reasoning layer in the SAC architecture. Finally we summarize our 
contributions and discuss directions for future work. 

2. Self-aware services 

2.1. Motivation: self-awareness of health as a management paradigm 

A complex service can be viewed as a set of interdependent service elements or 
objects. Managing such a service, from the point of view of detecting anomalies in its 
functioning and locating the responsible sub-service elements, is a difficult task. The 
motivation underlying our work is that such tasks become easier when service 
elements are aware of their own health. In the ideal case, all service elements, at all 
levels of abstraction, are able to accurate assess and efficiently communicate their 
health status, at all times. Anomaly detection becomes trivial, and fault localization 
becomes simpler. 
 
This vision leads us to propose that all service elements be equipped with machinery, 
logically local to each element, which accurately and sensitively evaluates the 
element’s health. The resulting distributed health assessment architecture can then 
begin to address the scalability issues brought on by the Internet. 
 
Basing the health evaluation on statistical deviations from past history obviates the 
need for precise models of the service element’s behavior. Statistical evaluators, by 
using time dependent weighting, can adapt to dynamic changes in the service 
elements. This model independence and dynamic adaptability are advantageous in the 
context of complex and dynamic architectures, as well as high software churn. 
 
Allowing model-based health evaluations within the same architecture gives us the 
potential for higher accuracy, when those models are available. 
 
                                                           
1 This paper is a superset of the one presented at IM-2001 [32]: the experimental 
demonstration in section 3 contains a more recent customization with better detection 
results, and section 4 and 5 are new. 



 

4 
 
 

In addition, we believe that much of the machinery needed to compute and 
communicate service element health can be made largely independent of the specific 
element and its semantic domain. This is the basis for proposing a general 
architecture, whose instances are customized to a wide variety of service elements. 
 
We define ‘self-awareness’ as the ability of an element to autonomously detect 
deviations in its behavior that are meaningful. We define ‘self-control’ as the ability 
of the element to respond to this information in a manner that appropriately changes 
its behavior.  Accurate self-awareness is prerequisite to self-control, and in this paper, 
we will focus on the self-awareness aspect of the overall vision. 

2.2. Health engine: sensing, evaluating and Bayesian reasoning 

The computation of a single, accurate, assessment of health is key to the expected 
benefits of this work. We therefore explain the logical model of the health engine in 
detail below. 

SAC
M apping
Layer

Random
Variables

Dependencies

Conditional
Probability
Tables

v1 v2 vn

µ1 µ2 µn

Evaluators

s1 skSensors

M easures
m1 m2 mq

Service 
Elem ent

Sensing
 &

 Evaluating 
(SEV net)

Probabilistic
Reasoning
(Bayes net)

Probability of Health

 
Figure 1: Health Engine Model 

 
The health engine achieves its result by first logically wrapping ‘sensors’ around a 
particular service element. Those sensors generate measurements over time, which are 
stored in the ‘measures’. We use the terms, sensor and measure, in a broad sense, 
intended to denote any information capture about the behavior of the underlying 
service element. Sensors may or may not require cooperation from the underlying 
element. Examples of cooperation-independent sensors are operating system tools that 
measure CPU usage, memory consumption, or I/O rates for a particular process. 
Alternatively, calls to management APIs of a service element (if they exist) are 
cooperation-dependent sensors in our terminology. Another useful and commonly 



 

5 
 
 

available sensor is an application log parser/analyzer. For abstract service elements 
that do not correspond to a single process, active tests by pseudo-clients can be 
constructed as sensors in our framework. Where warranted, sensors that intercept the 
request/response flow of the underlying element also fit within the architecture. 
 
The second layer in the health engine accumulates the information provided by the 
sensors in the measures. The architecture allows for information of any type to be 
stored there. The amount of past data to be kept is measure specific. A given sensor 
can contribute data to one or several measures; we denote that information flow with 
arrows going from the sensors to the measures in Figure 1.  
 
The next layer is the ‘evaluators’. These are functions that process one or more of the 
measures, to yield an opinion of the service element’s health. The opinion can be 
expressed in binary, tertiary, or any N-ary form. The evaluators have access to a 
statistical library and a time-selection construct, so that ‘within 2 standard deviations 
of the mean value in the last 30 days’ can be expressed easily. The evaluators are not 
limited, however, and are free to exploit domain constraints either in the data 
extraction phase or in their statistical computation. 
 
The top layer attempts to subtly combine the individual opinions expressed by the 
evaluators into a single assessment, using knowledge about the accuracy of the 
evaluators in different circumstances. The intuition here is that reasoning about the 
evaluators’ opinions yields more accurate conclusions than simply ‘ORing’ them, as 
is commonly done. In our first implementation, we chose Bayesian networks in the 
top layer for several reasons. Bayesian networks are a proven technology in the field 
of diagnostics [13] [14] and are capable of leveraging prior expert opinions with 
learned information from data [15].  
 
The individual health evaluations are entered as evidence (in the Bayesian reasoning 
sense) to the Bayesian inference engine. The customized Bayesian networks are 
specified to have one leaf node (‘random variable’) for each evaluator. The 
conditional probability tables encode how much weight to attach to the opinion of 
each evaluator. The Bayesian inference engine always functions on partial evidence, 
so an evaluator unable to give an opinion for any reason (e.g. lack of sensor data) 
does not require special treatment. Whenever an assessment of the overall health is 
needed, the current evaluations are entered as evidence, and the inference engine 
computes the resulting probability for the top node. The probability is the single 
assessment of health at that instant. 

2.3. Expanding the semantic range of health communications 

Management systems typically communicate information about element health via 
lists of name-value pairs (e.g. MIB readings) or notifications of abnormal events (e.g. 
SNMP traps). Those information types are understood only by a management 
overseer or monitor. By providing reduced and universal information about health (a 



 

6 
 
 

real number between 0 and 1), and communicating via broadly accessible 
mechanisms (XML + HTTP), we enlarge the pool of possible applications that can 
communicate about a service element’s health to: 
• a variety of management applications beyond the top monitor; 
• a peer, such as a potential customer or supplier of that service element; 
• the service element itself! (Hence the name ‘Self-Aware Services’…). 
 
A frequent issue in distributed management systems is the need to standardize the 
language used for communicating information between service components and the 
management system. In our architecture, the basic information about health has been 
reduced to a single number and can thus be communicated using any existing 
language that allows tagged variables. 
 
Although we believe that there is value in reifying the concept of element health and 
reducing it to a single number, we recognize that there are drawbacks. To address 
some of these, the architecture places no restrictions on additional information that 
could be communicated. For example, in the implementation we will describe later, 
we defined in our XML an additional ‘Details’ tag that allows for the inclusion of 
CIM-XML reports or dumps from evaluators and sensors. Further, we have 
anticipated the possibility of different definitions of health by not restricting the 
number of Bayesian networks that can be used simultaneously. This is useful in cases 
where applications belong to significantly different semantic domains and need to 
communicate different notions of health.  

2.4. Self-awareness architecture 

Our proposed self-awareness architecture therefore rests on three ideas: 
• We generalize the measurements and thresholds concept widely found in 

commercial system management technology to a collection of sensors for 
measurement capture, measures for relevant measurements accumulation, 
and evaluators for the generation of opinion about the service element health, 
based on statistical or absolute tests. 

• We combine the multiple opinions about the element health into a single, 
probabilistic assessment, using probabilistic reasoning technology.  

• We communicate using standard web technologies. To configure the engine 
and communicate the health information to other service components and/or 
management systems, we use open XML-based descriptions transported over 
HTTP.  

 
These fundamental components of the self-awareness architecture are depicted below, 
in Figure 2. 



 

7 
 
 

HTTP

Web Interface

XML parser & formatter

H
ea

lth
 E

ng
in

e
ConfigurationCommunication

Probabilistic Reasoning

Domain Dependent

Evaluators

Measures

Sensors

 
Figure 2: Health Awareness Architecture 

 
The resulting health assessment can be fed into existing management systems to assist 
administrators, or into higher-level fault localization systems, such as event 
correlation systems. It can also be passed to a local control module for the service 
element itself, thereby yielding the ‘Self-Awareness and Control’ paradigm.  
 
While largely domain independent, in implementation, the machinery is tailored to a 
domain by configuring a Bayesian network, and a set of associated Java classes for 
the element specific parts of the sensors, measures and evaluators.  

2.5. The generality of the technology 

The SAC architecture and machinery are general: the overall communication 
mechanism and SAC framework are element independent. The Bayesian network 
engine, and many of the mechanisms for accumulating and processing the 
measurements are element independent.  
 
Semantically, there are no restrictions on the kind of service element to which the 
SAC concept can be applied. The application of this architecture to a service element 
involves customizing the sensors, picking meaningful measures, and defining 
appropriate evaluators for the health question at hand. Further, the parameters of the 
Bayesian network, that is, the conditional probability tables must be specified, 
reflecting any prior knowledge about the behavior of the service element.  
 
The practical granularity of the service elements that can be made self-aware is 
constrained only by the resource footprint of the implementation and the resource 
budget of the domain. 



 

8 
 
 

3. Experimental validation 

3.1. Virus and mail loops detection using SAC 

To test the validity of the SAC approach, we have implemented this architecture a 
number of times, each time adding more capability. We used HP Chai [16] [17] in our 
first prototype as the front end web server because it provided us with a lightweight 
web server which is designed to allow back-end servlet applications to be integrated 
easily. Any other web server and servlet facilities could have been used. For the 
Bayesian engine, we wanted a lightweight and memory efficient engine and used 
Professor Fabio Cozman’s EBayes [18], intended for embedded environments. The 
Bayesian networks were described in an XML dialect: XBN [19], slightly extended to 
include the linkage between the Bayesian network nodes and our evaluator class 
names. We used an XML parser available from IBM [12].  
 
Abstract Java classes provide a large part of the functionality needed for building 
sensors and evaluators. To customize a SAC to a service element, small concrete Java 
classes that gather and rate relevant information are defined and written. Those 
classes can leverage all the functionality provided by the abstract parent classes, as 
well as the statistics and time selection libraries. In the experiment described below, 
we modified 7 Java classes, out of the more than 70 we have coded into the 
framework. We also coded a log file parser, specific to this experiment. 
 
Most recently, we applied the SAC concept to the detection of a set of email 
anomalies on a corporate mail system. In this experiment, we attempted to detect a 
virus infection with no knowledge of the specific attributes of the virus. We also 
attempted to detect mail loops, as these also negatively impact mail systems, 
principally by increasing traffic and thereby using system resources. Mail loops often 
go undetected by email monitors unless the load becomes excessive or the 
administrator catches the traffic by chance. 
 
The source of information, the sensor in SAC terminology, was the mail (postfix) log 
file from a corporate firewall that handles messages going in and out of the HP 
domain. This firewall does not see any internal email traffic. Virus detection at this 
level is more difficult because the intensity of the virus-induced traffic is lower at this 
corporate boundary than in the internal mail system. Most recent email viruses use the 
user’s address book to send themselves out, and most address books in a company 
contain principally internal email addresses. 



 

9 
 
 

v1 v2 v 4

µ,

Log

incoming m sg rate

Postfix 
M ail Server

Probability of M ail Loop or Virus Intrusion

v3

µ, µ, µ,

to/from  ratio m ax sam e size m ax sharpness

 
 

Figure 3: Structure of the Virus/Mail Loop detector 
 
Figure 3 shows the structure of the system, including the structure of the simple 
Bayesian network. The measures and evaluators were chosen based on conversations 
with an experienced member of the corporate email support organization. His input 
was also used to set the parameters of the conditional probability tables, reflecting 
how much the particular evaluator should be trusted to indicate the presence of the 
targeted mail anomalies. 

3.2. The sensors and measures 

The mail logs record every action taken by the mail system: when a message is 
received, from whom and to whom, the message size, when there is an attempt to 
deliver a message, and the status of the attempt (‘sent’, ‘deferred’ or ‘bounced’).  
Note that for the following definitions, ‘incoming’ and ‘outgoing’ are defined relative 
to the firewall mail server, not the HP domain; that is messages received by the mail 
server are counted as incoming whether they originate inside or outside the corporate 
boundary. From the logs, four measures were computed: 

• The rate of received messages. The rate was defined to be the number of 
incoming messages observed in the measurement interval, divided by the 
interval size, 10 minutes in all of these experiments. 

• The ratio between incoming and outgoing messages during the measurement 
interval. The measure was defined to be the absolute value of the difference 
between this ratio and 1. Note that in this email implementation, a message 
with multiple recipient addresses results in a single incoming message at the 
mail server, but multiple outgoing messages. Viruses and mail loops emails 



 

10 
 
 

usually have one recipient per message. In an outbreak, the ratio comes 
closer to 1 than during normal operation. 

• The magnitude of the peak bin in the distribution of incoming message sizes. 
The frequency distribution of message sizes was accumulated and the bin 
contents normalized by the total number of messages observed in the 
interval. When a virus outbreak or email loop occurs, there is a spike around 
a particular message size. This has been observed in the recent virus 
outbreaks. This measure picks up mass emails as well, but the previous 
measure (incoming/outgoing ratio) offsets this drawback.  

• The “sharpness” of the peak of the distribution of incoming message sizes. 
Using the bin with the maximum number of messages found in the previous 
measure, the sharpness is computed as the ratio between the size of that bin 
and the average size of its relevant neighbors.  By relevant neighbor, we 
mean the 4 neighboring non-empty bins, excluding the two nearest neighbors 
on both sides of the maximum bin, to accommodate the known jitter in 
message size due to header information. 

 
For this experiment, the subset of possible measures chosen was small and not 
specific, by intent. Many current virus detection systems rely on text strings being 
present in the virus (e.g. ‘Life stages’ in the subject line). New viruses can bypass 
these detection systems simply by changing text strings.  String based solutions are 
sometime used for spam filtering and could also be used for mail loop detection. Our 
implementation did not depend on any specific pattern in the message itself, but on 
the effect the virus or mail loop has on the mail system, namely the change in traffic 
characteristics that occurs when such an anomaly is present. This allows us to detect 
the problem in a more attack independent manner. 
 

3.3. The evaluators 

The SAC architecture neither specifies nor restricts the type of evaluation applied to 
the measures. In this experiment, we used simple statistical evaluators, namely the 
mean (µ) and standard deviation (σ), computed over the last 2 hours, to determine 
whether the measures indicated a problem. We chose these evaluators with no implied 
assertions about the underlying statistical characteristics of the measures. In addition, 
we filtered the values used in computing the running µ and σ  by excluding outliers, 
defined as beyond +/- 3.5 σ  from µ . This was done to better track the normal 
behavior of the system and to reduce the likelihood that the evaluators quickly adapt 
to pathological values.  
 
The values of the evaluators for the incoming message rate, the message size peak 
and sharpness were determined as follows: 
 



 

11 
 
 










+>
+≤<+

+≤

=

σµ
σµ

σµσµ
σµ

 and  compute  toavailable  weremeasurespast  no ifKnowt Don’

2    Measurepresent   ifBad

2   Measurepresent    ifMedium

   Measurepresent  ifGood

Evaluator   

 
The evaluator for the ratio of incoming and outgoing messages was determined by: 

 

available  weremeasurespast  no if Knowt Don’

otherwiseBad

)
2

 ,-max(  Measurepresent  ifGood

Evaluator 









 ≥

=

µσµ
 

 
The above illustrates the ability of the Bayesian networks to handle ‘Don’t Know’ as 
an input from any evaluator. 

3.4. The experiment 

For this feasibility experiment, 17 days worth of mail logs from one of the firewall 
systems were analyzed. During this period, one notably virulent attack occurred (‘Life 
stages’ virus) and affected the system for approximately half a day before defenses 
were installed. Over 200 of the more than 2400 measurement intervals were impacted 
by significant mail loops, as established by an automated counting script described 
below. This data sample was deemed a good test bed for the SAC since it had enough 
adverse events to enable a meaningful statistical evaluation. The experiment we 
describe was done off-line to allow a detailed statistical analysis of the output of the 
system. This was an implementation choice, consistent with the research objective, 
not a limitation of the architecture.  
 
On the other hand, since there was only one virus attack in our data, we could not 
perform a statistically meaningful validation. Without the message header or content 
information, it was impossible to reconstruct the beginning or end of the attack from 
the server log. Corporate-wide communications were sent late morning and defenses 
were installed across the corporation in the late afternoon of the affected day. The 
firewall SAC gave a sharp drop in health probability at the 11:01 AM and 12:01 PM 
intervals but did not indicate problems at other times during the possible virus 
infestation period. Because of the impracticality of doing statistical validation on the 
virus events, the rest of this analysis focuses on the mail loop events and detection. 
 

3.5. Results 

The effects of combining the outputs of several evaluators with a Bayesian network 
are illustrated in Figures 4 and 5. The individual evaluator graphs in Figure 4 show 
both random as well as systematic variability in the individual measures. Each of the 



 

12 
 
 

four sub-figures plots one of the four defined measures, as a function of time for one 
24-hour period in the 17-day experiment. The variability of these data illustrates the 
impracticality of using static thresholds as alarms. 
 
Superimposed on these sub-figures are plots of the outermost decision boundary 
where the statistical evaluators registered ‘bad’. In sub-figures (a)-(c), corresponding 
to the incoming message rate, peak message sharpness and size measures, the dashed 
lines correspond to the recently time-averaged means plus two standard deviations. 
For the fourth measure, the ratio of incoming to outgoing messages, mean minus one 
standard deviation is shown.  
  

00:00 08:00 16:00 24:00

500

1000

1500

2000

2500
Measure   
Mean +2std

 
(a) Incoming message rate 

 

00:00 08:00 16:00 24:00

10
1

10
2

10
3

 
(b) Sharpness evaluator  

(logarithmic scale) 

00:00 08:00 16:00 24:00
0

0.1

0.2

0.3

0.4

 
  (c) Peak of message size distribution 
 

00:00 08:00 16:00 24:00
0

0.1

0.2

0.3

0.4
Measure 
mean-std

 
(d) Ratio of incoming and outgoing 

messages 

Figure 4: Plot of the measures for all 10 minutes periods of one particular day with 
the decision boundaries of the evaluators 

 



 

13 
 
 

In Figure 5, we display the output of the Bayesian network, corresponding to the 
probability of the email anomaly over the same 24-hour measurement period. The 
apparent improvements in signal differentiation and noise attenuation were validated 
and substantiated by statistical analyses using standard detection evaluation 
techniques that we describe next. 
 

00:00 08:00 16:00 24:00
0

0.2

0.4

0.6

0.8

1

 
Figure 5: Probability of mail loop, computed over the same 24-hour period as Figure 

4, ‘x’ mark the ground truth for the interval (1-Loop present, 0- Loop absent) 
 
To validate the output of the Bayesian network, we used a detection evaluation 
method called the Receiver Operating Characteristic (ROC, extolled in [20]). The 
ROC is a graph showing the probability of accurate detection of an event versus the 
probability of a false alarm, using a moving decision threshold. In our case, the 
decision threshold is applied against the output of the SAC. The upper left point (0,1) 
denotes the ideal of complete detection with no false alarm. In general, the closer the 
curve comes to that point, the better. 
 
Another useful evaluation of the detector plots the probabilities of error as a function 
of the decision threshold. The range of thresholds that yield optimal performance is 
indicative of robustness. 
 
The computation of the ROC and error probability curves requires that we know the 
ground truth in the experiment, that is, that we have a way of validating if a given 
detector output is correct or not. In any detection experiment using real-life data, the 
determination of the ground truth is a critical but often difficult task, which affects the 
reported performance. For determining the ground truth for the loops, we used a script 
that reconstructed the mail traffic from the log, looking in detail at the addresses of 
the senders and recipients. We filtered out all messages with more than one recipient 
and then counted all back-and-forth message pairs between unique sender/recipient 
pairs.  We counted the mail loop traffic in each 10-minute interval and labeled as 



 

14 
 
 

anomalous any interval with loop traffic in excess of 10% of the peak throughput of 
the server. 
 
The performance results are shown in Figures 6 and 7. The ROC curve comes very 
close to the ideal point mentioned above. The probability of error curves show a large 
range [0.35, 0.7] of decision thresholds at which the detector performs well, 
indicating good robustness. 

 

Figure 6: ROC of the email loop experiment 

 



 

15 
 
 

 

Figure 7: Probabilities of error as a function of the decision threshold 

4. Application of machine learning 

4.1. Opportunity and necessity  

In the work described so far, the conditional probability tables (CPT’s) of the 
Bayesian network were set using human expert knowledge. The opinions of a domain 
expert were used to estimate how much a particular evaluator, giving a particular 
answer, should be trusted to indicate the presence of the targeted email anomalies. 
This is a significant cost of deploying the SAC architecture to any domain. Using 
machine learning techniques theoretically offers the opportunity to both improve over 
the initial human estimates, and possibly, to eliminate the need for human estimates 
altogether. 
 
In addition, there are circumstances where the characteristics of the underlying 
service element change (e.g. a version upgrade, or a reconfiguration). To remain 
accurate then, the Bayesian network model needs to adapt to the underlying dynamic 
reality. This calls for the use of machine learning techniques that can take advantage 
of on-going observations, and feedback (i.e. labeled data) when available, to adjust 
the CPT’s accordingly. There is a more subtle form of dynamism that we encounter 
when the health of the underlying element in a particular interval is not independent 
from the health at the previous interval. An adaptive learning algorithm can change 
the CPT’s to take advantage of such time linkage, and thus alleviate the need for a 
more complex non-stationary model, such as dynamic Bayesian networks [21]. 



 

16 
 
 

 
Bayesian network learning is a rich field, surveyed in [15], [22], and [23]. In order to 
provide the adaptive capability just mentioned, and also to avoid the requirement for a 
batch of training data, we narrowed our focus to on-line learning, i.e. techniques that 
use data coming along as the system operates (e.g. [24], [25], [26]). For a couple of 
different reasons (adapting quickly to changes on one hand, and occasionally 
capitalizing on a few records of human feedback on the other hand) we needed a 
technique that could take advantage of a small amount of labeled records. We 
therefore focused on Voting EM [27], [28], an algorithm that was developed for on-
line learning of Bayesian network CPT’s in the context of scarce labeled training data. 
In the next section we present the results of that exploration. 
 

4.2. Experimental results using Voting EM learning 

For this experiment, we used the same 17 days of data described in section 3, which 
contained about 200 intervals with mail loop present. The learning was done 
incrementally, using the adaptive Voting EM algorithm, in the following manner: for 
every time interval, the current Bayesian network (with its current CPT’s) evaluates 
the record and gives its answer.  Then, the known ground truth classification for that 
interval is given to the system as a labeled training record, which then alters slightly 
the CPT’s, thereby yielding the Bayesian network which will be used at the next time 
interval. The resulting vector of output probabilities was then used to generate the 
ROC and error probability curves in exactly the same manner as in section 3. 
 
Structuring the learning and testing as we described guarantees that the system never 
‘sees’ the answer for any interval before returning its own evaluation/classification 
first.  It is the analog for on-line algorithms of splitting the training and testing data 
for batch algorithms. The goal is to evaluate the system as fairly as possible, and to 
avoid over fitting any particular data set. 
 
The performance results are shown in Figures 8 and 9. The ROC curves of both the 
experiments with and without learning are shown in Figure 8. The ROC’s show that 
on-line learning yields a significant improvement in performance. The probability of 
error curves show further improvement in robustness (as defined in section 3.5) in 
comparison to the curves shown in Figure 7.  



 

17 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

ti
on

ROC with no learning    
ROC with online learning

 
Figure 8: ROC of the email loop experiment 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold Values

Probability of Miss       
Probability of False Alarm
Probability of Error      

 
Figure 9: Probabilities of error as a function of the decision threshold 

 
In a separate experiment, we performed batch learning over the data, testing on the 
same training data. The performance of the learned BN was equivalent to that of the 
expert-based BN. This indicates that in circumstances where batches of labeled data 
are available, we may be able to use that information instead of domain expertise, in 
order to bootstrap the system. 



 

18 
 
 

5. Analysis of Bayesian network contribution 

One way to look at the SAC architecture is to contrast the Bayesian network layer 
with combinatorial ways of combining and propagating individual fault indicators. In 
architectures such as OpenView[29] or FireHunter[30], the fault indicators are 
threshold violations, and the combination operation is usually a logical OR. We 
believe there are advantages to the Bayesian network combination, both qualitatively 
and quantitatively. 

5.1. Qualitative benefits 

The most direct benefit of the Bayesian network combination of health indicators is 
that the result is a probability, rather than just a binary ok/not-ok indicator (or a 
tertiary green/yellow/red). Clearly, one can derive an n-ary indicator from the 
probability by thresholding it, and this is what we did in the anomaly detection 
experiment described in section 3, but the thresholding operation is not required.  One 
direct advantage of having probabilities as the output is the ability to choose the trade-
off between accuracy (false alarm rate) and sensitivity (miss rate). Therefore, should 
the context of the detection function imply a significant emphasis either on 
maximizing the detection rate, or on minimizing the false alarm rate, the BN layer is 
flexible enough to enable either choice, simply by adjusting the probability threshold. 
(This yields a different point along the ROC curve.) Such adjustment is not directly 
doable when using a logical combination of indicators. 
 
We also believe that the probability fundamentally contains more information than an 
n-ary classification, and that this will be beneficial when composing multiple SACs, 
but we have not demonstrated that yet. 
 
A more subtle advantage of the Bayesian network layer is its ability to choose how 
much ‘attention’ to pay to each underlying evaluator (as encoded in the CPT entries), 
before coming up with its final health assessment.  This could be approximated by 
providing weights for each indicator, and using a linear combination. However, the 
Bayesian network allows even further refinement, by allowing different degrees of 
‘trust’ to be stated for each possible answer of each evaluator. Moreover, as we saw in 
the previous section, those trust parameters can be arrived at, both from human 
expertise, and from automated statistics on collected data. Practically speaking, this 
means that the Bayesian network combination can take advantage of accurate 
evaluators, while protecting itself from inaccurate ones. 
 
Finally, the SAC architecture allows more complex network structures than just the 
‘naïve Bayes’ structure we have used so far (e.g. the ‘arrows up’ classifier in [31]). 
Those structures could embed deeper explanatory models of the underlying service 
element health, and of the relationships between the evaluators, and may yield better 
accuracy and sensitivity. 



 

19 
 
 

5.2. Quantitative gains 

Pragmatically, the most important question is whether the probabilistic reasoning 
layer (BN) improves the performance over deterministic logical combinations of the 
evaluators. Naturally, the performance of the BN depends on the CPT assignments. 
Currently, the BN layer of SAC is a naïve BN, therefore the CPT’s represent the trust 
in the output of the evaluators, and a wrong assignment of the CPT’s results in 
misleading health assessments. The question becomes, suppose that the CPT’s are set 
reasonably well, does the BN improve over logical combination of the evaluators, and 
by how much? We show empirically that in our experiment, the gain of the BN, with 
expert setting of the CPT’s, over logical combinations, is significant.   
 
We compared two commonly used logical combinations of the evaluators: the logical 
OR of all the evaluator assessments and a majority (MAJ) count of the evaluator 
opinions. (This also implied reducing the evaluator outputs to a binary answer.) The 
first (OR) has better or equal detection rates than any single evaluator, but has more 
false alarms. The second (MAJ) has lower detection rates but also less false alarms.  
The MAJ operator can be seen as a ‘softer’ version of the logical AND operator, 
which has the fewest false alarms, but also a very low detection rate. 
 
In order to systematically compare the BN output to a binary output, one has to 
choose a general threshold picking strategy, rather than an ad-hoc one. We decided to 
choose the threshold corresponding to the point of equal probability of false alarm 
and probability of miss. This yields the point on the ROC curve closest to the (0,1) 
ideal mentioned in section 3.5, and is the best trade-off between the two quantities (in 
the absence of information regarding the relative costs of a false alarm and a miss). 
 
Table 1 shows the detection and false alarm rates for each of the four evaluators. 
Table 2 shows the error rates for the OR combination, MAJ combination and the BN 
output using the threshold just described.  
 
Evaluator Detection rate (%) False alarm rate (%) 
Incoming Message rate 76 30 
Max same size 78 11 
To/from ratio 36 22 
Max sharpness 94 7 

Table 1: Error rates for individual evaluators 
 
 Detection rate (%) False alarm rate (%) 
Logical OR 100 52 
Majority count (MAJ) 66 3 
BN output 95 5 

Table 2: Error rates for the logical combination of evaluators and BN output 
 



 

20 
 
 

The results show that the BN improves significantly the false alarm rate in 
comparison to the OR combination, while reducing the detection only slightly. 
Compared to the MAJ combination, the BN improves detection significantly, while 
increasing the false alarm rate only slightly. These results were consistently repeated 
in additional experiments we have performed on the same data, but with different 
evaluators. 

6. Conclusions and future work 

We have presented a general architecture, which aims at autonomously assessing the 
health of service elements in a broad sense, by adding a layer of intelligence on top of 
the measurement gathering and sending paradigm. That intelligence is provided by a 
combination of common statistical techniques, packaged in a reusable way, and a 
probabilistic reasoning technology (Bayesian networks). Our implementation of the 
architecture is largely domain independent, with a small domain dependent 
customization layer.  
 
In addition, by utilizing XML to describe the generic notion of probabilistic health 
and using standard Web protocols (HTTP) to transport it, we enable easy peer-to-peer 
conversations about component health. This is a broader paradigm than the 
hierarchical, manager to managed element model. 
 
We have experimented with an instance of this architecture, customized to deal with 
the email services domain, and targeted at the health anomalies of virus infections and 
email loops. The experiment, conducted on real-life data from HP firewall mail 
servers logs, shows satisfactory results despite the absence of specificity and 
sophistication of the sensors, measures and evaluators. 
 
Our initial attempts to apply machine learning to take advantage of feedback yielded 
significant improvements in the accuracy of the detector, and some encouragement 
toward the goal of eliminating the dependence on domain experts. In addition, should 
the question be raised about bringing such ‘heavy machinery’ as Bayesian inference, 
a detailed analysis of the contributions of the Bayesian network layer showed both 
qualitative and material quantitative gains compared to the standard alternatives. 
 
Therefore we believe that our proposed architecture is a promising step toward the 
challenges of managing large and complex services. The approach is general and 
valid for arbitrary service elements. The absence of a requirement for a detailed and 
complete model of correct behavior is an attractive aspect of this approach. The 
prospect of greater sensitivity and accuracy by the combination of statistics and 
probabilistic reasoning is compelling. The ability to reduce a potentially broad and 
diverse set of noisy inputs to a single number is another advantage of the approach. 
The domain dependent components of the architecture and with it, the attendant 
required customization efforts, are small.  
 



 

21 
 
 

To realize the full potential of these concepts requires more research. As well as 
additional experiments involving customizations of the SAC architecture to various 
domains, we intend to extend this work in a number of ways. We are researching the 
application of more sophisticated statistical and probabilistic reasoning technology, 
specifically learning from unlabeled data, to make the health awareness machine more 
accurate. We hope to further explore the self-control part of this ‘Self-Awareness and 
Control’ architecture. We also intend to explore what happens when we build SACs 
of SACs.  
 
Acknowledgments 
 
Sincere thanks to Alan Karp of HP Labs for key suggestions during the inception of 
the SAC idea, and to Marsha Duro of HP Labs for strengthening the evaluation of that 
idea during the gestation of this paper. We are also grateful to the IM reviewers and 
shepherd, Gabriel Jakobson, for improving the signal-to-noise ratio of our IM-2001 
submission. 
 
References 

 
[1]  J. Madden, CA begins shipping 'Neugent' neural network agent eWEEK, Dec, 

1998. 
[2]  G. Jakobson and M.D. Weissman, Alarm correlation IEEE Network, pp. 52-59, 

Nov, 1993. 
[3]  G. Jakobson and M.D. Weissman, Real-time telecommunication network 

management: extending event correlation with temporal constraints eds. A.S. 
Sethi, Y. Raynaud, and F. Faure-Vincent. pp. 290-301, 1995. Proceedings of 
the IEEE/IFIP 4th international symposium on integrated network management 
IM-95 Chapman and Hall. 

[4]  S. Klinger, S. Yemini, Y. Yemini, D. Oshe, and S. Stolfo, A coding approach 
to event correlation eds. A.S. Sethi, Y. Raynaud, and F. Faure-Vincent. pp. 
266-277, 1995. Proceedings of the IEEE/IFIP 4th international symposium on 
integrated network management IM-95 Chapman and Hall. 

[5]  K.R. Sheers, HP OpenView Event Correlation Services Hewlett-Packard 
Journal, pp. 31-42, Oct, 1996. 

[6]  Service model for email services at Sprint S. Ramanathan, D. Caswell, M. 
Asawa, and R. Malpani. 1997. HP Labs ISAL. Palo Alto, CA. 

[7]  Using service models for management of Internet services D. Caswell and S. 
Ramanathan.  HPL-1999-43, Mar, 1999. HP Labs ISAL. Palo Alto, CA. 

[8]  P. Bhoj, S. Singhal, and S. Chutani, SLA management in federated 
environments eds. M. Sloman, S. Mazumdar, and E. Lupu. pp. 293-308, 1999. 
Proceedings of the IEEE/IFIP 6th international symposium on integrated 
network management IM-99 IEEE Publishing. 

[9]  J. Pearl.  Probabilistic reasoning in intelligent systems: networks of plausible 
inference,  San Francisco, CA: Morgan Kaufmann, 1988.  



 

22 
 
 

[10]  C.S. Hood, Intelligent detection for fault management of communication 
networks 1996. Rensselaer Polytechnic Institute. UMI Dissertation Services. 

[11]  C.S. Hood and C. Ji, Proactive network fault detection ed. IEEE. 1997. 
Proceedings of INFOCOMM 97  

[12]  C.S. Hood and C. Ji, Intelligent agents for proactive fault detection IEEE 
Internet Computing, vol. 2, pp. 65-72, Mar, 1998-Apr 30, 1998. 

[13]  D. Heckerman, A. Mamdani, and M.P. Wellman, Real-world applications of 
Bayesian networks Communications of the ACM, vol. 38,Mar, 1995. 

[14]  C. Skaanning, F.V. Jensen, U. Kjærulff, P. Pelletier, L. Rostrup-Jensen, and L. 
Parker, Printing system diagnosis - a Bayesian network application pp. 259-
265, 1998. Proceedings of the 9th international workshop on principles of 
diagnosis DX-98  

[15]  A tutorial on learning with Bayesian networks D. Heckerman.  MSR-TR-95-
06, 1995. Microsoft Research. Redmond, WA. 

[16]  HP Internet Business Solutions. Chai.  2000.  http://chai.hp.com/ 
[17]  IT-Analysis.com. The future is thin with HP's Chai.  99.  http://www.it-

analysis.com/99-09-30-2.html 
[18]  F.G. Cozman, EBayes - Embedded Bayesian networks, rel. 1998. 

http://www.cs.cmu.edu/~javabayes/EBayes/index.html/ 
[19]  Microsoft DTAS. XML Belief Network File Format.  2000.  

http://research.microsoft.com/DTAS/bnformat/default.htm 
[20]  F. Provost, T. Fawcett, and R. Kohavi, The case against accuracy estimation 

for comparing induction algorithms 1998. Proceedings of the 15th international 
conference on machine learning ICML-98 Morgan Kaufmann. San Mateo, CA. 

[21]  X. Boyen and D. Koller, Exploiting the architecture of dynamic systems 1999. 
Proceedings of the 16th national conference on artificial intelligence AAAI-99  

[22]  N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell, Challenge: what 
is the impact of Bayesian networks on learning? ed. M.E. Pollack.  1, pp. 10-
15, 1997. Proceedings of the 15th international joint conference on artificial 
intelligence IJCAI-97 Morgan Kaufmann. San Mateo, CA. 

[23]  D.J. Spiegelhalter and R.G. Cowell.  Learning in probabilistic expert systems. 
In:  Bayesian Statistics 4, eds. J.M. Bernardo, J.O. Berger, A.P. Dawid, and 
A.F.M. Smith.  Oxford University Press, 1992.pp. 447-466.  

[24]  N. Murata, K.R. Muller, A. Ziehe, and S.I. Amari, Adaptive on-line learning in 
changing enviroments  eds. G. Pavlou, N. Anerousis, and A. Liotta. pp. 599-
605, 1996. Proceedings of the Advances in Neural Information Processing 
Systems NIPS-96 MIT Press. Cambridge, MA. 

[25]  Boosting and naive bayesian learning C. Elkan.  CS97-557, 1997. Dept of 
CS&E. San Diego, CA. 

[26]  S. Ramachandran and R.J. Mooney, Theory refinement for Bayesian networks 
with hidden variables pp. 454-462, 1998. Proceedings of the 15th international 
conference on machine learning ICML-98 Morgan Kaufmann. San Mateo, CA. 

[27]  Online learning of Bayesian network parameters I. Cohen, A. Bronstein, and 
F.G. Cozman.  HPL-2001-55 (R.1), Jun, 2001. HP Labs IMSL. Palo Alto, CA. 

[28]  Adaptive online learning of Bayesian network parameters I. Cohen, A. 



 

23 
 
 

Bronstein, and F.G. Cozman.  HPL-2001-156, 2001. HP Labs IMSL. Palo 
Alto, CA. 

[29]  HP. OpenView.  2000.  http://www.openview.hp.com/index.asp 
[30]  Agilent. FireHunter.  2000.  http://www.firehunter.com/ 
[31]  Bayesian mixture of classifiers A. Garg, V. Pavlovic, and T.S. Huang. 2001. 

unpublished manuscript. 
[32]  A. Bronstein, I. Cohen, J. Das, M. Duro,  R. Friedrich, G. Kleyner , M. 

Mueller, and S. Singhal, Self-Aware Services: Using Bayesian networks for 
Detecting Anomalies in Internet-based Services eds. G. Pavlou, N. Anerousis, 
and A. Liotta. pp. 623-638, 2001. Proceedings of the IEEE/IFIP 7th 
international symposium on integrated network management IM-01 IEEE 
Publishing. 

 
 
 
Biographies 
 
Alexandre Bronstein works as a Senior Scientist at Hewlett-Packard Laboratories in 
the Internet and Mobile Systems Lab. He received a BS in mathematics, MS and PhD 
in computer science, from Stanford University, and an RC (reality check) from 7 
years in Silicon Valley start-ups. His current research interests are in the area of 
health: system health professionally, human health as a hobby. 
Ira Cohen is a PhD Student at the University of Illinois at Urbana-Champaign. Ira 
received a BS degree from Ben-Gurion University, Israel, and a MS degree from the 
University of Illinois at Urbana-Champaign, both in Electrical and Computer 
Engineering. His main research interests are in statistical learning, computer vision 
and affective computing.  
Joydip Das is a Software Architect at Hewlett-Packard. He has over 10 years of 
experience in developing and architecting software for numerous successful products. 
He has worked in areas including broadband test and measurement equipment for 
ATM networks, and satellite test systems. His current interests are in the areas of 
large scale Internet computing platforms and federated e-services marketplaces. 
Joydip holds a Master of Engineering – Information Technology degree from Royal 
Melbourne Institute of Technology and a Bachelor of Engineering - Electrical, from 
Monash University, Melbourne, Australia. 
Rich Friedrich has held several research and product development positions within 
Hewlett-Packard during the previous 18 years and is now a Principal Architect in the 
Internet and Mobile Systems Lab. He is currently leading a team researching next 
generation, large scale Internet computing utilities that support emerging services. He 
was the program co-chair for the Sixth IEEE International Workshop on Quality of 
Service held in May 1998. He has published extensively and is a co-inventor on 
multiple patents. He attended Northwestern University and Stanford University.   
Gary (Igor) Kleyner is a Scientist and Software Engineer at Hewlett-Packard 
Laboratories. He has over 20 years of experience in academic and industrial research 



 

24 
 
 

and development in the areas of theory of probability and statistics, mathematical 
physics and modeling, data mining and reliability analysis, Internet and e-commerce 
automation. He has numerous publications in those fields and holds 3 patents. His 
current interests are in the areas of large-scale computing platforms reliability and 
Internet data mining and analysis. Gary holds two BS degrees in mathematics and 
engineering, PhD and MS degrees from Saint-Petersburg Technical University and 
Northwestern University.    
Sharad Singhal is Principal Scientist at Hewlett-Packard Laboratories. He has over 
18 years of experience in industrial research in a number of areas including speech 
and video coding, signal processing, middleware technologies and systems 
management. He has published extensively in these areas, and holds 4 patents. His 
current research interests are in the areas of systems management for large-scale 
systems. Sharad holds PhD and MS degrees from Yale University, New Haven, and 
BTech from the Indian Institute of Technology Kanpur, India. 
 


