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Abstract

This reports analyzes the e�ect of unlabeled training data in generative classi�ers. We are

interested in classi�cation performance when unlabeled data are added to an existing pool of

labeled data. We show that there are situations where unlabeled data can degrade the performance

of a classi�er. We present an analysis of these situations and explain several seemingly disparate

results in the literature.

1 Introduction

The purpose of this report is to discuss the performance of generative classi�ers that are built with
labeled and unlabeled records. For the most part we assume that classi�ers are obtained using
maximum likelihood estimation.

We show that there are cases where unlabeled data can degrade the performance of a classi�er.
Our analysis clari�es several seemingly disparate results that have been reported in the literature, and
also explains existing but unpublished experiments in the �eld.

We review the technical aspects of the labeled-unlabeled data problem and present a summary
of current results regarding this problem in Sections 2, 3 and 4. Existing empirical results display
conicting evidence on the value of unlabeled data. In Section 5, we discuss extensive tests that we
conducted to investigate the behavior of classi�ers in the presence of unlabeled data. We then present
a mathematical analysis of the labeled-unlabeled data problem, and demonstrate how unlabeled data
can sometimes improve and sometimes degrade classi�cation performance (Section 6).

�This work was conducted while the �rst author was with the Internet Systems and Storage Laboratory, Hewlett-
Packard Laboratories Palo Alto.

yMailing address: The Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801.
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2 The labeled-unlabeled data problem

Our goal is to label an incoming vector of features X. Each instantiation of X is a record, and we
assume that we have a database of previously observed records. Some of the records in the database
are labeled, and some are unlabeled. We assume that there exists a class variable C. The possible
values of C are the labels. We focus on a binary situation where we have labels c0 and c1; this is
done merely to simplify notation but all results carry unchanged to situations with arbitrary number
of labels.

We must build a classi�er that receives a record x and generates a label ĉ(x) for the record.
Readers who are familiar with this topic may skip the remainder of this section.

Given a record x, our goal is to label x so as to minimize the classi�cation risk [14]:�
r1P (C = c1jX = x) if ĉ(x) is c0;
r0(1� P (C = c1jX = x)) if ĉ(x) is c1;

where ri is the missclassi�cation loss when choosing ĉ(x) incorrectly. We assume that r0 and r1 are
equal; our results do not change substantially if we remove this assumption.

If we knew exactly the joint distribution p(C;X), we could design the optimal classi�cation rule
to label an incoming record x:

ĉ(x) is

�
c1 if P (C = c1jX = x) � 1=2;
c0 otherwise.

(1)

Instead of storing the whole joint distribution p(C;X), we could simply store the posterior distribution
p(CjX). This strategy is usually termed a diagnostic one (for example, diagnostic procedures are often
used to \train" neural networks). In a statistical setting, diagnostic procedures may be cumbersome
as they require a great number of parameters | essentially the same number of probability values as
required to specify the joint distribution p(C;X).

An alternative strategy is to store the class distribution p(C) and the conditional distributions
p(XjC) and then, as we observe x, compute p(CjX = x) using Bayes rule. This strategy is usually
called generative. An advantage of generative methods is that unlabeled data do relate to some
portions of the model (namely, the marginal distribution p(X)). If instead we focus solely on p(CjX),
there is no obvious and principled way to handle unlabeled data [8, 24, 26]. For this reason, we employ
generative schemes in this paper, and leave other approaches for future work.

Normally we will divide our database of previously recorded data in two parts: the training data
and the testing data. First we build a classi�er based on the training data. We use the testing data to
measure classi�cation error (the fraction of incorrect classi�cations). The best achievable classi�cation
error for a problem is called the Bayes rate, and it is a property of the problem.

To build a classi�er, we normally choose the structure of the classi�er and estimate the parameters
of the classi�er. By structure we mean the set of constraints that must be satis�ed by the numerical
parameters of the classi�er. For example, we can assume a �xed number of labels or impose indepen-
dence relations between features conditional on the class variable. In this paper we focus on parameter
estimation under �xed structure. In particular, we assume that all variables (class and features) have
a speci�ed and �xed number of values.

Once we �x the structure of a classi�er, we must estimate the joint distribution p(C;X). We focus
on maximum-likelihood estimates, where we choose probability values that maximize the likelihood of
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the training data. If we have training data divided in Nl labeled records and Nu unlabeled records,
we have the likelihood:  

NlY
i=1

p(xijci) p(ci)

!0@NuY
j=1

p(xj)

1
A ;

which is a function of the probability values themselves, as these values are not �xed in advance. If
all training records are labeled, then maximum likelihood estimates can be produced in closed-form
for discrete and Gaussian features. There is no general closed-form solution for maximizing likelihood
in the presence of unlabeled records. More generally, there is no closed-form solution for maximizing
likelihood when we have missing labels or missing features in the training data. Then we must resort
to numerical methods for maximizing likelihood. One of the most popular methods is the Expectation-
Maximization algorithm (EM) [3, 11]. We have used the EM algorithm in our experiments, as reported
in Section 5.

The fact that parameters must be estimated to obtain a classi�er leads to two types of error: bias
and variance. For a parameter p, the estimation error is usually measured as E

�
(p� p̂)2

�
, where E[�]

denotes expected value and p̂ is the estimator of p. The following decomposition is immediate:

E
�
(p� p̂)2

�
= (p�E[p̂])

2
+E

h
(p̂�E[p̂])

2
i
:

The second term in the right hand side is the variance of p̂. It is usually the case that by increasing
the number of records used by an estimator, the variance of the estimator decreases. The �rst term
in the right hand side is the square of the bias, and it measures the \systematic" error in trying to
approximate p with p̂. If we add more degrees of freedom to an estimator, we may reduce the bias
(more freedom for p̂ to approximate p), but the variance of the estimator may then increase for a �xed
number of training records. Thus we have a bias-variance trade-o� in the design of classi�ers.

Classi�cation performance should improve as we have more features | presumably, the more
features we have, the more information we can infer about labels. As we add features to our classi�er,
we may have an increasing number of parameters, an increase on estimator variance, and an eventual
degradation in performance (a fact referred to as the Hughes phenomenon [25]).

The distinction between classi�cation error and estimation error is important, as a classi�er may
o�er an inaccurate representation for the joint distribution p(C;X), and yet have low classi�cation
error. Classi�cation performance is directly a�ected by the boundary (in feature space) that separates
labels. A classi�cation boundary may or may not be close to the optimal boundary de�ned by
(1), regardless of how accurate the probability values are estimated. Friedman uses a Gaussian
approximation to show that classi�cation error decreases when the following expression is positive,
and increases when the expression is negative [14]:

sign (P (C = c1jx)� 1=2)
E
h
P̂ (C = c1jx)

i
� 1=2r

V
h
P̂ (C = c1jx)

i ; (2)

where V [�] denotes variance. The variance of the estimator may be small and yet the probability of

error may be large if (P (C = c1jx) � 1=2) and
�
E
h
P̂ (C = c1jx)

i
� 1=2

�
have di�erent signs.
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3 Existing theoretical results for the labeled-unlabeled data

problem

Classi�cation problems are usually divided into supervised ones (where all training data are labeled)
and unsupervised ones (where all training data are unlabeled) [13]. The labeled-unlabeled data problem
is a combination of both supervised and unsupervised problems. At �rst we may reason that unlabeled
data must always help, as unsupervised problems can be solved with unlabeled data alone. We may
also reason that more data should normally reduce the variance of estimators and consequently reduce
estimation error. Also, it is part of statistical folklore that freely available data always increase
expected utility in decision-making [18].

Suppose that we have a classi�er with the \correct" structure; that is, the structure of the classi�er
is identical to the structure that generates training and testing data. Early work has proved that
unlabeled data can lead to improved maximum likelihood estimates even in �nite sample cases [7].
Also, Shahshahani and Landgrebe emphasize the variance reduction caused by unlabeled data under
the assumption that bias is zero; their conclusion is that unlabeled data must help classi�cation [25]. A
similar conclusion is reached by Zhang and Oles [26]. In general, unlabeled data can help in providing
information for the marginal distribution p(X) (a formal analysis of this argument is given by Cohen
et al [8]). Overall, the message of previous work is that unlabeled data must help as long as structure
is correct.

Castelli and Cover have investigated the value of unlabeled data in an asymptotic sense, with the
assumption that the number of unlabeled records goes to in�nity (and do so faster than the number of
labeled records) [5, 6, 7]. Under the additional assumption of identi�ability, unlabeled data alone are
enough to estimate the shape of the marginal distribution for X [16], and labeled records are trivially
necessary to label the decision regions. Castelli and Cover prove that, under various assumptions,
classi�cation error decreases exponentially with the number of labeled records, and linearly with the
number of unlabeled records. Ratsaby and Venkatesh describe similar results for the particular case
of Gaussian features [22]. These results again assume that estimators can replicate the \correct"
structure that generated the training data.1

4 Existing empirical results for the labeled-unlabeled data

problem

In the last few years, several empirical investigations have suggested that unlabeled training data do
improve classi�cation performance. Shahshahani and Landgrebe describe classi�cation improvements
with spectral data [25]; Mitchell and co-workers report a number of approaches to extract valuable
information from unlabeled data, from variations of maximum likelihood estimation [21] to co-training
algorithms [20]. Other publications report on EM-like algorithms [1, 4, 19] and co-training approaches
[9, 10, 17]. There have been several workshops on the labeled-unlabeled data problem (workshops at
NIPS1998, NIPS1999, NIPS2000 and IJCAI2001).

Overall, these publications and meetings advance an optimistic view of the labeled-unlabeled data
problem, where unlabeled data can be pro�tably used whenever available. A more detailed analysis
of current results does reveal some puzzling phenomena concerning unlabeled data. In fact, even the

1Another aspect of Castelli and Cover's results is that they assume identi�ability, a property that fails when features
are discrete [13] | note that many classi�ers are built just for this situation, and certainly fail identi�ability. Lack of
identi�ability does not seem to be a crucial matter in the labeled-unlabeled problem, as we made extensive tests with
discrete models and observed behavior consistent with Gaussian (identi�able) models.
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Figure 1: Classi�ers with two features: Naive Bayes (left) and TAN (right).

last workshop on the labeled-unlabeled data problem, held during IJCAI2001, witnessed a great deal
of discussion on whether unlabeled data are really useful.2

We now summarize three results in the literature that should suÆce to illustrate the diÆculties
surrounding unlabeled data. The results we describe use Naive Bayes [12, 14] and TAN classi�ers
[15]. The basic assumption of a Naive Bayes classi�er is that the joint distribution p(C;X) is

p(C;X) = p(C)

nY
i=1

p(XijC) :

We can represent a Naive Bayes classi�er by a graph, as depicted in Figure 1. One way to relax the
strong independence assumptions in Naive Bayes classi�ers is to admit that every feature depends
on the class variable and also depend on another feature. The resulting classi�er is called a Tree-
Augmented Network (TAN) classi�er [15]. Figure 1 shows a TAN classi�er with a class variable and
two features.

The following results, presented in chronological order, are of interest.

� Shahshahani and Landgrebe [25] focused on the use of unlabeled data to overcome the Hughes
phenomenon (Section 2). They modeled features with Gaussian distributions and did not enforce
independence relations among features, and they employed the EM algorithm for estimation.
They succeeded in showing that it is possible to add features to a classi�er and improve per-
formance when a large number of unlabeled records is used to estimate parameters. It should
be noted that, for a small number of features, the performance of their classi�er was negatively
a�ected by unlabeled data. They suggest that this apparently strange fact (it contradicts their
own theoretic results) was due to deviations from assumed structure; for example, \outliers, . . . ,
and samples of unknown classes" | they even suggest that unlabeled records should be used
with care, and only when the labeled data alone produce a poor classi�er.

� Excellent classi�cation results are reported by Baluja [1] using Naive Bayes and TAN classi�ers.
The classi�ers were built from labeled and unlabeled data using EM. The use of unlabeled data
generally improved performance, however this was not always true. When a relatively large
number of labeled records were present and a Naive Bayes classi�er was used, classi�cation
performance degraded with the addition of unlabeled records.

� In work aimed at classi�cation documents, Nigam et al [21] used the EM algorithm to estimate
parameters of Naive Bayes classi�ers with �xed structure and a large number of features. Un-
labeled data was treated as missing data in the EM algorithm. The paper describes situations
where unlabeled records led to improved performance, but also describes situations where unla-
beled records led to degraded performance (in the presence of a large number of labeled records,

2This fact was communicated to us by Georges Forman.
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consistently with the results reported by Baluja [1]). In one situation, adding a small number
of unlabeled records to a small number of labeled records de�nitely degraded performance, but
adding a larger number of unlabeled records led to substantial improvement. Nigam et al do not
attempt to completely explain the reasons for these observations, but suggest that the problem
might have been a mismatch between the natural clusters in feature space and the actual labels;
they speculate that the fact that they used a large number of features even worsened this mis-
match. Overall, their conclusion is that \unlabeled data can signi�cantly increase performance"
when properly handled.

This brief summary of previous research raises some questions. Are unlabeled data really useful?
Can unlabeled data degrade performance, and if so, how, and why?

5 Experiments with labeled and unlabeled data

Intrigued by the existing results discussed in the previous section, we conducted a series of experiments
aimed at understading the value of unlabeled data.

In all experiments, we generated training data from a structure with randomly chosen parameters,
and then estimated the parameters of a classi�er using the EM algorithm. We used simple structures
and simple classi�ers, as our goal was to understand the behavior of unlabeled data in controled
circumstances. Every classi�er was tested with 50000 labeled records drawn from the \correct" model.
A complete description of our experiments is available elsewhere [8]; here we just summarize the main
points.

We generated two sets of structures, one from structures that follow the Naive Bayes assumptions,
another from structures that follow the TAN assumptions. For the latter structures, we added edges
from featureXi to featureXi+1, for i > 1 (Figure 1 shows one such structure). We generated structures
with 3 to 10 features; for each structure, we observed how a classi�er with the same structure would
recover the model. We considered estimation with 30, 300 and 3000 labeled records, and for each one
of these situations, with 0, 30, 300, 3000 and 30000 unlabeled records. Figure 2 shows the result of
learning a Naive Bayes classi�er when the data was generated by a Naive Bayes structure, and similarly
for a TAN classi�er. Each point in these graphs is an average of ten trials; each graph in Figure 2
summarizes 150 trials. In this particular problem, estimation was relatively easy so the classi�cation
error is only slightly a�ected by unlabeled data when we already have 300 or more labeled records.
We consistently observed that, when classi�ers have the correct structure, unlabeled data improve
classi�cation on average. We also observed that more labeled data is always better for classi�cation
performance.

We then tried to estimate parameters for Naive Bayes classi�ers with the data generated from
the TAN structures. Here we consistently observed that more unlabeled data degraded classi�cation
performance. Figure 3 shows a typical graph. Note that performance degrades abysmally when we
add 30000 unlabeled records to 30 labeled records. To avoid the possibility that this behavior was an
artifact of the EM algorithm, we run a series of Gibbs sampling tests and obtained similar results.
In all tests, we always started the EM algorithm with the estimates obtained using labeled data |
consequently, the estimates are always better (in terms of likelihood) for the unlabeled data than for
the labeled data alone. Despite that, we observe these drops in classi�cation performance.

At this point it is convenient to stop and reect upon the facts we have presented so far. Firstly, we
have theoretical results that guarantee that more labeled data and more unlabeled data help classi�-
cation when the structure is correct, and we observe this empirically. Secondly, we observe empirically
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Figure 2: Examples: estimating parameters for a Naive Bayes classi�er from data generated from a
Naive Bayes structure with 10 features (left), and estimating parameters for a TAN classi�er from
data generated from a TAN structure with 10 features (right). Bars cover 30 to 70 percentiles.
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Figure 3: Example: estimating parameters for a Naive Bayes classi�er from data generated from a
TAN structure with 10 features. Bars cover 30 to 70 percentiles.
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that more labeled data help classi�cation when the structure is incorrect. Thirdly, we observe empiri-
cally that more unlabeled data may degrade classi�cation when the structure is incorrect. There is no
coherent explanation for these observations in current literature. Existing analyses suggest that more
training data lead to less variance and less estimation error | and presumably to better classi�cation.

Shahshahani and Landgrebe, and Nigam et al suggest that there might be mismatches between in-
dependence assumptions, or presence of outliers, in cases where performance is degraded by unlabeled
data. One natural observation is then, if modeling errors degrade classi�cation with unlabeled data,
they would seem to degrade classi�cation with labeled data as well | why would these di�erent types
of data have di�erent e�ects? Also, how can we explain that we have cases, as reported by Nigam et
al, where adding a few unlabeled records degraded peformance, and adding more unlabeled records
led to better performance? The interaction between training data and modeling errors surely require
a more detailed analysis.

6 An analysis of classi�cation performance in the labeled-

unlabeled data problem

In this section we discuss the e�ect of unlabeled data to classi�cation error and show how to reconcile
empirical results with theoretical analysis. Instead of studying classi�cation error directly, we �rst
show how to explain the performance degradation presented previously, and then why this degradation
occurs with unlabeled data.

6.1 How

We propose a new strategy for graphing performance in the labeled-unlabeled data problem. Instead
of �xing the number of labeled records and varying the number of unlabeled records, we propose to
�x the percentage of unlabeled records among all training records. We then plot classi�cation error
against the number of training records. Call such a graph a LU-graph. It may not be clear at this
point why LU-graphs are appropriate visualization tools, so we discuss LU-graphs in an example.

Example 1 Consider a situation where we have a class variable C with labels c0 and c1, and probabil-
ity p(c0) = 0:4017. We have two features X1 and X2. The features are real valued with distributions:

p(X1jc0) = N(2; 1); p(X1jc1) = N(3; 1); p(X2jc0; x1) = N(2; 1); p(X2jc1; x1) = N(1 + 2x1; 1);

where N(�; �2) denotes a Gaussian distribution with mean � and variance �2.

Note that there is dependency between X2 and X1 (X2 depends on X1 when C = c1). Note
that this problem is identi�able, and it is the simplest possible departure from the Naive Bayes
assumptions. Figure 4 shows a contour plot of the joint density for X1 and X2; the �gure also shows
the optimal classi�cation boundary. The optimal classi�cation rule is to choose c0 if fx1; x2g lies
below the boundary, and c1 otherwise.

Suppose we build a Naive Bayes classi�er for this problem. Consider now a series of LU-graphs for
this problem. Figure 5 shows LU-graphs for 0% unlabeled records, 50% unlabeled records and 99%
unlabeled records. For each graph in the �gure, we produced points for total numbers of records equal
to 50, 100, 500, 1000, 5000, 10000 and 50000. Each point in each graph is the average of 100 trials;
classi�cation error was obtained by testing in 10000 labeled records drawn from the \correct" model.
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The �gure also shows two additional graphs containing classi�cation performance when we discard
the unlabeled data and use only the labeled data. We should expect all graphs with just labeled data
to converge to the same classi�cation error in the limit. That must happen because the estimates are
eventually the same; it just takes longer to reach low classi�cation error when we are discarding 99%
of the data.

The LU-graphs for 50% and 99% unlabeled data have an interesting property: their asymptotes
do not converge to the same value, and they are both di�erent from the asymptotes for labeled data.
Suppose then that we started with 50 labeled records as our training data. Our classi�cation error
would be about 7.8%, as we can see in the LU-graph for 0% unlabeled data. Suppose we added
100 labeled records, and we reduced classi�cation error to about 7.2%. Now suppose we added 100
unlabeled records. We would move from the 0% LU-graph to the 50% LU-graph. Classi�cation error
would increase to 8.2%! And if we then added 9800 unlabeled records, we would move to the 99%
LU-graph, with classi�cation error about 16.5% | more than twice the error we had with just 50
labeled records.

The fact that classi�cation error has di�erent asymptotes, for di�erent levels of unlabeled data,
leads to possible degradation of classi�cation performance. Note that it is possible to have incorrect
structure in the classi�er and still for unlabeled data to help | it is enough that we move from one
rapidly decreasing LU-graph to another decreasing LU-graph, and the rate of decrease in the graphs
is larger than the degradation caused by unlabeled data. These considerations indicate that there are
interactions between the Bayes rate of a problem (how hard the problem is), the number of features
used in the problem (how many parameters specify the classi�er) and the di�erence between \correct"
and \assumed" structure. In a diÆcult problem with many features, we may need a large amount
of data to reach a low Bayes rate; in these cases we can bene�t from unlabeled data (to win over
the Hughes phenomenon) even if classi�er structure is incorrect. Examples discussed by Nigam et
al [21] seem to �t this description exactly | while Nigam et al speculate that more features could
cause unlabeled data to misbehave, in fact diÆcult classi�cation problems with more features should
pro�t more consistently from unlabeled data. This observation agrees with the empirical �ndings of
Shahshahani and Landgrebe [25], as they observed that unlabeled data degraded performance in the
presence of a small number of features, and unlabeled data improved performance in the presence of
a large number of features. The LU-graphs for a particular problem are a useful tool to determine
how unlabeled data a�ects classi�cation performance.
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6.2 Why

With the help of LU-graphs we can visualize the e�ect of unlabeled data in classi�cation performance.
Why are unlabeled data the source of asymptotic di�erences between LU-graphs?

To proceed with the analysis, assume that we have an in�nitely large number of labeled records.
Taking the number of unlabeled records to in�nity simpli�es the problem because we can look at the
estimation problem as one of function approximation. In doing this, we are inspired by the strategy
in Castelli and Cover's work [5, 6, 7].

Assuming identi�ability, we can estimate a complete classi�er from an in�nite amount of unlabeled
data. If we have the correct structure for this classi�er, we obtain the exact values of p(X) without
bias. If we have incorrect structure for the classi�er, we can only estimate a function g(X) that
approximates p(X). The fact that g(X) is the \best" possible for estimation does not mean that g(X)
leads to the best classi�cation boundary.

Basically, the fact that estimation error is the guiding factor in building a classi�er leads us to
use estimates that are not optimal with respect to classi�cation error. This seemingly innocuous fact
works in subtle ways, as can be seen analyzing LU-graphs. Note that g(X) cannot be equal to p(X) by
assumption, so we cannot obtain the optimal classi�cation boundary just with g(X). If we had labeled
records, we could alter the classi�cation boundary so as to make it closer to the optimal boundary |
we could \damage" the estimate of p(X) so as to obtain a better classi�cation boundary. When we
have no labeled record, we cannot a�ect the boundary, so we obtain a biased boundary with g(X).
As we add labeled records to a pool of unlabeled records, we are moving the classi�cation boundary
in the direction of the optimal one, even as we move the estimates away from g(X).

These comments are not restricted to maximum likelihood estimation, nor they depend on identi-
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tions and mixture of Gaussian distributions g(X) estimated from labeled data (middle); comparison
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unlabeled data (right).

�ability; the central fact is that we use one criterion to judge estimation, and a di�erent one to judge
classi�cation. The following example shows how the e�ort to reduce estimation error may lead to
di�erent estimates when we use di�erent types of training data.

Example 2 Suppose we have a binary class C, a single real-valued feature X , and an in�nite amount
of training data. We have p(C = c0) = 0:3 and X follows Beta distributions conditional on C:

p(X) = 0:3
0:3(0:3X � 5)3(1� (0:3X � 5))5

Beta(4; 6)
+ 0:7

0:34(0:34X � 5)5(1� (0:34X � 5))4

Beta(6; 5)
:

Figure 6 depicts this mixture distribution. For classi�cation, the classi�cation boundary is crucial
(the boundary is the value of X for which p(X;C = c0) = p(X;C = c1)). For p(X), the boundary
is de�ned by Xo = 17:19053765. Suppose we are informed about the exact value of p(C = c0) and
also we obtain the exact means for the components of this mixtures (�rst component has mean
18 and second component has mean 16.31016043), and suppose we take the incorrect assumption
that X is Gaussian. Now, if we have completely labeled data, we can estimate the variances of
each component with some consistent estimator, and obtain 0.2424242 for the �rst component and
0.1787296 for the second component. Figure 6 depicts the resulting Gaussian mixture g(X). For
g(X), the classi�cation boundary is de�ned by Xl = 17:21261916. Now suppose that training data
are unlabeled. We cannot hope to recover the labels (they are not speci�ed), but we can hope to
recover the classi�cation boundary | that is, we can distinguish between c0 and c1 even if we do not
know which features should be labeled with c0 and otherwise. We can use the fact that the form of
the mixture distribution is known exactly for in�nitely many training data, and we can approximate
p(X) with a mixture of Gaussian distributions using least-squares (unfortunately we cannot obtain
closed-form maximum likelihood estimates in this case). We choose the variances so as to minimize
the squared error

R
1

�1
(p(x) � h(x))2dx, where h(X) is the mixture of Gaussian distributions. By

performing this minimization, we obtain 0.2809 for the variance of the �rst component and 0.200704
for the variance of the second component. Figure 6 depicts the resulting Gaussian mixture h(X); note
that h(X) is quite close to p(X) | closer to p(X) than g(X). The classi�cation boundary for h(X)
is Xu = 17:22483179. Note that Xo < Xl < Xu; unlabeled data lead to a boundary that is strictly
worse than the boundary produced by labeled data.

Classi�cation error depends only on the estimates for p(CjX) (Expression (2)); it is possible to
have better overall estimates (with respect to likelihood) but still obtain worse estimates for p(CjX)
| some parameters in the classi�er may have smaller estimation error while other critical parameters
have larger estimation error. Because unlabeled data contains information only on the marginal
distribution p(X), unlabeled data may adversely a�ect estimates of some critical classi�er parameters,
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Figure 7: Graphs with estimates for p(C = c0) in the example with two Gaussian features.

even as unlabeled data reduce estimation error in other parameters. To illustrate these statements,
consider the classi�cation problem in Figure 4. The value of the parameter p(C = c0) can certainly be
estimated perfectly with an in�nite amount of labeled data | regardless of whether the conditional
distributions p(XjC) have correct functional forms or not. If we have unlabeled training data, then
we cannot guarantee that p(C = c0) has an unbiased estimate; results will depend on structural
assumptions. If we have correct structure for p(XjC), we can still recover p(C = c0) without bias.
Incorrect assumptions about structure can introduce bias into estimates of p(C = c0). Figure 7 shows
estimates for p(C = c0) for a Naive Bayes classi�er when data is generated from the distributions
sketched in Figure 4. The graphs in Figure 7 are similar to LU-graphs, but they show estimates as
we keep the percentage of unlabeled data constant. Each point in these graphs is the average of 100
trials. Note that we always obtain unbiased estimates for class probabilities when we only use labeled
records. Bias is introduced when we use unlabeled data. The bias in p(C) can certainly a�ect p(CjX);
an analysis of Expression (2) shows that bias in p(CjX) can degrade classi�cation performance even
as variance is essentially zero.3

The preceeding discussion also indicates that unlabeled data are fundamentally di�erent from
missing feature values. Even though both forms of missing data degrade estimation performance, un-
labeled data also a�ects classi�cation performance directly by introducing bias in critical parameters.
This insight clari�es several questions raised by Seeger on the value of unlabeled data [24].

3In fact, things are slightly more complicated in the presence of incorrect structure. There may exist a set of estimates
that maximize likelihood; this set is called the asymptotic carrier by Berk [2]. We may experience variation on estimates
inside the asymptotic carrier even as the number of training records goes to in�nity.
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7 Conclusion

The central message of this paper is that unlabeled training data can degrade classi�cation perfor-
mance if the classi�er assumes an incorrect structure. Because in practice we can never be sure about
structure, it is necessary to exercise caution when dealing with unlabeled data.

The current literature in the labeled-unlabeled data problem does not seem to be aware of the
results reported in this paper. Even though there have been reports of performance degradation with
unlabeled data, the explanations that have been o�ered suggest that degradation occurs in somewhat
extreme circunstances. In this paper we show that this is not the case, and in fact problems with less
features are more likely to show performance degradation with unlabeled training data. The type of
degradation described here is a fundamental property of classi�cation error. Of course, it is possible
that additional sources of performance degradation can be found, particularly when there are severe
mismatches between real and assumed structure.

Because unlabeled data is a�ected by classi�er structure, we can use unlabeled data to help our
search for a \correct" structure. Some of the work in the labeled-unlabeled data problem can be
understood from this perspective; for example, Schuurmans and Southey suggest that unlabeled data
should help to parameterize classi�ers to prevent over�tting [23]. A di�erent proposal is made by
Cohen et al [8].

It certainly seems that some creativity must be exercised when dealing with unlabeled data. As
discussed in the literature [24], currently there is no coherent strategy for handling unlabeled data with
diagnostic classi�ers, and generative classi�ers are likely to su�er from the e�ects described in this
paper. Future work should investigate whether unlabeled data can degrade performance in di�erent
classi�cation approaches, such as decision trees and co-training. Hopefully, the results in this paper
will provide a better foundation for algorithms dealing with the labeled-unlabeled data problem.
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