

An Authorization Infrastructure for Nomadic Computing

Kan Zhang, Tim Kindberg
Mobile Systems and Services Laboratory
HP Laboratories Palo Alto
HPL-2001-228
September 14th , 2001*

E-mail: kan_zhang@hp.com, timothy@hpl.hp.com

 We present an infrastructure for flexible and secure access

to a group of distributed services in a nomadic computing
environment, wherein users access local services from
their mobile, wirelessly connected devices. We describe a
secure 'hand-off' protocol, which allows a user to register
with a single service that “hands off” authorization to
access a subset of the services. Our protocol helps
maintain the user's privacy. It allows the services (which
may be implemented on simple appliances) and the user's
mobile device to have modest resources: services do not
have to be online to any party except the user's device and
the storage and communication requirements are minimal.
In addition to the hand-off protocol, the paper presents a
model for authorization hand-off and describes related
research and technologies.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1

An authorization infrastructure for nomadic computing
Kan Zhang &Tim Kindberg

Mobile Systems and Services Laboratory
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304, USA

kan_zhang@hp.com, timothy@hpl.hp.com

Abstract

We present an infrastructure for flexible and secure
access to a group of distributed services in a nomadic
computing environment, wherein users access local
services from their mobile, wirelessly connected
devices. We describe a secure ‘hand-off’ protocol,
which allows a user to register with a single service
that ‘hands off’ authorization to access a subset of the
services. Our protocol helps maintain the user’s
privacy. It allows the services (which may be
implemented on simple appliances) and the user’s
mobile device to have modest resources: services do
not have to be online to any party except the user’s
device and the storage and communication
requirements are minimal. In addition to the hand-off
protocol, the paper presents a model for authorization
hand-off and describes related research and
technologies.

1 Introduction

We present an infrastructure for flexible and secure
access to a group of distributed services in a nomadic
computing environment. This work is part of the
CoolTown project [1], which is investigating
‘nomadic’ computing systems: ones in which users,
carrying wirelessly connected devices, enter places and
use local services associated with those places. The
services may be implemented and provided locally by
appliances in the place, such as printers, data projectors
and soft-drink dispensers. Or they may be local only in
the sense that their functionality is related to the
location, such as a place-specific information service.
Services may be implemented elsewhere but made
accessible through physical interfaces in the place such
as CoolTown’s short-range infrared beacons [1], which
emit service addresses for capture by local clients.

We are interested in secure hand-off protocols that
facilitate a nomadic user’s access to place-specific
services. In particular, we are interested in the case that
those services are distributed throughout a large area in
such a way that they are offline from any central point
of administration or control. In nomadic computing,
there may be a large number of simple appliances and
other services and it is often too costly to implement

authorization mechanisms, especially on simple
appliances. Some of them simply do not have the
necessary resources to run an authorization policy
engine by themselves. Even if they do, the cost of
keeping the authorization policy consistent on multiple
services may be prohibitive. Therefore, in many cases,
we need an authorization infrastructure in which there
is a centralised authorization policy engine where all
the authorization decisions are made.

For example, in Hotel Nomad, all the appliances in a
conference room, such as a projector, a printer and a
video conferencing facility, together with a service that
provides information about local facilities, form a
collection under one administration. A conference
room manager will make authorization decisions for
using those services based on, e.g., whether they have
been paid for. The conference room manager or his
computerized proxy serves as the centralised
authorization policy engine.

Other examples are where a real-estate agent gives a
user the right to gain entrance through electronic locks
to a selection of homes, or a holiday agent gives the
user the right to gain entrance to a selection of chalets
and, in each case, use services within those places.

A major difficulty in implementing an authorization
infrastructure in a nomadic computing environment is
that we cannot assume that the nomadic user or those
simple services will have online connections to the
centralised authorization policy engine. For example, a
hotel guest at Hotel Nomad may not be able to talk to
the conference room manager at the time he wants to
use the conference room projector. Nor can the
manager control the projector remotely. This means we
cannot use existing authorization solutions for
distributed networks, such as OSF DCE [6] or
SESAME [5,7].

In a nomadic computing environment, there is a need
for a ‘hand-off’ protocol such that authorization
information can be given to a nomadic user beforehand
and verified by the local services off-line. For example,
a guest at Hotel Nomad who requires the use of
conference room services and has paid for them may be
given appropriate authorization credentials, e.g. at the
hotel lobby when he checks in. Those credentials can

2

be stored on his PDA (personal digital assistant),
mobile phone or other portable device, and can be used
to obtain access to those conference room services that
he had paid for. The conference room services should
be able to verify those credentials locally.

Any implementation of such an authorization
infrastructure must be efficient in terms of both storing
credentials and verifying credentials due to the
computational and storage limitations of mobile
devices and simple appliances. What complicates the
problem is that there may be a large number of services
and it is generally impossible to predict which services
the user will access or in which order. Moreover,
different users may be entitled to access different sets
of services. This means the credentials have to be short
and yet flexible enough for different access patterns.

In addition, it should be possible for the nomadic user
to remain anonymous (if desired) when using the
authorization service. A nomadic user who has
anonymously established a relationship with a place
such as a hotel should not be forced to expose their true
identity when they obtain or use their credentials for
the place’s services.

Moreover, it is desirable that a service cannot learn
whether its users have the right to access other
services. This is based on the principle of ‘need-to-
know’. For example, a user who accesses services at
various shops in a mall may not want individual shops
to know which others he or she has an interest in.

Contribution and overview of paper

We give a model that specifies an authorization service
for a nomadic computing system that satisfies the
above requirements (Section 3). We give a hand-off
protocol (Section 5) that implements the model
efficiently with respect to time, storage and
communication load. Section 2 discusses related
research efforts and Section 4 describes related
technology that influenced our design including secure
multicast group membership and encrypted broadcast.
Section 6 concludes.

2 Related work

Some of the earliest work on authorization in
distributed systems includes Grapevine [4] where end-
servers query registration servers to determine whether
a client is a member of a particular group. A similar
approach is employed in Sun’s Yellow Pages where
centrally maintained files such as /etc/group are
consulted for authorization purposes. In both cases,
although authorization decisions are made locally, the
local server has to obtain authorization data online
from a remote server.

The Kerberos authorization model for distributed
systems is based on the principle that each service
knows best who its users should be and what form of

authorization is appropriate, so each service manages
its own authorization information [2]. The goal of
Kerberos authentication is to allow different services to
implement different authorization models, and to allow
those authorization models to assume that
authentication of user identities is reliable. Therefore,
each service must determine authorization solely on the
basis of the client’s identity carried in the service
ticket, which means each service must be configured
with the identity of all possible users. This leads to
management overheads of tracking down and
modifying such authorization entries.

The SESAME project [5,7] extends the Kerberos
authentication system and defines a scheme for
securely propagating principals’ privileges, including
roles and groups, from clients to application servers in
order to reduce the authorization management
overhead at application servers. Fairthorne [6]
discusses how the SESAME mechanism for secure
transmission of privilege can be incorporated into an
OSF DCE environment. However, both SESAME and
OSF DCE employ online security servers as a direct
result of extending Kerberos. Use of online security
servers is important in the SESAME architecture
because of its emphasis on the ability to facilitate
security policies that require constraints and
monitoring on who can sign-on to a system even before
any access to target applications is allowed.

Several other works proposed off-line authorization
solutions, such as delegation certificates in the Digital
Distributed System Security Architecture [13,14], the
cascaded authentication mechanism by Sollins [12],
proxy-based authorization by Neuman [9] and by
Trostle and Neuman [11], and authorization certificates
by Woo and Lam [15,16].

Those solutions are geared toward authenticated
delegation in distributed systems and are not suitable
for our nomadic computing model. In distributed
computing, intermediate servers often receive high-
level requests from initiating clients and perform some
series of low-level operations on a number of other
target servers. The requests arriving at the target
servers appear to be the action of the intermediary
rather than the true initiator. In such cases,
authenticated delegation allows a client to give
verifiable authorization credentials to the intermediate
servers so that the target servers can verify that the
intermediary is acting on behalf of the client. The basic
idea of authenticated delegation used in the above
solutions is fairly straightforward. The credentials that
a client gives to an intermediary consists of two parts:
(1) a tamper-proof certificate which includes the client
identifier (or the client’s capability), authorization
restrictions and an authentication key encrypted for the
end-server, and (2) an unencrypted copy of the same
authentication key for the intermediary to prove proper
possession of the certificate. When requesting service

3

from the end-server, the intermediary forwards the
certificate to the end-server. The end-server then
decrypts the authentication key and uses it to verify
that the certificate was properly issued to the bearer.

Although the principle of authenticated delegation can
be extended to our nomadic authorization problem,
existing solutions are not directly applicable. In
authenticated delegation, the focus is on passing access
rights from the client to the intermediary. When the
client identifier is used in a delegation certificate, it is
assumed that the identity of the client is already stored
on end-servers’ access control lists (ACLs). Hence, the
delegation certificate only needs to include the client
identifier with possible additional restrictions on access
rights. Conceptually what the certificate says is that the
intermediary is authorized to access any end-servers
that the client is entitled to. It is not necessary to
specify explicitly which end-servers the intermediary is
authorized to access in the certificate. Although the
additional restrictions could be different from one end-
server to another, how to efficiently encode those
restrictions is not seen as an issue and therefore has not
been addressed. When a client’s capability rather than
identity is used in a delegation certificate, the end-
server only needs to verify the authenticity of the
capability without the need to maintain an ACL.
However, in existing systems the capabilities are
usually end-server specific. The issues of generating
compact capabilities that can be used on a large
number of end-servers and in a privacy-preserving way
have not received much attention.

In our nomadic authorization model, by contrast, the
focus is on giving a nomadic user access rights to a
large number of services. Different users may be
authorized to access different sets of services. Since
these accesses are unpredictable and off-line, a
nomadic user should be given an authorization
certificate beforehand for all and only those services to
which he/she is entitled. These services may be simple
and may not have their own ACLs. They trust and
expect the central authorization policy engine to inform
them to accept or not to accept an access request from a
user. We need an efficient way to specify which
services the nomadic user is authorized to access.
Adding the central authorization policy engine’s id to
the certificate does not help since that engine is
authorized to access all services, not the particular
subset that the user is allowed to access.

A naive solution would be to give the nomadic user
one certificate for each service to which he/she is
entitled. However, such a solution does not scale in our
nomadic model, which may contain thousands of
simple services and the storage space on the user’s
mobile device is limited.

The challenge we are facing is how to design an off-
line authorization solution that can scale to large
number of services and at the same time preserve the

user’s privacy in the sense defined in Section 1. The
authorization certificate has to be short enough so that
the nomadic user can store it on his PDA and yet
flexible enough to specify in a verifiable way any
subset of services should it be the subset that the
nomadic user is entitled to.

3 Model

Suppose there are n services si, i=1…n, in a nomadic
computing environment. These services form a service
group S, i.e., i=1…n, and |S| = n. In addition, there is a
distinguished service L called “Lobby”. Lobby L
maintains a central authorization policy engine for all
services in S. A user U should first register with Lobby
L before he/she can use the services in the service
group. Registration does not necessarily involve
disclosure of U’s true identity. Lobby L will use the
authorization policy engine to derive a subset SU ⊆ S of
services that user U can access. Our task is to design an
off-line authorization infrastructure that Lobby L can
use to enable user U to access any service s ∈ SU

securely and efficiently later on.

It is an important requirement that S may change, by
adding or removing services, at any time and without
affecting the existing set-up for other services. There
may be thousands of services in our nomadic
computing environment and new services are
constantly added or old services removed. It would be
economically prohibitive if every time we add or
remove a service we have to change the set-up of the
rest of the services, such as the keys stored on those
services. However, we assume that any subset SU ⊆ S
of services that user U can access is fixed once it has
been defined.

In our trust model, Lobby L is trusted to behave
correctly. Services are also trusted and behave
independently. In other words, compromising of one
service does not affect the functioning of another
service. The operational model of our off-line
authorization protocol has the following three phases.

Set-up phase

During the Set-up Phase, we assume Lobby L can
communicate securely with each service si ∈ S,
i=1…n, and exchange whatever data is necessary.

User registration phase

During the client registration phase, Lobby L should
use the central authorization policy engine to obtain a
list of services that user U is entitled to access. For
example, the list could be a function of the user’s
identity or the payment made by an anonymous user.
Exactly how Lobby L does this is outside the scope of
this work.

Suppose that Lobby L has found out that user U is
entitled to access a subset SU ⊆ S of services. Lobby L

4

then generates and gives to user U some credential CU

based on SU. User U stores CU on his mobile device
such as a PDA.

User access phase

When user U later wants to use a service s ∈ SU, user U
uses credential CU to convince s that U is authorized to
access it. A major constraint is that neither U nor s is
able to contact Lobby L at the User Access Phase. The
verification has to be done off-line. As a by-product,
we want U and s to end up with a session key.

In terms of security, we want to achieve the following
properties.

• Every s ∈ S can authenticate whether s ∈ SU, i.e., s
can verify if U is authorized to access s’s service.

• User U can authenticate if s ∈ S, i.e., user U can
verify if the service he/she is talking to is from
service group S.

• No other user U' can access any s ∈ SU as U
without colluding with U.

• No service s ∈ S can tell if another service s' ∈ SU.

One solution is to give each service its own key and
compute one credential for each service belonging to
SU. But this requires n credentials to be stored on a
user’s mobile device where n may be large. Another
simple solution is to provide every possible subset of
services with a key and give every service the keys
corresponding to the subsets it belongs to. This requires
every service to store 2n-1 keys, which scales even more
poorly for large values of n.

In our nomadic computing environment, both
computational power and storage capacity at
appliances and user’s mobile device are rather limited.
Of these, the most stringent are the storage space at
user’s mobile devices and wireless network activity
costs. Hence, our solution is geared toward minimizing
the size of credential CU. In doing so, we also minimize
the communication complexity between users’ mobile
devices and services. Storage space at simple
appliances could also be very limited. Therefore, we
will also pay attention to the storage requirements at
services. As to computational power, it is reasonable to
assume that user’s mobile devices are capable of
running symmetric key algorithms and services are at
least capable of verifying digital signatures.

4 Related Technology

4.1 Secure multicast group membership

If we view Lobby L as a group controller in a multicast
group and services as group members, the user
registration phase (not the user access phase) of our
off-line hand-off problem becomes very similar to the
multiple-leave problem for closed multicast groups.

When some members leave a multicast group, the
group controller has to inform the rest of the members
in the group and give them a new group key (which
they use for secure communication). If we think of S as
the original multicast group and SU as the new multicast
group after the leave operation, the same protocol used
for group key updating can be used to inform the
subgroup SU ⊆ S of services that the user who is
contacting them is authorized to access their services.
In this view, the user serves as the communication
media for multicast, though in an asynchronous way,
i.e., the user’s accesses are viewed as communicating
the group controller’s message to group members.

Among various secure multicast protocols, those
applicable to our problem are centralized approaches
that can exclude a subset k of members without the
need to set-up an entirely new group. Chiou and Chen
[18] described an interesting method based on the
Chinese Remainder Theorem for sending a common
key to a selected set of members. The size of the
broadcast data is O(m log m), where m = n - k is the
number of members in the broadcast group. Gong [19]
describes a key distribution protocol for secure
broadcast using polynomial interpolation that achieves
similar efficiency in terms of the size of the broadcast
data.

Wallner et al. [20] and Caronni et al. [24, 25] proposed
hierarchical tree-based schemes for the broadcast
exclusion problem where k, the number of receivers
excluded, is allowed to be arbitrary. These schemes,
however, require O(k log n) transmission overhead and
O(log n) keys for every receiver. The work of McGrew
and Sherman [23], and Canetti et al. [21] shows how to
reduce the transmission overhead by a constant factor
(a factor of 2 in the case of binary trees).

From our perspective, the above schemes for secure
multicast are not very efficient in terms of transmission
overhead when k is either very large (the O(k log n)
result) or very small (the O(m log m) result). The
problem of secure multicast group membership and our
hand-off problem have different threat models and
purposes. In the secure multicast group membership
problem, the purpose is transmitting a new group
communication key to the remaining subgroup of
members while preventing leaving group members
from getting the new group key. In our hand-off
protocol, the emphasis is on identifying the new group
in a secure and privacy-preserving way without
distributing a new key. Hence, our hand-off problem
can be seen as a simpler problem of identifying the
privileged group, i.e., the subgroup SU ⊆ S that the
nomadic user is authorized to access. Ideally, we only
need 1 bit of information to represent whether a service
is in SU or not. Hence, our problem should have a more
efficient solution than secure multicast in terms of
transmission overheads and storage requirement at
group members (services).

5

4.2 Broadcast encryption

Broadcast encryption schemes are also similar in their
goals to the user registration phase of our hand-off
problem. Broadcast encryption schemes define
methods for encrypting content so that only privileged
users are able to recover the content from the
broadcast. Correspondingly, in the hand-off problem
only certain services are ‘privileged’ by the Lobby to
provide their services to the user.

Fiat and Naor [26] were the first to introduce broadcast
encryption (in the context of pay-TV). They suggested
methods of securely broadcasting key information such
that only a selected set of receivers can decrypt this
information, while coalitions of up to k other receivers
can learn nothing, either in the information-theoretic
sense, or under a computational security model.

In broadcast encryption, re-keying is viewed as the
most significant cost of the system, and hence is done
as infrequently as possible. This is a desirable property
for our purpose. However, broadcast encryption
schemes are even less efficient than secure multicast
schemes in terms of storage at the receiver and
transmission length. This remark includes extensions to
the basic work of Fiat and Naor [27, 28, 29]. Recently
Luby and Staddon [30] studied the trade-off between
the transmission length and the number of keys stored
in the receivers. A main part of their work is a
disappointing lower bound, showing that either the
transmission will be very long or a prohibitive number
of keys need to be stored in the receivers.

As with secure multicast group membership, one of the
central goals of broadcast encryption is the secrecy
(and/or integrity) of the messages (or broadcast
encryption key). Our secure hand-off protocol is a
narrower problem that is only concerned with the
secrecy and integrity of the receivers’ identities. This
important difference allows us to employ the secret set
mechanism, which is much simpler than full-blown
encryption and which we now describe.

4.3 Secret sets

Molva and Tsudik introduced the notion of a secret set
– a basic construct for communication with groups of
mutually suspicious entities. A set is secret if any entity
can test its membership in the set but can determine
neither the other set members nor the cardinality of the
set. One of the more efficient constructions of secret
sets is using bit vectors. The authors reason that the
total amount of information needed to represent a
secret set equals the cardinality of that set, i.e., the
number of members therein. However, the difficulty in
actually reducing the representation of a secret set SU

to m = | SU | bits is the need to label them somehow. It
is easy to see that simply generating a bit vector of
length m (m < n = |S|) will result in confusion since a
potential member has no means to determine the

correct bit position (i.e., the bit it should process).
Based on the above, the authors conjectured that the
minimum length for a bit vector representation of a
secret set is the number of all possible members – the
cardinality of S.

Secret sets based on symmetric key method

Assuming that a group controller shares a symmetric
secret key with every member in the group S (|S| = n),
the secret set can be computed as follows. The group
controller first generates a random number b and set
the q-th bit of the n-bit vector V to:

MSB(Kq{b}) if group member q ∈ SU

1 - MSB(Kq{b}) otherwise

Where Kq{b} denotes the encryption of b with key Kq

and MSB(y) denotes the leftmost (most significant) bit
of y.

The secret set is (V, b) and its length is (n + log b) bits.

Secret sets based on Diffie-Hellman method

Alternatively, if each group member has a pair of
Diffie-Hellman keys and pre-distributes the public
exponent to the group controller, the secret set can be
generated as follows. Suppose group member q’s
Diffie-Hellman public exponent is gKq mod P (where g
is the base, Kq is the private key and P is a large prime,
P - 1 being the group order.) The group controller first
generates a random number b and set the q-th bit of the
n-bit vector V to:

MSB(Kq{gbKq}(mod P)) if group member q ∈ SU

1 - MSB(Kq{gbKq}(mod P)) otherwise

The resulting secret set is (V, gb(mod P)) and its length
is (n + log P) bits.

5 The hand-off protocol

As we discussed earlier, both secure multicast and
broadcast encryption focus on transmitting privileged
information to a selected subset of services while
preventing the rest from learning it. Our hand-off
problem is in fact a much simpler set identification
problem. Although a service can infer whether it
belongs to the selected subset by testing if it can get the
privileged information, applying techniques from
secure multicast or broadcast encryption to our hand-
off problem is over-kill.

We choose to use secret sets as our set identification
method. Secret sets prevent one service from learning
whether the user is also authorized to access another
service. Moreover, the construction of secret sets is
near optimum in terms of its size. If nothing is known
about the selected subset SU, the transmission has to be
sufficiently long to uniquely identify the selected

6

subset SU. Thus, in general, simply representing a
subset SU ⊆ S requires |S| bits.

We integrate secret sets with techniques from
authenticated delegation to obtain our off-line hand-off
protocol as follows.

Set-up phase

Suppose there is a group of services si, i=1…n.

1) Lobby L generates a signature key pair whose
public key is denoted as SigKey.

2) Lobby L generates a group key KG, shared
between L and the members of S.

3) Lobby L generates a master key KM, which it
keeps secret, and derives a shared secret key
with service si as follows [31].

Ki = HASH(KM , i, KM)

where HASH() can be any secure hash
function, such as SHA1.

4) Lobby L then sends to each si the following in
a secure way.

L → si: Ki, KG, SigKey

User registration phase

When a nomadic user U comes to register at the Lobby
L, L uses the authorization policy engine to obtain the
set SU of services that user U is authorized to access.
Lobby L then does the following.

1) Lobby L randomly chooses a number b, and
computes a secret set (V, b) using the
symmetric key method.

2) Lobby L randomly chooses an authentication
key KU for U.

3) Lobby L computes a signature Sig, verifiable
by SigKey, on (V, b, KU), and builds a
credential CU = KG{V, b, KU, Sig}, i.e. the
encryption of {V, b, KU, Sig} using KG.

4) Lobby L gives to user U the following in a
secure way.

L → U: KU, CU

User U keeps KU to himself and forwards
credential CU to services when he requires
access.

User access phase

1) When user U requires access to service Pi,

U → si: CU

2) Service si decrypts CU using KG to get KU, V,
and b and verifies signature Sig using SigKey.
If signature verification fails, si declines
access and aborts.

3) Service si checks whether the i-th bit of vector
V is equal to MSB(Ki{b}). If not, si declines
access and aborts.

4) Service si and U engage in a mutual
authentication protocol using shared
authentication key KU. When successful, si

provides access to user U. When either party
detect an anomaly, they should abort the
protocol to protect themselves.

It is easy to see that our hand-off protocol satisfies the
security requirements we set out earlier. Only a
legitimate service s ∈ S can decrypt the credential CU

and retrieve its own authorization information from the
secret set. Since the secret set is digitally signed by
Lobby L, all the legitimate services s ∈ S can be
assured that the retrieved authorization information is
authentic. After decrypting the credential CU, a
legitimate service s ∈ S also obtains an authentication
key KA to be used for mutual authentication with the
requesting user. Since only the intended user U can
obtain a copy of KA from Lobby L and user U is never
supposed to give out KA, the mutual authentication
makes sure that no other user U' can access the service
and that user U is contacting a legitimate service s ∈ S.
Finally, the construction of secret sets prevents one
service from getting authorization information
regarding another service.

Since each service checks a unique bit in the bit vector
V to find out authorization information independently,
adding or removing a service will not affect other
services. The size of vector V simply grows linearly
with the number of services. Those bits in bit vector V
corresponding to removed services can be reused by
new services. The storage requirements at both Lobby
L and services are very small, i.e., two symmetric keys
and one public key. The size of credential CU is n bits
plus a small constant (less than 100 bytes if using a
512-bit RSA signature).

If the services are capable of performing Diffie-
Hellman key exchange, we can assign each service a
Diffie-Hellman key and generate the vector V using the
Diffie-Hellman method. The size of credential CU is
similar to that using the symmetric key method. Using
the Diffie-Hellman method provides the added
advantage that any service can potentially become a
Lobby if it has access to the authorization policy
engine, without the need to store pair-wise keys at the
services. This kind of set-up is useful when a user puts
a different degree of trust in different services. For
example, a number of shops in a shopping mall may
form a service group and each of them may function as
a Lobby. A user who trusts Tom’s Coffee more than
any other store, may pay Tom’s Coffee to get access to
other stores while avoiding dealing with other shops
directly.

7

6 Conclusion

We have described a secure hand-off authorization
protocol designed for nomadic computing systems. In
such systems, users access a selection of potentially
many services. Users are able to obtain authorization
by first receiving a certificate from a ‘Lobby’ service.
We have chosen a name that is suggestive of a good
location for the service in a place such as a building or
a hotel. But it may be placed at any secure point where
users can be expected to pass conveniently.

The services in a nomadic computing environment may
be provided by relatively simple appliances. In
recognition of this, our protocol allows services to be
offline from any point of administration at the time of
user authorization. Our protocol also has a storage
requirement at the services that is constant and modest
(two keys). It has a storage requirement at the user’s
device and a message size requirement that is also
modest: n bits (where n is the total number of services)
plus a small amount.

The protocol enables users to maintain their privacy by
limiting the information held at services on a ‘need-to-
know’ basis. Services do not store user identifiers and
no service can tell whether a given user has access to
any other member of the service group.

Our protocol gives authorization for a set of services
that is fixed at the time of user registration, whereas in
some cases it may be desirable to give users access to a
set of services that is only logically identified when the
user registers and whose membership may change at
run-time. In particular, we do not provide a mechanism
for revoking access to particular services in this model.
However, it is a simple matter to insert an expiry time
or a limit on the number of uses securely into the
certificates issued to users, which can be checked by
individual services in the user access phase.

Acknowledgements. This paper benefited from
discussions with Gita Gopal, Narendar Shankar, John
Barton and Jean Tourrilhes.

References

[1] Tim Kindberg, John Barton, Jeff Morgan, Gene
Becker, Ilja Bedner, Debbie Caswell, Phillipe
Debaty, Gita Gopal, Marcos Frid, Venky
Krishnan, Howard Morris, Celine Pering, John
Schettino, Bill Serra. People, Places, Things:
Web Presence for the Real World, in
Proceedings of WMCSA2000.

[2] S.P. Miller, B. C. Neuman, J. I. Schiller, and
J.H. Saltzer. Section E.2.1: Kerberos
Authentication and Authorization System.
Project Athena Technical Plan, MIT Project
Athena, Cambridge, Massachusetts, October
1988. (Version 4)

[3] John Kohl and B. Clifford Neuman. The
Kerberos Network Authentication Service
(Version 5). Internet Request for Comments
RFC-1510. September 1993.

[4] Andrew D. Birrell, Roy Levin, Roger M.
Needham, and Michael D. Schroeder.
Grapevine: An exercise in distributed
computing. Communications of the ACM,
25(4):260-274, April 1982.

[5] P. V. McMahon, SESAME V2 Public Key and
Authorization Extensions to Kerberos.
Proceedings of the 1995 Symposium on
Network and Distributed System Security, pp-
114-131, February 1995.

[6] S. B. Fairthorne, “Security Extensions for DCE
1.1”, OSF DCE RFC 19.

[7] T. Parker, and D. Pinkas, "SESAME V4 --
Overview", Dec 1995. Available as
http://www.esat.kuleuven.ac.be/cosic/sesame/do
c-txt/overview.txt

[8] Marlena E. Erdos and Joseph N. Pato. Extending
the OSF DCE Authorization System to Support
Practical Delegation. In Proceedings of the 1993
PSRG Workshop on Network and Distributed
System Security, February 1993.

[9] B. Clifford Neuman. Proxy-Based Authorization
and Accounting for Distributed Systems. In
Proceedings of the 13th International
Conference on Distributed Computing Systems,
pages 283-291, May 1993.

[10] Joseph N. Pato, DCE Authorization Services --
Privilege Server, OSF DCE Specifications,
1990.

[11] Jonathan T. Trostle and B. Clifford Neuman. A
Flexible Distributed Authorization Protocol, In
Proceedings of the 1996 Symposium on
Network and Distributed System Security, 1996

[12] Karen R. Sollins, Cascaded Authentication, in
Proceedings of the 1988 IEEE Symposium on
Security and Privacy, IEEE Computer Society,
1988.

[13] M. Gasser, A. Goldstein, C. Kaufman, and B.
Lampson. The Digital distributed system
security architecture. In Proceedings of the 1989
National Computer Security Conference, pages
305-319, October 1989.

[14] M. Gasser and E. McDermott. An architecture
for practical delegation in a distributed system.
In Proceedings of the 1990 IEEE Symposium on
Security and Privacy, pages 20-30, May 1990.

[15] T.Y.C. Woo and S.S. Lam. A framework for
distributed authorization. In Proceedings of 1st

ACM Conference on Computer and

8

Communications Security, pages 112-118,
Fairfax, Virginia, November 3-5, 1993.

[16] T.Y.C. Woo and S.S. Lam. Designing a
Distributed Authorization Service, In
Proceedings of IEEE INFOCOM’98, March
1998.

[17] O. Rodeh, K. P. Birman, and D. Dolev.
Optimized group rekey for group
communication systems. In Symposium Network
and Distributed System Security, Febuary 2000.

[18] G.H. Chiou and W.T. Chen. Secure Broadcast
Using the Secure Lock, IEEE Transactions on
Software Engineering, 15(8):929-934, August
1989.

[19] L. Gong. New Protocols for Third-Party-Based
Authentication and Secure Broadcast, In
Proceedings of the 2nd ACM Conference on
Computer and Communications Security,
pp176-183, Fairfax, Virginia, November 1994.

[20] D. Wallner, E. Harder, and R. Agee. Key
Management for Multicast: Issues and
Architectures. RFC 2627, June 1999.

[21] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M.
Naor, and B. Pinkas. Multicast security: A
taxonomy and some efficient constructions.
Proc. IEEE INFOCOM’99.

[22] R. Canetti, T. Malkin, and K. Nissim. Efficient
communication-storage tradeoffs for multicast
encryption. Proc. EUROCRYPT’99.

[23] D.A. McGrew and A.T. Sherman. Key
Establishment in Large Dynamic Groups Using
One-Way Function Trees. Technical Report No.
0755, TIS Labs at Network Associates, Inc.,
Glenwood, MD, May 1998.

[24] G. Caronni, M. Waldvogal, D. Sun, and B.
Plattner. Efficient Security for Large and
Dynamic Multicast Groups. In Workshop on
Enabling Technologies, WETICE 98. IEEE
Computer Society Press, 1998.

[25] M. Waldvogal, G. Caronni, D. Sun, N. Weiler,
and B. Plattner. The VersaKey Framework:
Versatile Group Key Manangement. IEEE
Journal on Selected Areas in Communication,
17(8):1614-1631, August 1999.

[26] A. Fiat and M. Naor. Broadcast Encryption. In
Proc. CRYPTO’93, LNCS 773, pp 480-491,
1994.

[27] C. Blundo and A. Cresti. Space requirements for
broadcast encryption. In Proc.
EUROCRYPT’94, LNCS 950, pp 287-298,
1994.

[28] C. Blundo, L.A. Frota Mattos, and D.R. Stinson.
Generalized Beimel-Chor schemes for broadcast
encryption and interactive key distribution.

Theoretical Computer Science, 200(1-2):313-
334, 1998.

[29] D.R. Stinson and T. van Trung. Some new
results on key distribution patterns and broadcast
encryption. Designs, Codes and Cryptography,
14(3):261-279, 1998.

[30] M. Luby and J. Staddon. Combinatorial bounds
for broadcast encryption. In Proc.
EUROCRYPT’98, LNCS 1403, pp 512-526,
1998.

[31] U. Blumenthal, N. C. Hien, and B. Wijnen. Key
Derivation for Network Management
Applications. IEEE Network Magezine, pp 26-
29, May/June 1997.

